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Abstract 
Secure memory management issues are very common in SCADA device software. Systems that are 
integrated with SCADA and IIoT are often included in the list of critical infrastructures in many countries. 
Therefore, ensuring the security of these devices is important for national security. Despite the 
implementation of certain cybersecurity tools and measures, these devices often become targets for attacks. 
Memory errors remain one of the most common sources of software vulnerabilities. Attackers are actively 
using them to gain unauthorized access to systems, steal data, disrupt software operations, and perform 
other criminal acts. These types of vulnerabilities are very difficult to reproduce and fix. This paper 
discusses how to increase the security of SCADA and IIoT devices using secure memory management. The 
relevance of the problem of secure memory management in SCADA and IIoT devices makes it a subject of 
careful study and search for effective solutions. The purpose of this paper is to study the impact of dynamic 
memory errors on cybersecurity and provide practical recommendations for their elimination. Various 
sectors, including energy, water treatment, manufacturing, transportation, oil and gas exploration, 
telecommunications, environmental monitoring, aerospace, and medical facilities, rely heavily on SCADA 
and IIoT systems. Given the widespread use of these systems in critical infrastructure, addressing memory 
management vulnerabilities is crucial. This paper presents an overview of the most common memory 
management issues, such as null pointer dereferencing, use-after-free, and buffer overflow, and highlights 
notable cyberattacks that exploited these vulnerabilities. The effectiveness of different methods to prevent 
and mitigate memory management issues, including the use of sanitizers, static code analysis, and 
programming languages with secure memory management like Rust, is analyzed. The study concludes that 
a comprehensive approach combining these methods is essential for enhancing the cybersecurity of SCADA 
and IIoT devices. The findings aim to help software developers and cybersecurity professionals better 
understand the risks associated with dynamic memory in SCADA and IIoT devices and improve application 
security. 
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1. Introduction 
Imagining modern life without process automation is 
challenging, as it is crucial for both industry and homes. 
Most devices can now connect to the Internet, a small but 
significant percentage of devices can be controlled by voice 
and even contain artificial intelligence to communicate with 
humans. The SCADA (Supervisory Control and Data 
Acquisition) system is a centralized control system that 
allows monitoring and control of industrial processes. In 
essence, SCADA has dual functionality—supervision of 
operations and data acquisition from remote locations, 
which is critical for efficient and safe operation in various 
industries. 

SCADA systems, alongside the Industrial Internet of 
Things (IIoT), play a vital role in numerous sectors, 
including energy, water treatment, manufacturing, 
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transportation, oil and gas exploration, 
telecommunications, environmental monitoring, aerospace, 
and medical facilities. The market for industrial control 
systems, including SCADA, is expected to exceed $181.6 
billion by the end of 2024, highlighting their growing 
importance. 

Despite the essential role of SCADA and IIoT systems, 
they face significant cybersecurity threats, primarily due to 
memory management issues. According to Google, 59% of 
the vulnerabilities found in the Android project in 2021 
were related to memory issues [1]. Microsoft reported that 
in 2019, 70% of all vulnerabilities in their projects were 
memory-related [2]. Similarly, in the Chromium project, 
almost 70% of critical security bugs are associated with 
memory security issues, and Mozilla has reported that 
incorrect memory management can cause up to 73.9% of 
vulnerabilities [3]. These vulnerabilities often lead to severe 
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security breaches, such as unauthorized access to systems, 
data theft, and operational disruptions. 

In their research, Oorschot et al. (2023) highlighted the 
challenges of memory safety in system programming 
languages like C and C++ [4]. While these languages are 
powerful, they are prone to memory errors such as null 
pointer dereferencing, use-after-free, and buffer overflow. 
These types of errors are particularly prevalent in the 
software used for SCADA and IIoT devices, which are often 
written in these languages due to their low-level capabilities 
and performance requirements. 

Also, in many research studies (Altaleb, Haya & Rajnai, 
Zoltan (2024) or Fall, Moustapha & Chuvalas, Chris & 
Warning, Nolan & Rabiee, Max & Purdy, Carla (2020) and 
many more) related to security SCADA and IIoT, secure 
memory management is not covered [5]. These studies 
focus on the more common cyber security threats, like 
“OWASP Top Ten” and others. In this context, secure 
memory management belongs to low-level system control 
that significantly impacts cybersecurity [6]. 

The objective of this paper is to address the impact of 
dynamic memory errors on the cybersecurity of SCADA 
and IIoT devices and to provide practical recommendations 
for their mitigation. By examining various studies and 
existing methods, we aim to identify effective solutions to 
enhance the security of these critical systems. Our analysis 
includes the use of sanitizers, static code analysis, and the 
adoption of programming languages with built-in memory 
safety mechanisms, such as Rust, which offers a robust 
alternative to traditional system programming languages. 
The goal is to provide insights that will help software 
developers and cybersecurity professionals better 
understand and manage the risks associated with memory 
management in SCADA and IIoT devices. 

2. Ensuring cybersecurity of SCADA 
and IIoT devices 

To better understand how SCADA and IIoT devices can be 
protected, it is necessary to analyze where and how these 
devices are used. The adaptability of SCADA and IIoT devices 
to scenarios that require remote monitoring, control, and data 
collection has led to its widespread adoption in various 
sectors such as: 

 Energy sector. SCADA is widely used in the 
energy sector to monitor and control the 
production and distribution of electricity, ensuring 
efficient and reliable power supply. 

 Manufacturing industry. SCADA is used in 
manufacturing to monitor and control production 
processes, optimize efficiency, minimize 
downtime, and improve overall production 
quality. 

 Transportation and traffic management. SCADA 
systems are used in transportation to monitor and 

control traffic lights in real time, helping to 
manage traffic, reduce congestion, and improve 
road safety. 

 Telecommunications. SCADA systems contribute 
to the development of the telecommunications 
sector by monitoring and managing network 
infrastructure, ensuring reliable and uninterrupted 
communication services. 

 Environmental monitoring. SCADA is used in 
environmental monitoring to track pollution 
levels, air quality, and other environmental 
parameters, supporting efforts to solve 
environmental problems. 

 Aerospace industry. SCADA is integrated into the 
aerospace industry to monitor and control 
production processes, ensuring the accuracy and 
quality of aircraft component production. 

 Medical facilities. SCADA systems are used in 
healthcare facilities to monitor and control critical 
infrastructure, including power distribution, 
heating, ventilation, air conditioning systems, and 
medical equipment, ensuring the uninterrupted 
provision of healthcare services. 

To summarize, these systems are widely used in various 
areas of critical infrastructure. The main task of SCADA and 
IIoT is to control the system, which helps to manage and 
achieve the set goals with optimal use of resources. 

2.1. The most common memory 
management issues 

Despite its long history and significant economic 
consequences, the problem of secure memory management 
remains relevant. According to unofficial estimates, as 
recently as 2004, memory-related errors cost the industry 
about $250,000, and this amount is only growing over time. 

Memory management vulnerabilities can occur even in 
well-known projects with millions of users and professional 
development teams [5]. Different companies conducted the 
research: 

 In 2021, Google reported that 59% of the 
vulnerabilities found in the Android project were 
related to memory issues. Different types of 
vulnerabilities found in the Android project are 
shown in Fig. 1. 

 In 2019, Microsoft researched its projects and 
found that 70% of all vulnerabilities in program 
code are related to memory. 

 Chromium (the basis of the Google Chrome 
browser): almost 70% of critical security bugs are 
related to memory security issues. 

 Mozilla: the level of vulnerabilities caused by 
incorrect memory management can reach 73.9%. 
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Figure 1: Types of critical and high vulnerabilities in the Android project 

According to research by various IT companies, the total 
percentage of memory-related vulnerabilities is shown in 
Fig. 2.

 
Figure 2: Percentage of vulnerabilities in projects related to memory management 

Memory management bugs are a common source of 
misbehavior in many programming languages [7], but they 
can be especially prevalent in system programming 
languages such as C and C++ [8]. C and C++ are the 
programming languages most commonly used to write 
SCADA and IIoT software and are the languages in which 
the largest number of vulnerabilities are found. 

The most common problems are related to memory 
management: 

1. Null pointer dereferencing is a problem that 
occurs when a program tries to access memory 
that has not been allocated or has already been 
freed. 

2. Use-after-free use is a problem that occurs when 
a program tries to access memory that has already 
been freed. 

3. Buffer overflow is also a common problem when 
a program writes data outside the buffer, 
potentially overwriting other data or executing 
arbitrary code. 

While memory management can cause a vulnerability 
in an application, other security issues such as 
misconfiguration of role-based access control, SQL 
injection, and other well-known vulnerabilities should not 
be overlooked [9]. Despite this, memory management issues 
remain the most common in SCADA and IIoT devices. 
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Securing low-level devices such as SCADA and IIoT differs 
significantly from traditional approaches to securing cloud 
infrastructure. [10]. Programs that control SCADA and IIoT 
mostly run without an operating system or any antivirus 
[11]. 

2.2. Cyberattacks that were carried out 
with the help of memory 
vulnerabilities 

Attacks that use hanging pointers: 

 Heartbleed (2014). This vulnerability, which 
exploited a hanging pointer, was discovered in 
OpenSSL, a cryptographic library used by millions 
of web servers. Attackers could have exploited this 
vulnerability to steal sensitive information, 
including passwords, encryption keys, and credit 
card information. The damage from this attack is 
estimated at billions of dollars [12]. 

 CVE-2021-45046 (2021). This vulnerability was 
discovered in the Windows Print Spooler driver. 
Attackers could exploit this vulnerability to gain 
full control over vulnerable systems [13]. 

Attacks that were carried out through uninitialized 
variables: 

 Buffer overflow (2001). This attack led to the theft 
of 170 million credit card numbers from TJX 
Companies’ systems. 

 Stack overflow (2019). This attack, which exploits 
a stack overflow, led to the outage of Cloudflare 
services. Cloudflare is a large American company 
that provides network services for content 
delivery, protection against DDoS attacks, and 
other network services. 

In addition, there have been thousands of other 
cyberattacks using all types of memory management 
vulnerabilities. For example, the WannaCry ransomware 
virus, which in 2017 infected more than 200,000 computers 
in 150 countries. WannaCry exploited a “double free” 
vulnerability in Windows. 

These examples highlight cyberattacks related to 
memory management issues. Such attacks can result in 
significant consequences, including data theft, service 
outages, and financial and reputational losses. 
Implementing secure programming practices and thorough 
software testing can help prevent these incidents. 

2.3. Methods to ensure cybersecurity in 
Socio-Cyber-Physical Systems 
(SCPS) 

it is crucial to consider the broader context of cybersecurity 
within Socio-Cyber-Physical Systems (SCPS). According to 
Yevseiev et al. (2023), integrating cybersecurity into SCPS 
involves developing comprehensive models that account for 
the complex interactions between social, cyber, and 
physical components [14]. These models help in 
understanding vulnerabilities and developing strategies to 

mitigate risks in critical infrastructures like SCADA and 
IIoT systems. 

One effective approach is the use of mathematical 
models and simulations to analyze potential security threats 
and their impacts. This method allows for the identification 
and mitigation of vulnerabilities before they can be 
exploited by attackers. Simulations can model various 
attack scenarios, enabling researchers and engineers to 
develop robust defense mechanisms and response 
strategies. 

Enhancing SCADA security with advanced memory 
management techniques is another method, as discussed by 
Kim and Lee (2024), who emphasized the importance of 
adopting modern memory safety mechanisms in SCADA 
systems [15]. The implementation of such techniques can 
significantly reduce the risk of memory-related 
vulnerabilities, which are often targeted by cyber attackers. 

Additional Approaches: 

1. Behavioural Analysis and Anomaly Detection: 
a. Implementing behavioral analysis and anomaly 
detection tools can help identify unusual activities 
that may indicate a security breach. These tools 
analyze the normal behavior of SCADA and IIoT 
systems and alert administrators to deviations that 
could signify an attack. 
b. Machine learning algorithms can be employed 
to improve the accuracy of anomaly detection, 
learning from historical data to distinguish between 
legitimate and malicious activities. 

2. Collaborative Security Frameworks: 
a. Developing collaborative security frameworks 
that involve multiple stakeholders, including 
government agencies, private sector companies, and 
academic institutions, can enhance the overall 
cybersecurity posture of SCPS. Such frameworks 
facilitate the sharing of threat intelligence and best 
practices, fostering a collective defense approach. 
b. Public-private partnerships can play a vital role 
in advancing cybersecurity research and 
development, ensuring that SCADA and IIoT 
systems are equipped with the latest security 
innovations. 

3. Resilience Engineering: 
a. Focusing on resilience engineering can help 
ensure that SCADA and IIoT systems continue to 
operate effectively even in the face of cyber-attacks. 
This involves designing systems with built-in 
redundancy, failover mechanisms, and robust 
recovery procedures. 
b. Regularly conducting resilience testing, such as 
cyber wargames and penetration testing, can help 
identify and address potential weaknesses in the 
system. 

4. Cybersecurity Education and Training: 
a. Investing in cybersecurity education and 
training programs for employees at all levels can 
significantly improve the security of SCADA and 
IIoT systems. Ensuring that staff are aware of the 
latest threats and understand best practices for 
cybersecurity can reduce the risk of human error, 
which is often a critical factor in security breaches. 



 

36 

b. Certification programs and ongoing professional 
development can help maintain a high standard of 
cybersecurity expertise within organizations. 
Ensuring the cybersecurity of socio-cyber-physical 
systems requires a multifaceted approach that 
addresses both technical and human factors. By 
integrating advanced memory management 
techniques, leveraging behavioral analysis and 
anomaly detection, fostering collaborative security 
frameworks, focusing on resilience engineering, and 
investing in cybersecurity education and training, 
organizations can significantly enhance the security 
and resilience of their SCADA and IIoT systems. 

3. Methods to prevent and reduce 
the impact of memory 
management issues 

The negative impact of memory management issues can 
range from minor crashes to data theft, system disruption, 
and other criminal activity. There is now a wide range of 
methods and mechanisms that can be used to prevent or 
reduce the impact of these problems. 

3.1. The use of sanitizers 

Sanitizers are essential tools for detecting memory 
management issues. They help to identify a potential 
problem at the development stage and thus warn the 
developer of a potential problem. 

The use of sanitizers: 

 Sanitizers can detect memory management errors 
at the early stages of development, allowing 
developers to fix them at the development and 
testing stages. 

 Sanitizers can detect memory leaks when a 
program fails to free memory it no longer uses. 
This helps to reduce the overall memory usage of 
the program and prevent the program from 
suddenly terminating due to lack of memory. 

 Using sanitizers can improve code quality by 
detecting and correcting memory management 
errors and using them efficiently. 

 Sanitizers can be used as a learning tool for young 
developers to better understand how memory 
management works and how to avoid common 
mistakes in their professional careers. 

 Using sanitizers is an important part of modern 
software development and can significantly 
reduce the impact of memory management issues. 

A list of the most popular sanitizers and their 
capabilities: 

 Address Sanitizer detects errors related to 
accessing invalid memory. 

 Leak Sanitizer detects memory leaks. 

Undefined Behavior Sanitizer detects undefined 
behavior that can lead to errors. 

3.2. Static code analysis 

Static analysis tools are software tools that examine code 
without executing it to identify potential memory 
management issues and other vulnerabilities. This method 
of analysis is used during program development, serving as 
a kind of independent code verification. 

Advantages of static analysis: 

 Efficiency: static analysis can examine code much 
faster than it can be tested. 

 Proactivity: static analysis can help identify 
problems in the early stages of development when 
they are still easy to fix. 

 Accuracy: static analysis can identify issues that 
may be missed during testing. 

Examples of static analysis tools: 

 Clang Static Analyzer: a free open-source tool that 
supports C, C++, Objective-C, and Swift. 

 Coverity: a commercial tool that supports C, C++, 
Java, and JavaScript. 

 Cppcheck: a free open-source tool that supports 
C++. 

 PVS-Studio: a commercial tool that supports C, 
C++, and C#. 

 SonarQube: an open-source platform that supports 
many programming languages. 

Disadvantages of static analysis: 

 False positives: Static analysis can sometimes 
generate error warnings that are not present. 

 Incomplete coverage: static analysis cannot 
guarantee to detect all problems. 

 Complexity: Some static analysis tools can be 
difficult to set up and use. 

Static analysis can be used to detect issues such as 
memory leaks, buffer overflows, null pointers, unused 
variables, dead code, and unsafe coding patterns. Static 
analysis can be integrated into the development 
environment, which makes it even more convenient to use. 
Using static analysis tools is an important part of the 
process of developing secure software. 

Beyond the methods above, it is also important to 
regularly update software, implement firewall and antivirus 
solutions, and ensure the creation of data backup copies. 

3.3. Use languages with secure memory 
management 

One approach is to use safe programming languages. 
Programming languages with a high level of abstraction and 
built-in memory safety mechanisms, such as Java, Python, 
Go, C#, and JS/TS, significantly reduce the risk of memory 
management issues. The disadvantage of this approach is 
the inability to rewrite existing programs within a short 
time and the decrease in program performance. For some 
systems, such a transition is simply not possible because it 
requires very low-level work with memory and registers [16]. 
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However, with the advent of programming languages such 
as Rust, you can solve the problem of low-level access 
without losing program performance. Rust is a 
programming language that combines high performance 
with memory safety. It is becoming an increasingly popular 
choice for developing system software and other programs 
where it is critical to avoid memory issues [17]. 

Here are some of the key benefits of using Rust to 
prevent memory management issues: 

 Ownership system. Rust uses an ownership 
system to keep track of who owns data in memory. 
This makes errors such as use-after-free and 
memory leaks impossible. 

 Compile-time checking. Most memory 
management issues in Rust are detected at compile 
time, not runtime. This saves time and resources 
and makes the code more error-resistant. 

 No garbage collection. Rust does not use garbage 
collection, which gives developers more control 
over memory. This can lead to more economical 
memory usage and better performance. 

Nguyen and Pham (2023) highlighted that secure 
programming practices for embedded systems, with a focus 
on memory safety, can greatly benefit from languages like 
Rust, especially for SCADA and IIoT applications [18]. 

3.4. Security in cloud infrastructures 

A comprehensive approach to developing and maintaining 
secure cloud infrastructures is essential for modern 
enterprises, including those utilizing SCADA and IIoT 
systems. Ensuring security in cloud environments involves 
multiple layers of protection, including secure configuration 
of services, continuous monitoring, and the implementation 
of advanced security practices [19]. This approach helps 
mitigate risks associated with data breaches and 
unauthorized access in cloud-based systems. 

Connection to SCADA and IIoT Systems: SCADA and 
IIoT devices are increasingly being integrated into cloud 
infrastructures to enhance their functionality and 
scalability. By leveraging cloud services, these devices can 
benefit from advanced analytics, remote monitoring, and 
improved data storage capabilities. However, this 
integration also introduces new security challenges. 

Ensuring the security of cloud-based SCADA and IIoT 
systems is crucial to protect against potential cyber threats 
that could exploit vulnerabilities in the cloud infrastructure. 

Key Security Measures: 

 Secure Configuration: Proper configuration of 
cloud services is essential to prevent unauthorized 
access. This includes setting up strong 
authentication mechanisms, implementing role-
based access control, and ensuring that all data is 
encrypted both in transit and at rest. 
Misconfigurations can lead to significant security 
breaches, as seen in numerous high-profile attacks 
[20]. 

 Continuous Monitoring: Implementing 
continuous monitoring solutions helps detect and 

respond to security incidents in real-time. This 
includes using intrusion detection systems, 
security information and event management 
systems, and regular vulnerability assessments. 
Continuous monitoring is vital for identifying and 
mitigating potential threats before they can cause 
significant damage [21]. 

 Advanced Security Practices: Utilizing 
advanced security practices such as zero-trust 
architecture, micro-segmentation, and automated 
threat intelligence can further enhance the 
security of cloud infrastructures. Zero-trust 
architecture ensures that no entity, whether inside 
or outside the network, is trusted by default. 
Micro-segmentation divides the network into 
smaller segments to limit the spread of potential 
attacks. Automated threat intelligence uses 
machine learning and AI to identify and respond 
to threats more effectively [22]. 

Challenges and Solutions: 

 Data Privacy and Compliance: Ensuring data 
privacy and compliance with regulatory 
requirements is a major challenge in cloud 
environments. Organizations must implement 
robust data protection measures and ensure 
compliance with standards such as GDPR, HIPAA, 
and NIST. Regular audits and compliance checks 
are necessary to maintain adherence to these 
regulations. 

 Integration with Legacy Systems: Integrating 
cloud-based solutions with existing legacy 
SCADA and IIoT systems can be complex. 
Organizations need to ensure that security 
measures are compatible with both old and new 
systems to prevent potential vulnerabilities. This 
may involve updating legacy systems or using 
middleware solutions to facilitate secure 
integration [23]. 

 Cost and Resource Management: 
Implementing comprehensive security measures 
in the cloud can be resource-intensive and costly. 
Organizations must balance the cost of security 
solutions with the potential risks and impacts of 
security breaches. Investing in scalable and 
efficient security tools can help manage costs 
while ensuring robust protection [24]. 

In conclusion, securing cloud infrastructures is integral 
to the overall security of SCADA and IIoT systems. By 
adopting a layered security approach, implementing 
continuous monitoring, and leveraging advanced security 
practices, organizations can significantly enhance the 
resilience of their cloud-based SCADA and IIoT systems 
against cyber threats. The following section will 
demonstrate the effectiveness of various approaches in 
preventing memory problems. 



 

38 

4. Analyzing the effectiveness of 
methods to prevent memory 
management problems 

The main disadvantage of static analyzers and sanitizers is 
that these tools need to be integrated with the existing code 
base. That is, software developers need to research and 
integrate these tools into the project. In addition, there is a 

risk of incorrect integration and misuse of the analyzer or 
sanitizer [25].  

Also, most professional analyzers and sanitizers are not 
free, which in turn imposes certain restrictions on the 
development of projects with a small budget. For example, 
let’s consider one of the most popular code analyzers sonar, 
this tool has different tariff plans, but most companies 
choose the Enterprise plan [26]. 

 

 
Figure 3: Different tariffs provided by Sonar 

According to the tariff plans, the cost of using code 
analyzers can vary from several hundred to hundreds of 
thousands of dollars per year. 

Tools such as sanitizers and static code analyzers help 
to improve code quality and prevent other known problems 
quite significantly. Nevertheless, the most reliable way to 
deal with memory usage issues is to use the Rust 
programming language and similar ones. In addition, this 
approach does not require any additional settings on the 

part of developers, and the use of the Rust language is free, 
which makes this approach quite optimal. 

Fig. 4 shows a C++ program that simulates a buffer 
overflow. This program creates an array of five elements of 
type uint32_t (this is an unsigned integer that takes 32 bits), 
and all elements of the array are initialized to 0. After that, 
the program iterates over this array, but the iteration 
interval was chosen incorrectly and the program will go 
beyond the buffer. 

 
Figure 4: An example of a program to overflow a buffer 

This program compiles successfully. But there is an error in 
it, the loop will iterate over an array of 13 elements when 

only 5 elements are needed. The resulting values from the 
execution of this program are shown in Fig. 5. 
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Figure 5: The result of the program execution 

Fig. 5 shows that the first 5 elements of the array are zeros, 
but the sixth element (at index 5) has a value of 32765. 
Further iterations also show other numbers. If you look at 
the code listing more closely, you will see that there is no 
mention of these numbers. That is, it has just been 
demonstrated how the program went beyond the buffer and 
accessed data that is outside the executing context. 

Along with causing crashes and other problems, these 
errors can also create security vulnerabilities that can be 
exploited by attackers to gain unauthorized access to the 
system. Debugging memory-related errors can be difficult 
because they often result in subtle errors that are difficult to 

reproduce. This can lead to lengthy debugging sessions and 
delayed release cycles, which can be particularly 
problematic in time-sensitive applications [27]. 

Rust’s ownership model and borrowing system make it 
virtually impossible to introduce many of these common 
memory-related errors, which is one of the reasons it has 
become a popular choice for system programming [28]. 
Similar approaches are described in [29-32] 

Using the Rust programming language (Fig. 6) makes it 
impossible to prevent buffer overflows and access to other 
data, as demonstrated in Fig. 4. The results are shown in 
Fig. 7. 

 
Figure 6: Rust code sample for buffer overflow 

 
Figure 7: The result of executing the Rust code for a buffer overflow 
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From Fig. 7, it is clear that the program crashed without 
allowing it to go beyond the buffer, thus making it 
impossible to access other information, unlike what 
happened when executing the C++ program, the results of 
which are shown in Fig. 5. 

While Rust’s approach to memory safety offers many 
advantages, there are also some drawbacks and limitations 
that should be considered. One potential limitation is that 
Rust’s ownership and borrowing system can be difficult to 
understand for developers who have not worked with it 
before. This can make writing Rust code more difficult than 
languages with simpler memory models, such as Python or 
JavaScript. 

Although Rust’s ownership system enhances code 
safety, it can also complicate working with cyclic data 
structures. This can lead to a 20–30% increase in the time 
required to write and debug such code. Rust’s memory 
safety features, which make the code more resistant to 
errors, slightly reduce its performance. The performance 
loss can reach 5–10% compared to C/C++ code. It is 
important to remember that Rust does not guarantee 100% 
security. Incorrect code can bypass the system’s guarantees, 
and vulnerabilities in third-party libraries remain 
dangerous. 

5. Conclusions 
Dynamic memory errors pose a significant cybersecurity 
threat. Attackers are actively exploiting such vulnerabilities 
to steal data, disrupt systems, and commit other criminal 
acts. The damage they cause is estimated at several tens of 
billions of dollars, and reputational losses are manifested 
long after the cyberattack and may result in further lawsuits 
and compensation. 

The safe programming practices described here can 
prevent memory issues. However, it should be noted that 
none of them is universal and it is better to use a 
combination of them for maximum protection. 

To prevent and reduce the negative impact of dynamic 
memory management, the best solution is to use a 
comprehensive approach that includes the following: 

Use of safe programming languages. 
Use of sanitizers. 
Static code analysis. 
Professional development of developers. 
This paper has demonstrated a memory buffer overflow 

vulnerability associated with a violation of security rules 
when working with it. The results were obtained using the 
C++ language, which is one of the most commonly used 
languages for writing applications for SCADA and IIoT 
devices. 

As an optimization and solution to such vulnerabilities, 
it was proposed to use the Rust language. This helped to 
avoid errors related to memory management. The 
peculiarity of using this language helped to avoid the 
vulnerability described above by preventing memory buffer 
overruns. Rust mechanisms help to avoid a dozen more 
memory management vulnerabilities. 

In general, although Rust’s approach to memory safety 
provides many advantages, it is important to note its 
limitations and potential drawbacks. Rust’s memory safety 
features can sometimes lead to some performance 

degradation, and a more comprehensive approach is needed 
to solve other memory-related problems. Despite these 
limitations, Rust remains a powerful language for system 
programming, and its memory protection features provide 
a significant advantage over many other programming 
languages and significantly help improve cybersecurity. 
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