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Abstract 
In the era of digital authentication, facial verification systems have become a cornerstone of security 
protocols across various applications. This study explores the performance synergy from concatenated 
embeddings in enhancing biometric authentication accuracy. By leveraging the Celebrities in Frontal-
Profile dataset (CFP), we investigate whether the fusion of embeddings generated by models such as VGG-
Face, Facenet, OpenFace, ArcFace, and SFace can result in a more robust authentication process. Our 
approach is rooted in the hypothesis that the diverse strengths of these models, when combined, can address 
the limitations inherent in single-model systems, thus providing a more comprehensive solution to facial 
verification. The approach involves computing the L2 distance between normalized concatenated 
embeddings of an input face image and an anchor, thereby determining the authenticity of the individual. 
Experiments are designed to compare the performance of singular model embeddings against concatenated 
embeddings, employing metrics such as accuracy, False Acceptance Rate (FAR), and False Rejection Rate 
(FRR). One of the critical aspects of our research is the implementation of Z-Score normalization and L2 
normalization processes to standardize the embeddings from different models. These normalization 
techniques are vital in ensuring that the diverse outputs from various models are effectively combined, 
maintaining balance and consistency in the feature vectors. Additionally, our methodology includes a 
comprehensive evaluation framework that meticulously analyses the trade-offs between computational 
efficiency and performance gains achieved through model concatenation. The findings of this research 
could significantly contribute to the development of more secure and reliable facial verification systems by 
using multiple existing models without the need for new model research, designing, and training. This 
approach not only optimizes resource utilization but also provides a scalable solution that can be readily 
adapted to existing systems, enhancing their security measures without extensive overhauls. Furthermore, 
the study’s insights into the integration of model outputs could pave the way for future innovations in 
biometric authentication, encouraging the development of hybrid systems that combine the best attributes 
of various neural network architectures. This research underscores the potential of concatenated 
embeddings in revolutionizing facial verification technology. By harnessing the power of multiple neural 
network models, we can create a system that delivers superior accuracy and robustness, addressing the 
pressing need for advanced security solutions. This study sets the stage for further exploration into multi-
model integration, offering a promising direction for future advancements in biometric authentication. 
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1. Introduction 
In today’s digital landscape, facial verification [1] systems 
have become pivotal in ensuring the security and 
authenticity of individual identities across various 
applications, from mobile device security to access controls 
in sensitive environments. The adoption of facial 
recognition technology is driven by its non-intrusive nature 
and the unique, hard-to-replicate characteristics of the 
human face, positioning it as a front-runner in biometric 
authentication methods. Furthermore, the integration of 
socio-cyber-physical systems security frameworks provides 
a comprehensive approach to enhancing cybersecurity 
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measures, as highlighted by Yevseiev et al. in their detailed 
monograph on socio-cyber-physical systems security [2]. 

This research investigates the potential of enhancing 
facial verification accuracy through concatenated 
embeddings from multiple neural network [3] models. 
Utilizing the CFP dataset [4], we aim to determine whether 
the integration of various model embeddings can produce a 
more robust and secure biometric authentication system. By 
examining the performance synergy of these concatenated 
embeddings in comparison to singular model outputs, this 
study aims to contribute to the development of more 
advanced and reliable facial verification techniques with the 
existing set of models for facial verification. 
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1.1. Background 

The evolution of biometric authentication technologies has 
been significantly influenced by advancements in machine 
learning and deep learning [5], particularly in the domain of 
facial recognition. Neural network models, such as VGG-
Face, Facenet, OpenFace, ArcFace, and SFace, represent the 
forefront of research and development in this field. These 
models are designed to extract and analyze facial features 
[6] from images, transforming them into numerical 
representations known as embeddings. These embeddings 
capture the unique aspects of an individual’s facial 
structure, enabling systems to perform verification tasks 
with high degrees of accuracy. The success of these models 
is predicated on their ability to learn complex patterns and 
variations in facial features across diverse datasets, under 
various conditions of lighting, pose, and expression. 

In facial verification technology, using just one neural 
network model comes with certain limitations. Different 
models excel in various aspects, such as accuracy, speed of 
processing, and their ability to handle changes in lighting or 
facial features [7]. The drive for better performance and 
reliability in these systems often requires large and varied 
datasets for training, which can be resource-intensive. 
Additionally, there is a constant need to develop and test 
new model architectures that can effectively transform 
facial images into useful numerical data, known as 
embeddings. This scenario suggests that combining several 
neural network models might offer a more efficient 
solution. By leveraging the unique strengths of multiple 
models, such an approach could potentially overcome the 
common challenges in facial verification. This sets the stage 
for investigating how the integration of outputs from 
different models could lead to improvements in system 
performance. 

1.2. Problem statement 

The hypothesis driving this research emerges from a critical 
challenge within the realm of facial verification systems: the 
limitations of using single-model architectures in achieving 
consistently high accuracy across diverse conditions. This 
issue underscores the necessity of exploring alternative 
strategies that can leverage the strengths of existing 
technologies without the need for constant model 
retraining, dataset updates, or the development of new 
architectures [8]. Moreover, an exploratory survey by 
Hlushchenko and Dudykevych on access control paradigms 
highlights the evolving landscape of policy management 
and its implications for biometric security systems [9]. 

Current facial verification systems often rely on a 
singular neural network model, which may excel under 
specific conditions but fall short in others. This reliance 
poses a significant problem as it demands continuous 
updates to the model and its underlying dataset to address 
emerging challenges and maintain system performance. 
Such an iterative cycle of development is resource-
intensive, requiring substantial investments in data 
collection, processing, and computational power. 
Additionally, the creation of new model architectures to 
improve feature extraction and classification accuracy 
further complicates the process, making it unsustainable in 

the long run. The hypothesis presented in this study arises 
from these challenges, proposing the use of concatenated 
embeddings [10] from multiple models as a means to bypass 
the constraints of singular model dependency. This 
approach aims to explore whether integrating the diverse 
capabilities of established models can offer a more robust 
and accurate solution for facial verification, thus addressing 
the core issues associated with the current methodologies. 

1.3. Objectives of the research 

This research focuses on key goals designed to explore 
improvements in facial verification systems: 

 To create a system to test both individual and 
combined embeddings from models such as VGG-
Face, Facenet, OpenFace, ArcFace, and SFace, 
leveraging the CFP dataset for comprehensive 
analysis. 

 To measure the effectiveness of each model and 
their combinations using accuracy, FAR, and FRR 
[11]. 

 To analyze system performance across single and 
combined model embeddings to identify the most 
effective strategies for facial verification. 

 To extract insights for potential system 
enhancements and recognize any associated 
challenges with multi-model embeddings. 

2. Related works 
The problem of enhancing the accuracy and robustness of 
facial verification systems has been a focal point in 
numerous studies due to ongoing challenges such as 
spoofing, adversarial attacks, and varying conditions of 
image capture. Ding and Tao (2018) addressed the 
limitations of traditional face recognition approaches by 
introducing Trunk-Branch Ensemble Convolutional Neural 
Networks for video-based face recognition, which improved 
recognition accuracy but still faced challenges in handling 
dynamic and complex environments [12]. Nagrath et al. 
(2021) highlighted the need for lightweight and efficient 
neural networks like MobileNetV2 for real-time applications, 
but their study also pointed out the difficulties in maintaining 
high accuracy under real-time constraints [13]. 

Li et al. (2018) focused on enhancing deep learning 
features with facial texture features for improved 
recognition performance, but the integration of different 
feature extraction techniques remained complex and 
computationally intensive [14]. 

Moon et al. (2016) developed a face recognition system 
based on convolutional neural networks using multiple 
distance faces, which further emphasized the necessity of 
integrating various models to enhance system robustness, yet 
it also indicated the increased computational demands [15]. 

Yang et al. (2019) explored federated machine learning 
for face verification, addressing privacy and security 
concerns while maintaining high verification accuracy. 
Their research underscored the challenge of managing 
decentralized data and the need for efficient data integration 
techniques [16].  
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Bhuiyan et al. (2017) presented a noise-resistant network for 
face recognition under noisy conditions, which highlighted 
the ongoing challenge of achieving robust performance in 
diverse real-world scenarios [17]. 

Recent advancements have shown that despite 
significant improvements in facial verification technologies, 
several unresolved issues persist. Gao et al. (2018) discussed 
privacy-preserving techniques in face recognition, which 
remain a critical concern in the deployment of these 
systems [18]. Furthermore, the study by Hanmandlu et al. 
(2013) on Elastic Bunch Graph Matching for face 
recognition identified the need for better handling of pose 
and illumination variations [19]. 

The integration of multiple models to leverage their 
unique strengths and mitigate individual weaknesses is a 
promising approach, as highlighted by recent research on 
hybrid and ensemble methods. However, this integration 
introduces new challenges, such as increased computational 
complexity and the need for sophisticated normalization 
techniques to ensure consistent and reliable performance 
[20, 21]. Additionally, Brydinskyi et al. provide a 
comparative analysis of modern deep-learning models for 
speaker verification, demonstrating the critical role of 
model selection and combination in enhancing verification 
accuracy [22]. 

These studies collectively underscore the necessity of 
integrating multiple models to leverage their unique 
strengths and mitigate individual weaknesses, aligning with 
our research objective of using concatenated embeddings to 
enhance facial verification systems’ accuracy and 
robustness. The proposed approach builds on the 
foundations laid by these works, aiming to address their 
limitations through the strategic combination of diverse 
neural network models. 

3. Methodology 

3.1. Dataset 

The CFP dataset plays a pivotal role in our study, offering a 
nuanced exploration of facial verification across varying 
poses. Its construction and attributes are as follows: 

 Size and Volume: The dataset consists of images of 
500 individuals, with 10 frontal images per 
individual. 

 Resolutions and Quality: Including a mix of 
resolutions and qualities, the dataset mirrors the 
variability encountered in real-world applications, 
ranging from high-definition to lower-quality 
images, challenging the adaptability of verification 
systems to varying image fidelity. 

 Diversity of Conditions: It spans a broad spectrum 
of real-life conditions— different lighting scenarios 
from natural daylight to artificial and low light 
environments, varied backgrounds from simple to 
cluttered scenes, and a wide range of facial 
expressions and poses, especially focusing on 
extreme profile views that pose a significant 
challenge to current algorithms. 

 Source: Images are sourced from the internet, 
capturing “in the wild” conditions that include a 

balanced representation of genders, ethnicities, 
and professions. This approach ensures the dataset 
reflects the complexity and diversity of facial 
appearances and expressions in everyday life. 

CFP dataset examples are shown below in Fig. 1: 4 
random face images for each of the 3 individuals from the 
dataset. 

 
Figure 1: CFP dataset example images of individuals 

3.2. Models 

This study employs various neural network models, each 
with unique architectures and characteristics, to determine 
the effectiveness of concatenated systems in facial 
verification. The models utilized include VGG-Face, 
Facenet, Facenet512, OpenFace, ArcFace, and SFace, each 
designed to extract and analyze facial features from images, 
transforming them into numerical representations known 
as embeddings. A comparison of architecture, embedding 
dimensions, training focus, and key features of each model 
is described in Table 1. 

3.3. Concatenation system 

The concatenation system forms a pivotal component of our 
methodology, designed to harness the collective strengths 
of multiple facial recognition models. This approach seeks 
to enhance the robustness and accuracy of facial verification 
by leveraging the diverse feature representations extracted 
by different models. The process involves several key steps, 
each contributing to the formation of a comprehensive 
feature set that is used for facial verification: 

1. Model Selection: The first step involves selecting a 
set of neural network models, such as VGG-Face, 
Facenet, OpenFace, ArcFace, and SFace, each 
known for its unique approach to capturing facial 
features. This diversity is crucial for assembling a 
wide-ranging feature set. 

2. Output Extraction: For each model, we extract the 
output embeddings that represent the facial 
features identified by that model. These 
embeddings are the high-dimensional vectors that 
encapsulate the model’s interpretation of the facial 
features. 

3. Z-Score Normalization [28]: To standardize the 
embeddings from different models, we apply Z-
Score normalization to each embedding vector. 
This normalization process adjusts the 
embeddings so that they have a mean of 0 and a 
standard deviation of 1. This step is essential for 
mitigating the variance in scale and distribution of 
the embeddings across different models, ensuring 
that no single model’s output disproportionately 
influences the concatenated feature vector. 
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Table 1 
Neural network model characteristics 

Model Architecture Embedding 
Dimension Training Focus Key Features 

VGG-
Face[23] 

VGG-16 4096 Facial Recognition Deep convolutional layers, trained on large facial image 
dataset, use small (3×3) convolution filters, capture fine facial 
details 

Facenet[24] Inception-
ResNet v1 

128 Triplet Loss 
Function 

Compact embeddings optimize distance between 
similar/dissimilar faces, use triplet-based loss function to 
enhance verification accuracy 

Facenet512 Inception-
ResNet v1 

512 Extended Triplet 
Loss Function 

Higher-dimensional embeddings, capture more nuanced 
features, an extension of Facenet with increased embedding 
size for a richer representation 

OpenFace[25] nn4.small2 128 Real-time 
Recognition 

Balances accuracy and computational efficiency, suitable for 
real-time applications, a lightweight model designed for 
practical use on modest hardware 

ArcFace[26] ResNet-100 512 Additive Angular 
Margin Loss 

Enhances discriminative power, improves geometric accuracy 
of feature space, uses additive angular margin loss to manage 
class margins 

SFace[27] Xception-39 128 Scale Variations Efficient handling of scale issues, rapid and accurate 
recognition, perform well on high-resolution images, notable 
efficiency and accuracy, especially on large datasets 

 
4. Concatenation: Following normalization, the 

embeddings from all selected models are 
concatenated into a single, comprehensive feature 
vector. This concatenated vector represents a 
fusion of the diverse facial features recognized by 
the individual models, capturing a broader 
spectrum of facial characteristics than any single 
model could. 

5. L2 Normalization [29]: The concatenated feature 
vector undergoes L2 normalization, which scales 
the vector to have a unit norm. This normalization 
step is critical for preparing the feature vector for 
similarity calculations, ensuring that the 
magnitude of the vector does not affect the 
distance measurements. 

6. EER Determination: Upon calculating the L2 
distances between facial image pairs, we identify 
the Equal Error Rate (EER), the point where the 
FAR and the FRR converge. Determining the EER 
is essential, as it represents an optimal balance 
point for the system’s decision threshold, 
minimizing both false positives and false 
negatives. This optimal threshold is then used to 
distinguish between matches and non-matches 
across the entire dataset, allowing for the proper 
measurement of verification metrics such as 
accuracy, FAR, and FRR. 

3.4. Evaluation metrics 

To analyze the performance of our facial verification 
systems, including both single and combined models, we 
use three main metrics: accuracy, FAR, and FRR. These 
metrics help us understand the systems’ performance in 
correctly identifying faces. 

False Acceptance Rate: FAR measures the likelihood 
that the system incorrectly verifies an impostor as a genuine 
user. It is crucial to evaluate the security aspect of the facial 
verification system, with lower values indicating higher 
security. FAR is calculated as: 

𝐹𝐴𝑅 =  
𝐹𝑃 

(𝐹𝑃 + 𝑇𝑁)
, (1) 

where FP is the number of false positives, and TN is the 
number of true negatives. 

False Rejection Rate: FRR assesses the frequency at 
which the system wrongly rejects an authentic match. This 
metric is important for understanding the usability of the 
system, as a high FRR may lead to user frustration. Lower 
FRR values are desirable, indicating better performance. 
FRR is calculated as: 

𝐹𝑅𝑅 =  
𝐹𝑁 

(𝑇𝑃 + 𝐹𝑁)
, (2) 

where FN represents false negatives, and TP denotes 
true positives. 

Accuracy: This metric measures the overall 
effectiveness of the facial verification system. It is calculated 
as the ratio of correctly identified instances (both true 
positives and true negatives) to the total number of 
instances. High accuracy indicates that the system is 
effective in correctly verifying facial identities. The formula 
for accuracy is given by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁 

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
, (3) 

where TP represents true positives, TN denotes true 
negatives, FP stands for false positives, and FN signifies false 
negatives. 

Together, these metrics provide a comprehensive 
overview of the system’s performance, offering insights into 
its accuracy, security, and usability. By evaluating these 
metrics, we can make informed decisions on optimizing 
model configurations and improving facial verification 
systems. 

3.5. Technical setup 

Experiments were conducted on a defined technical 
framework comprising specific hardware and software 
components. 

Hardware Configuration: MacBook Pro 16 with an 
M1 Pro processor and 16GB RAM, offering enough 
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computational power for handling neural network 
operations. 

Software Configuration: 

 Python 3.11: Selected for its widespread support 
for data analysis and machine learning tasks. 

 Tensorflow-metal 1.1.0: Optimized for the M1 Pro, 
enhancing machine learning computation speeds. 

 OpenCV-python 4.9.0: Utilized for image 
processing tasks such as loading, resizing, and 
cropping. 

 Deepface 0.0.83: A library providing access to 
several facial recognition model weights (VGG-
Face, Facenet, OpenFace, ArcFace, SFace) and their 
functionalities, streamlining the embedding 
extraction. 

4. Experiments and results 

4.1. Data preprocessing 

Data preprocessing is a crucial initial phase in our 
experiment, ensuring facial images are properly conditioned 
for analysis by various neural network models. Here’s an 
outline of the preprocessing steps undertaken: 

Loading Images: Images are first loaded in RGB color 
space, retaining their essential color information which is 
crucial for accurate analysis of facial features. 

Scaling Pixel Values: To standardize the images, pixel 
values for each color channel are scaled to a range from 0 to 
255. 

Model-Specific Normalization: Depending on each 
model’s requirements, specific normalization techniques are 
applied to the image data to match the conditions under 
which the models were trained [30]. 

For Facenet model: 

𝑖𝑚𝑔 =  
𝑖𝑚𝑔 − 𝑚𝑒𝑎𝑛(𝑖𝑚𝑔) 

𝑠𝑡𝑑(𝑖𝑚𝑔)
, (4) 

where mean and std are the mean and standard 
deviation of the image’s pixel values, respectively. 
For Facenet512 and ArcFace models: 

𝑖𝑚𝑔 =  
𝑖𝑚𝑔 

127
− 1, (5) 

For the VGGFace model: 

𝑖𝑚𝑔 =  𝑖𝑚𝑔 − 
93.5940

104.7624
129.18633

൩, (6) 

this formula represents the subtraction of mean values 
for each color channel (R, G, B) based on VGGFace1 training 
data. 

For OpenFace and SFace models: 

𝑖𝑚𝑔 =  
𝑖𝑚𝑔 

255
. (7) 

4.2. Singular models evaluation 

In the evaluation phase of our experiments, each neural 
network model was assessed individually to establish its 
performance on the CFP dataset. A crucial part of this 
assessment involved determining the EER for each model, 
which provides a threshold at which the rate of false 
acceptances is equal to the rate of false rejections. 

The process began with the calculation of distances 
between facial embeddings for both genuine and impostor 
pairs. Following this, we computed the EER for each model, 
which then served as a basis for determining the 
corresponding accuracy at the EER point and the best 
overall accuracy achieved by the model. These metrics give 
us insight into the models’ capabilities in facial verification 
tasks under the diverse conditions presented by the CFP 
dataset. 

The results of the singular model evaluations are 
summarized in Table 2. 

Table 2 
Singular model metrics on the CFP dataset 

Model EER(%) EER Accuracy(%) Best Accuracy(%) 

VGG-Face 4.7 95.28 95.28 
Facenet 3.4 96.62 97.45 
Facenet512 3.15 96.85 97.37 
OpenFace 18.3 81.70 81.72 
ArcFace 5.95 94.07 94.65 
SFace 18.5 81.42 81.80 

 
Analyzing results, we observe a wide range in performance 
across different models. Models such as Facenet and 
Facenet512 show promising EER values and high accuracy, 
indicating their robustness in handling facial verification. 
Conversely, models like OpenFace and SFace, demonstrate 
the challenges of achieving high accuracy in diverse CFP 
dataset conditions. 

4.3. Concatenated clusters evaluation 

The exploration of concatenated clusters is an integral part 
of the research, aimed at harnessing the collective strengths 
of multiple neural network models to enhance facial 
verification accuracy. This section discusses the evaluation 
of clusters formed by all possible combinations of six 
distinct models: VGG-Face, Facenet, Facenet512, OpenFace, 
ArcFace, and SFace. Each cluster is identified by a unique ID 
for ease of reference and comparative analysis.  
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Figure 2: Visual analysis of performance metrics for Facenet and Facenet512 cluster (Cluster ID 5) 

The evaluation methodology began with the 
determination of the EER for each cluster. EER serves as 
a crucial metric for assessing the balance between 
security and user convenience. By employing this 
threshold, we derived the EER-based accuracy and the 
best accuracy achievable across a range of thresholds, 
thereby quantifying the models’ verification capabilities. 
The metrics graphs and threshold range analysis 
examples are shown in Fig. 2. 

Following the graphical analysis, the performance 
results for each cluster are presented in Table 3. This table 
arranges the EER accuracy and the best accuracy observed 
for each cluster in 57 combinations. 
In the evaluation of concatenated clusters, our data 
indicates that selected clusters achieve a marginal 
increase in accuracy over the highest-performing 
individual model, Facenet512. Specifically, clusters 5, 9, 
11, 25, 26, 27, 45, and 55 demonstrate a modest 
enhancement, improving upon the best singular model’s 
accuracy by approximately 0.23%. While this 
improvement showcases the potential advantages of 
model concatenation, it is crucial to consider the 
computational trade-offs associated with such a strategy. 

5. Discussions 

5.1. Insights from the results 

The study’s exploration into the performance of facial 
verification models, individually and in combined 
clusters, has revealed several key insights: 

 Impact of Model Pairing on Performance: 
Our findings highlight a notable trend where 
clusters combining models with lower initial 
accuracy see significant performance boosts. 
For instance, pairing OpenFace with 
Sface(Cluster ID 13) resulted in a 4.33% increase 
in accuracy, achieving an 86.13% rate. This 

contrasts with clusters of high-performing 
models, which, on average, only show about a 
0.5% improvement in accuracy. This 
observation suggests that strategic pairing, 
especially involving models with varied 
strengths, can effectively compensate for 
individual weaknesses. 

 Variable Outcomes from Mixed Model 
Clusters: Not all model combinations lead to 
positive outcomes. In some cases, such as the 
cluster of Facenet and VGG-Face(Cluster ID 0), 
the resulting accuracy was slightly lower than 
that of the Facenet model on its own. This 
points to the complexity of model interactions 
within clusters and indicates that combining 
models does not guarantee enhanced 
performance and may result in suboptimal 
results in certain configurations. 

 Considerations on Computational 
Efficiency: While some model clusters achieve 
minor improvements in accuracy, like Facenet 
with Facenet512(Cluster ID 5) with a 0.23% 
increase, the requisite computational resources 
increase significantly. This raises important 
considerations about the cost-benefit ratio of 
employing concatenated models, especially 
when the gains in performance are marginal 
compared to the added computational demand. 

 Maintaining High Accuracy and Security: It 
is noteworthy that both individual and 
clustered models achieving the highest 
performance were able to maintain their 
accuracy without any false acceptances on the 
CFP dataset. This demonstrates their potential 
in scenarios demanding high security, where 
maintaining accuracy without compromising 
on false acceptance rates is crucial. 
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Table 3 
Cluster models metrics on the CFP dataset 

Cluster-ID Models EER Accuracy(%) Best Accuracy(%) 

0 VGG-Face,Facenet 95.63 95.63
1 VGG-Face,Facenet512 95.97 96.18
2 VGG-Face,OpenFace 95.33 95.33
3 VGG-Face,ArcFace 95.88 95.88
4 VGG-Face,SFace 95.55 95.55
5 Facenet,Facenet512 97.13 97.68
6 Facenet,OpenFace 95.25 95.53
7 Facenet,ArcFace 95.25 96.35
8 Facenet,SFace 95.57 96.13
9 Facenet512,OpenFace 96.87 97.28
10 Facenet512,ArcFace 96.65 97.43
11 Facenet512,SFace 97.20 97.33
12 OpenFace,ArcFace 93.53 94.83
13 OpenFace,SFace 85.83 86.13
14 ArcFace,SFace 93.67 94.62
15 VGG-Face,Facenet,Facenet512 96.13 96.35
16 VGG-Face,Facenet,OpenFace 95.57 95.63
17 VGG-Face,Facenet,ArcFace 95.93 96.03
18 VGG-Face,Facenet,SFace 95.67 95.67
19 VGG-Face,Facenet512,OpenFace 95.90 96.25
20 VGG-Face,Facenet512,ArcFace 96.13 96.52
21 VGG-Face,Facenet512,SFace 95.92 96.23
22 VGG-Face,OpenFace,ArcFace 95.68 95.98
23 VGG-Face,OpenFace,SFace 95.35 95.35
24 VGG-Face,ArcFace,SFace 95.82 95.92
25 Facenet,Facenet512,OpenFace 96.68 97.55
26 Facenet,Facenet512,ArcFace 96.65 97.53
27 Facenet,Facenet512,SFace 97.30 97.57
28 Facenet,OpenFace,ArcFace 94.90 96.13
29 Facenet,OpenFace,SFace 94.38 94.62
30 Facenet,ArcFace,SFace 95.98 96.15
31 Facenet512,OpenFace,ArcFace 96.80 97.23
32 Facenet512,OpenFace,SFace 96.57 97.23
33 Facenet512,ArcFace,SFace 96.55 97.3
34 OpenFace,ArcFace,SFace 93.53 94.37
35 VGG-Face,Facenet,Facenet512,OpenFace 95.97 96.52
36 VGG-Face,Facenet,Facenet512,ArcFace 96.20 96.72
37 VGG-Face,Facenet,Facenet512,SFace 96.12 96.47
38 VGG-Face,Facenet,OpenFace,ArcFace 95.77 96.07
39 VGG-Face,Facenet,OpenFace,SFace 95.47 95.70
40 VGG-Face,Facenet,ArcFace,SFace 95.97 96.03
41 VGG-Face,Facenet512,OpenFace,ArcFace 96.08 96.55
42 VGG-Face,Facenet512,OpenFace,SFace 95.97 96.32
43 VGG-Face,Facenet512,ArcFace,SFace 96.10 96.63
44 VGG-Face,OpenFace,ArcFace,SFace 95.63 95.88
45 Facenet,Facenet512,OpenFace,ArcFace 96.92 97.35
46 Facenet,Facenet512,OpenFace,SFace 96.78 97.43
47 Facenet,Facenet512,ArcFace,SFace 96.57 97.43
48 Facenet,OpenFace,ArcFace,SFace 94.93 95.88
49 Facenet512,OpenFace,ArcFace,SFace 96.80 97.10
050 VGG-Face,Facenet,Facenet512,OpenFace,ArcFace 96.12 96.72
51 VGG-Face,Facenet,Facenet512,OpenFace,SFace 95.98 96.53
52 VGG-Face,Facenet,Facenet512,ArcFace,SFace 96.13 96.75
53 VGG-Face,Facenet,OpenFace,ArcFace,SFace 95.73 96.07
54 VGG-Face,Facenet512,OpenFace,ArcFace,SFace 96.07 96.55
55 Facenet,Facenet512,OpenFace,ArcFace,SFace 96.95 97.35
56 VGG-Face,Facenet,Facenet512,OpenFace,ArcFace,SFace 96.08 96.67

 Strategic Composition of Clusters for 
Optimal Performance: The analysis further 
reveals that the most successful clusters often 
include a combination of the top two performing 
models along with a lower-performing one. This 

composition suggests that the diverse feature 
recognition capabilities of the combined models 
contribute to a more comprehensive analysis, 
thereby enhancing the overall system’s 
performance. 
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5.2. Challenges encountered 

Throughout this research, we encountered several 
challenges that impacted both the implementation of our 
experiments and the analysis of results: 

 Input Data Normalization: For effective 
performance, each neural network model requires 
input data to be normalized according to the 
specific training data it was developed with. This 
normalization process involved adjusting the color 
space and scaling for each model to match its 
training conditions. We successfully applied 
model-specific normalization for most of the 
models, ensuring that the input data closely 
mirrored the conditions under which the models 
were originally trained. 

 Z-Score Normalization for Model Output 
Embeddings: Given the variance in scale and 
distribution of embeddings across different 
models, a significant challenge was standardizing 
these embeddings for consistent comparison. By 
implementing Z-Score normalization on each 
embedding vector, the embedding was adjusted to 
have a mean of 0 and a standard deviation of 1. 
This crucial step allowed us to mitigate the 
disparities across model outputs. 

 Heavy Computation Without Heavy Server 
Resources: The computation required for 
generating embeddings for 57 clusters, along with 
individual model evaluations, was significant. To 
manage this, the caching mechanism [31] was 
implemented for embeddings post-system setup. 
The strategy enabled the reuse of embeddings 
across different clusters and singular model 
experiments, saving dozens of hours in 
computational time. 

 Poor Accuracy for OpenFace and SFace 
Models: The lower-than-expected accuracy for 
OpenFace and SFace models raised concerns. This 
may have resulted from inaccurate normalization 
information or deviations from the default training 
data used in these model weights. While this paper 
did not directly address enhancements to these 
models’ accuracy, identifying the potential causes 
paves the way for future improvements. 

 Average Size and Resolution Dataset While the 
CFP dataset was sufficiently comprehensive for 
our experimental purposes, its size and the 
variability of its data presented limitations. A 
larger and more diverse dataset could potentially 
reveal insights and issues not observed with the 
CFP dataset used in the study. This 
acknowledgment serves as a recommendation for 
future research directions to explore more 
extensive datasets for a deeper analysis. 

6. Conclusions and future work 
The findings from the experiments offer valuable insights 
into the performance synergy of employing concatenated 
model clusters for facial verification systems. While several 

clusters achieved incremental improvements in accuracy, 
the requisite increase in computational resources was 
significant. For applications prioritizing computational 
efficiency, singular models like Facenet or Facenet512, 
which provide high accuracy without substantial 
computational overhead, might be more advisable. 
Specifically, the cluster combining Facenet and Facenet512 
(Cluster ID 5) presents a compelling option, marginally 
outperforming the accuracy of the Facenet singular model by 
0.23%, achieving a 97.68% accuracy rate. This slight 
improvement might justify the additional computational 
resources in scenarios where maximizing accuracy is 
paramount. 

In contexts where the verification system can 
accommodate extended inference times and has access to 
extended computational power, employing model clusters 
could be beneficial. For verification systems bound by 
computational and time constraints yet seeking to improve 
upon the accuracy provided by singular fast-inference 
models like OpenFace, forming clusters with other rapid-
inference models offers a strategic solution. For example, 
pairing OpenFace with SFace led to a significant 4.33% 
accuracy increase over the singular OpenFace model, 
achieving an 86.13% accuracy rate. This strategy allows for 
a balanced enhancement in accuracy while maintaining 
essential high-speed inference capabilities, suitable for 
applications where both efficiency and accuracy are valued. 

The exploration of concatenated model clusters in facial 
verification creates numerous opportunities for future 
research. A promising direction involves analyzing the 
specific features within each model’s embeddings that most 
influence verification decisions. By identifying and 
prioritizing these impactful features, it may be possible to 
filter out less relevant or noisy features from model 
embeddings [32]. This approach holds potential not only for 
singular model systems but could notably enhance the 
performance of clustered model systems by focusing on the 
combination of the most determinant features for L2 
distance calculations. 

Future research could also explore the efficiency of 
alternative distance metrics such as Cosine [33] and L1 
distances. These metrics may produce different distributions, 
thresholds, and ultimately accuracies for model clusters, 
offering new insights into the optimization of verification 
systems. Additionally, further investigations could evaluate 
how these systems scale and perform under larger, higher-
quality datasets with more varying conditions, potentially 
uncovering benefits not observed in the current dataset. 

Given that certain models are highly dependent on the 
alignment of facial images, integrating dynamic alignment 
techniques tailored to each model within a cluster could 
improve accuracy. This personalized approach to face 
alignment may optimize the performance of each model’s 
contributions to the cluster. The initial success of combining 
lower-performing models with fast inference rates suggests a 
valuable strategy for developing efficient verification systems 
suited for embedded environments. Future work could focus 
on identifying and testing combinations of efficient models to 
create a verification system that balances accuracy with the 
computational speed necessary for real-time applications in 
constrained environments. 
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In conclusion, the decision to employ singular models or 
concatenated clusters should be guided by the specific 
requirements and constraints of the facial verification 
system in question. The strategic composition of clusters, 
balancing between computational efficiency and marginal 
gains in accuracy, remains a critical consideration for the 
deployment of robust and effective biometric authentication 
solutions. Additionally, the model of a decoy system based 
on dynamic attributes for cybercrime investigation, as 
proposed by Vasylyshyn et al., offers a novel approach to 
enhancing system security and can be integrated into future 
research to address emerging threats [34]. 
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