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Abstract
As intelligent interactive technologies advance, ensuring alignment with user preferences is critical. Machine theory of mind enables
systems to infer latent mental states from observed behaviors, similarly to humans. Currently, there is no formal mechanism for
integrating multiple observations over time and quantifying the uncertainty of inferences as the function of accumulated evidence in a
provably human-like way. This paper addresses the issue through Bayesian inference, proposing a model that maintains a posterior
belief about mental states as a probability distribution, updated with observational data. The advantage of Bayesian statistics lies in the
possibility of evaluating the certainty of these inferences. We validate the model’s human-like mental inference capabilities through an
experiment.
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1. Introduction
Theory of mind, the innate human capacity to deduce others’
latent mental states from observable behavior [1, 2], under-
pins social collaboration [3, 4]. As artificial intelligence (AI)
advances, aligning intelligent machines with users’ pref-
erences becomes imperative [5]. Achieving alignment be-
tween human and machine objectives is facilitated when
machines adopt reasoning processes that can be understood
by humans [6], suggesting the importance of machines em-
ulating human mental inference. A machine theory of mind
seeks to provide machines with the ability to infer mental
states in a human-like manner.

Mental inference facilitates collaboration by informing
the agent and impacting its actions. The idea is that if an
intelligent machine has knowledge of the user’s goals, it
can better make decisions to help the user. However, there
is also an inherent risk in making decisions based on in-
ferences: because all inferences contain uncertainty [7, 8],
the intelligent agent should have a way of considering the
amount of uncertainty when taking actions. There needs
to be a way to quantify the amount of uncertainty, so that
the agent can robustly consider this when choosing what
actions to take. In this paper, we formalize a computational
model that infers preferences of observed agents. Obser-
vations from multiple time steps are integrated, and the
uncertainty associated with inferences is quantified in a
posterior distribution.

The problem that our paper tackles is illustrated in Fig-
ure 1. The three panels depict an evolving inference by an
observer of Janice’s drink preference under varying con-
ditions in three consecutive days. Initially, Janice selects
tea, but the positioning of coffee on a high shelf introduces
ambiguity regarding her preference – does she favor tea, or
does she simply wish to avoid climbing the kitchen ladder?
This uncertainty prevents a clear inference of her preference.
In the second panel, Janice uses a stool to reach the now
higher-placed tea jar, while the coffee remains even further
out of reach, potentially accessible with taller kitchen stairs.
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The scenario hints at a preference for tea, yet the possibility
that Janice may have an aversion to heights carries a degree
of uncertainty, nudging the likelihood slightly in favor of
tea.

The final panel of Figure 1 offers a decisive moment: both
coffee and tea jars are easily accessible, and Janice opts for
coffee. Given the equal effort required to reach both, her
choice of coffee indicates a genuine preference for coffee,
revealing that her earlier decisions were influenced by a
reluctance to climb too high rather than a preference for tea.
Consequently, our inference shifts significantly towards cof-
fee with increased certainty. In this paper, we hypothesize
that humans are able to carry out these sorts of inferences
and meta-cognitively assess how certain they are in inferred
preferences. Moreover, we formalize a computational model
of this process.

2. Background Review
Theory of mind, or mentalizing, enables humans to infer
others’ mental states [9, 10, 11]. It facilitates social interac-
tion [3, 4] such as communication [12, 13] and collaboration
[1, 2]. Likewise, a machine that is able to carry out mental-
ization can better account user variability, improving the
quality of interaction [14, 15, 16]. Experiments have demon-
strated that machines capable of mentalization achieve su-
perior performance in communication [17, 18] and team
cooperation tasks [19].

Models of mentalizing target the inference of mental
states such as preferences, costs [20], knowledge [21], and
beliefs [9]. These models incorporate psychological hy-
potheses concerning of observed actors as computational
frameworks, enabling the simulation of predicted behavior.
Parameters within the model reflect various mental states,
including goals, guiding the behavior prediction for actors
under specific objectives in a given context [22]. Assuming
the psychological underpinnings are accurate, these models
can predict an actor’s behavior based on their goals. Inverse
modeling techniques are then employed to deduce the pa-
rameters most likely to account for the observed behavior
[23, 24].

How to create a psychologically plausible model that can
be parametrized with mental states and that then simulates
behavior? One emerging popular approach is called compu-
tational rationality [25, 26]. It posits that intelligent agents,
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Figure 1: Inferences of preferences based on observed behavior contain uncertainty, especially when there are confounding factors such
as effort. As more evidence accumulates, certainty increases.

such as humans, choose actions that maximize expected
utility. The agent must optimize its behavior with respect
to the constraints environment. In addition, the approach
is sensitive to the fact that intelligent agents have internal
cognitive bounds as well, such as limited knowledge and in-
formation processing capacity. The approach is suitable for
computational modeling of theory of mind, because it helps
to prune the space of possible explanations by assuming
that the observed behavior is produced by a computational
rational agent. When the bounds of the environment and
the cognition are known and modeled correctly, the model
can then be applied for reliable parameter inference [27].

Inferences, including those related to mentalizing, are
often made under conditions of limited data, inherently in-
volving uncertainty [28, 7]. The similarity in actions among
individuals with diverse preferences in specific contexts
implies that observations alone may not suffice for conclu-
sive inferences. The complexity of social settings further
amplifies this uncertainty, highlighting the importance of
incorporating it into models of social collaboration [29].
Thus, agents capable of mentalizing should not only emu-
late human-like inference of mental states but also assess
the uncertainty of these inferences.

3. Method
Following the standard modeling pipeline in computational
rationality [26], we formalize the task environment as a
Markov Decision Process (MDP). It is represented as a tuple
< 𝑆, 𝐴, 𝑇 , 𝑅 >, consisting state space 𝑆, action space 𝐴, tran-
sition probabilities 𝑇 and reward function 𝑅. A state 𝑠 ∈ 𝑆
encoding current information of the environment, transfers
to next state 𝑠′ ∈ 𝑆 by performing an action 𝑎 ∈ 𝐴 accord-
ing to transition probability 𝑇 (𝑠, 𝑎, 𝑠′) = 𝑃(𝑠′|𝑠, 𝑎), and gains
the reward 𝑟 = 𝑅(𝑠, 𝑎). Reinforcement learning (RL) solves
the optimization problem of how to choosing the action 𝑎
through policy 𝜋(𝑎) = 𝑃(𝑎|𝑠) that maximizes the expected
reward by interacting with the environment and learning
from experience. The learning process can be expressed as

the function

𝑉𝜋∗(𝑠) = max
𝑎

[𝑅(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑉𝜋∗(𝑠′)],

where 𝑉𝜋∗(𝑠) is the value of a state 𝑠 ∈ 𝑆 under an optimal
policy 𝜋∗, discounting future rewards using 𝛾 ∈ [0, 1]. This
optimality assumption ties in with computational rationality.
Importantly, it is possible to implement bounds in the MDP
formalism, forcing a bounded optimal behavior to emerge.

The bounded optimal agent described via an MDP can
be parametrized. For instance, a parameter can govern its
preferences, that is, the state rewards. This permits mental-
izing: given observed data, what parameters best produce
predicted data that fits the observations? To this end, we
utilize Bayesian inference, described by Bayes’ rule:

𝑃(𝜃|𝑥) =
𝑃(𝑥|𝜃)𝑃(𝜃)

𝑃(𝑥)
,

where 𝜃 represents the latent factors to be inferred, and 𝑥
represents observed data. The inference uses a prior 𝑃(𝜃)
and a likelihood 𝑃(𝑥|𝜃) to calculate posterior probability
𝑃(𝜃|𝑥), normalized with marginal likelihood 𝑃(𝑥). However,
the intractability of the likelihood 𝑃(𝑥|𝜃) prevents us from
deriving the posterior directly. This can be overcome with
approximation and likelihood free inference methods [30],
such as Bayesian Optimization for Likelihood-Free Inference
(BOLFI) [31].

Figure 2 illustrates the information flow in our model.
Prior knowledge and observation data serve as inputs of
an inference module, which parameterizes a RL agent. The
agent then learns a bounded optimal policy within a sim-
ulator modeling the observed real-world task. Through
multiple samplings, plausibility for various parameter val-
ues is evaluated, forming a posterior distribution that
serves as the prior for subsequent inference with new
observation data. This framework facilitates the tem-
poral integration of inferences and allows for uncer-
tainty analysis within the posterior probability distribu-
tion. All model details are available at the model’s code
repository (https://version.helsinki.fi/shanz/quantifying-
uncertainty-in-mtom.git).



Figure 2: The overall structure of the model. It consists of sim-
ulation of external world and inference module, which can be
repeated as new observation comes.

4. Evaluation

4.1. Participants
We recruited 𝑁 = 10 participants via the Prolific online
platform. The number of participants was small, but because
our experiment setup was well defined, we expected them
to have a high agreement with each other. This was the case,
meaning that a larger number of participants would likely
not have changed the results. Their mean age was 35.6, and
age range 23-56. They were required to be fluent in English,
and be on a PC (no mobile devices were allowed).

4.2. Materials
The experiment consisted of eight distinct tasks, each in-
cluding five stimulus images. One image shows a trajectory
of a robot on a grid from a birds-eye perspective. The robot
is moving from its starting position to either a blue or red
circle, representing charging stations. There may also be
walls, and the robot must navigate around them. Each pic-
ture is different, and there were a total of 8 ⋅ 5 = 40 stimuli.
An example task is shown in Figure 3.

Figure 3: The five stimuli shown sequentially to the participants,
Task 1. Stimulus numbers are added here, and were not present
in the experiment.

4.3. Experiment Procedure
Participants were tasked with discerning the preferred
charging station of a specific task’s robot, understanding
that while the robot could charge at either, it had a latent
preference for one. Instructed that the robot also aimed to
conserve energy, possibly choosing a less favored station if

it were closer, participants rated the likelihood of the robot’s
preference for each station on a scale from 1 (very unlikely)
to 5 (very likely). After making their likelihood assessment
for the stations, they were presented with the next stimulus,
with instructions to refine their inferences based on all pre-
viously shown images of the present task. Only one image
was shown at any single time. Upon the task changing after
five stimuli, participants were reminded that a new robot
with different preferences was introduced.

For our model, we represented the tasks within a grid
world that the RL agent needed to navigate. It incurred a
minor negative penalty for movement and obtained posi-
tive rewards from both charging stations, determined by
two specific parameters. The objective was to infer these
parameters based on the observed data. We measured the
discrepancy between observed and generated trajectories
using Jaccard similarity. Essentially, our inference engine
recreated the world as depicted in the stimulus, then ran the
RL agent across varying parameters, comparing the gener-
ated trajectory against the observed one to form a posterior
distribution for the two preferences. Preference likelihood
ratings for the model were derived by computing the mean
of the posterior distribution for preferences associated with
both the blue and red charging stations.

4.4. Results
The preference ratings of each response were first standard-
ized so that they sum up to 1. Then, a mean rating for
each stimulus in each task was computed. The model’s rat-
ings were likewise standardized to sum up to 1, allowing
comparison between human and model inferences. This
comparison is shown in Figure 4. For calculating model fit,
we selected only the inferences of the other color, because
their values are inversions of each other after standadization.
The model achieves a good fit, 𝑅2 = 0.78, 𝑅𝑀𝑆𝐸 = 0.1. The
most salient discrepancy between the model and human
inferences is that the model is more careful in its estimates.
Importantly, these results were obtained without any pa-
rameter tuning, meaning the model was not fit to the human
data, but emerged similar data due to strong psychological
assumptions about theory of mind.

The results exhibit the expected patterns of inference.
Initially, participants faced uncertainty due to the limited
evidence available. As they were exposed to additional
stimuli, their inferences regarding the robot’s preferences
became more definite: one station’s likelihood ratings in-
creased, while the other’s decreased. Task 1 serves as an
example of this (Figure 3): the participants’ inference that
the robot prefers the red station gets stronger with each
stimulus image shown. However, in tasks 3, 4, 6, 7, and 8,
early stimuli suggested a certain preference, but subsequent
stimuli revealed a stronger preference for the alternate sta-
tion. This is similar to our motivating example in Figure
1. In these instances, the inferred preference for the more
favored station shifted as the task progressed. Task 6 is an
example of this (Figure 5): the participants are shown that
the robot selects the red station, but it is always closer than
the blue one, so there is uncertainty. Finally, in stimulus 5,
it is revealed that the robot in fact prefers the blue station.

4.5. Discussion
Human-AI alignment necessitates that both humans and
intelligent machines accurately interpret each other’s inten-



Figure 4: Comparison of model and human inferences across eight tasks. As more evidence accumulates, the inferences
become more certain. Values close to 0.5 indicate high uncertainty, and values close to either 0 or 1 high certainty.

Figure 5: In Task 6, the participants only learned the true prefer-
ence in the final image.

tions and actions [5]. This paper introduces a human-like
theory of mind model capable of temporal observation in-
tegration, while being sensitive to uncertainty inherent in
mentalizing. We validated the model’s human-like inference
capabilities through a grid world task focused on preference
determination between two goals. The work carried here
is theoretical in nature, and future studies should focus on
more complex scenarios. While computational rationality
has effectively modeled complex behaviors, such as mul-
titasking while driving [32] and touchscreen typing [33],
the exploration of long-term parameter inference in such
contexts remains to be done.

Exploring decision-making under uncertainty is a large
research topic. In our experiments, both humans and the
model engaged in inferences and explicitly evaluated uncer-
tainty, but they were not required to act on these inferences.
A scenario where the model assists the observed actor will
introduce the question of how to integrate uncertainty into
decision-making. Taking the example of Janice from Figure
1, if adjusting the positions of the coffee and tea jars could
aid her, the decision to do so necessitates careful consider-
ation of potential consequences, ensuring the action truly
benefits rather than hinders her. The manner in which a
decision-making algorithm accounts for uncertainty during
collaborative efforts is impacts the helpfulness of interven-
tions and carries a risk of unintended obstruction.

All code, materials, and data are published online
(https://version.helsinki.fi/shanz/quantifying-uncertainty-
in-mtom.git) to facilitate open science.
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