

42

Predicting pseudo-random number generator output
with sequential analysis⋆

Dmytro Proskurin1,†, Maksim Iavich2,†, Tetiana Okhrimenko1,*,†, Okoro Chukwukaelonma1,†
and Tetiana Hryniuk1,†

1 National Aviation University, 1 Liubomyra Huzara ave., 03058 Kyiv, Ukraine
2 Caucasus University, 1 Paata Saakadze str., 0102 Tbilisi, Georgia

Abstract
This study delves into the predictive capabilities of neural network models, specifically focusing on
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks as well as the
combination of both in a hybrid architecture, for forecasting the outputs of various pseudo-random number
generators (PRNGs). The investigation extends across a diverse set of PRNG algorithms, including Linear
Congruential Generator (LCG), Mersenne Twister (MT), Xorshift, and Middle Square. Through meticulous
analysis, the study evaluates the accuracy of these models in predicting single and continuous outputs
generated from the mentioned PRNGs. The research findings illuminate the superior predictive
performance of hybrid models, attributed to their adeptness at capturing long-term dependencies, a crucial
factor in decoding the complexities of PRNG sequences. Additionally, the impact of model optimization
techniques, including dropout and L2 regularization, on enhancing predictive accuracy is thoroughly
explored. This comprehensive examination not only underscores the potential of neural networks in
identifying deterministic patterns within PRNG outputs but also offers valuable insights into optimal model
selection and configuration. The implications of this work are significant, paving new avenues in
cryptography and securing random number generation by highlighting the predictability of PRNGs under
advanced neural network models.

Keywords
random numbers, RNN, CNN, LSTM, GRU, hybrid model, PRNG 1

1. Introduction
In the ever-evolving landscape of machine learning, the
ability to accurately predict future events based on
sequential data stands as a cornerstone of numerous
technological advancements and applications. From
forecasting stock market trends to decoding human
language, the significance of effective sequence prediction
cannot be overstated. Central to this domain are Recurrent
Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) networks, which have emerged as powerful tools in
the machine learning arsenal for handling sequential data.

RNNs, known for their unique architecture that allows
information to persist, have been instrumental in modeling
time-dependent data [1]. However, their application is often
marred by challenges such as the vanishing gradient
problem, which hinders the learning of long-range
dependencies [2]. Enter LSTMs, a special kind of RNN
designed specifically to overcome these limitations. With
their sophisticated internal mechanisms, LSTMs have set
new benchmarks in sequence prediction tasks,
demonstrating remarkable success where traditional RNNs
falter [2, 3].

CSDP-2024: Cyber Security and Data Protection, June 30, 2024, Lviv,
Ukraine
∗ Corresponding author.
† These authors contributed equally.

 proskurin.d@stud.nau.edu.ua (D. Proskurin); miavich@cu.edu.ge
(M. Iavich); t.okhrimenko@npp.nau.edu.ua (T. Okhrimenko);
kaelo@gmail.com (O. Chukwukaelonma); t.hryniuk@ukr.net
(T. Hryniuk)

This paper embarks on a comprehensive exploration of
RNNs and LSTMs in the context of sequence prediction. We
delve into the architectural intricacies of these models, their
strengths and weaknesses, and their performance across
various sequence prediction scenarios.

Our study is particularly focused on datasets generated
by different Pseudo-Random Number Generators (PRNGs),
offering a unique lens through which the capabilities of
these models can be examined and understood.

Through rigorous experimentation and analysis, we aim
to shed light on the nuances of sequence prediction and
provide insights that could guide future applications and
research in this fascinating area of machine learning.

2. Background and related work
Recent advancements in sequence prediction have been
significantly influenced by the development and refinement
of Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks. These models have shown
remarkable proficiency in handling sequential data,
particularly in domains where understanding temporal
dynamics is crucial.

 0000-0002-2835-4279 (D. Proskurin); 0000-0002-3109-7971
(M. Iavich); 0000-0001-9036-6556 (T. Okhrimenko); 0000-0002-1247-9854
(O. Chukwukaelonma); 0000-0003-0123-5241 (T. Hryniuk)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

43

1. LSTM for Time Series Prediction: Studies have
demonstrated the effectiveness of LSTM models in time
series forecasting, a domain traditionally dominated by
statistical methods like ARIMA. Unlike these methods,
LSTMs can capture complex nonlinear relationships in time
series data [2, 4]. Researchers have successfully applied
LSTM models to forecast stock prices, energy demand, and
weather patterns, achieving higher accuracy than
traditional models, especially in scenarios with long-term
dependencies and high volatility.

2. RNNs in Natural Language Processing (NLP): RNNs
have been pivotal in advancing NLP. Their ability to process
sequential text data has led to breakthroughs in machine
translation, text generation, and sentiment analysis [1, 2, 5].
The sequential processing capability of RNNs allows them
to maintain context in text, a critical factor in understanding
human language [5]. However, vanilla RNNs often struggle
with long-term dependencies [6], leading to the adoption of
LSTMs and GRUs (Gated Recurrent Units) in more complex
NLP tasks.

3. Sequence-to-Sequence Learning: The sequence-to-
sequence learning framework, often implemented using
LSTMs, has revolutionized tasks like machine translation.
This approach involves training models on pairs of output
and output sequences, enabling the model to learn
mappings from one sequence to another. This framework
has been crucial in developing models that can translate
entire sentences with context, rather than translating on a
word-by-word basis [2].

4. Challenges and Limitations: Despite their successes,
RNNs and LSTMs are not without challenges. The vanishing
gradient problem in RNNs, where the model loses its ability
to learn long-range dependencies, has been partially
addressed by LSTMs but still poses limitations [4].
Additionally, the training of these models can be
computationally intensive, requiring significant resources
for large datasets.

5. Future Directions: Ongoing research is exploring
more efficient and effective variants of RNNs and LSTMs,
such as attention mechanisms and Transformer models [4].
These developments aim to address existing limitations
while enhancing the models’ ability to process longer
sequences and maintain context over extended periods.

3. Model architecture overview
Neural networks are artificial intelligence models that
mimic human brain function [2]. A neural network connects
processing units, similar to neurons, rather than
manipulating zeros and ones like a digital model does [2].
The result depends on how the connections are organized
and weighted. Neural networks are algorithms modeled
after the human brain that recognize patterns. Sensory data
is interpreted using machine perception, which labels or
clusters raw information. They recognize numerical
patterns in vectors, which must be converted into real-
world data like as images, sounds, text, and time series [7].
Artificial Neural Networks (ANNs) are computing systems
modeled after biological neural systems, including the
human brain [8].

Convolutional Neural Networks (CNNs) are similar to
standard artificial neural networks (ANNs) in that they use

neurons to improve themselves through learning [8]. CNNs
have made remarkable achievements. This neural network
is now widely used in deep learning. Convolutional neural
networks have revolutionized computer vision, enabling
previously unthinkable feats like facial recognition,
driverless automobiles, self-service supermarkets, and
intelligent medical treatments, CNNs also differ from
typical ANNs by focusing on picture pattern recognition.
This allows us to encode image-specific properties into the
architecture, making the network better suited for image-
focused tasks while also lowering the number of parameters
needed to set up the model [8, 9].

Hybrid Neural Networks (HNNs), which integrate the
strengths of many neural networks, are becoming
increasingly popular in computer vision applications
including picture captioning and action identification.
However, there has been limited research on the effective
use of hybrid architectures for time series data, particularly
for trend forecasting purposes [10]. HNNs use their internal
structure to limit the interactions between process variables
to align with physical models. Compared to regular neural
networks, coupled models are more accurate, dependable,
and generalizable [11].

Recurrent Neural Networks (RNNs) represent a
paradigm shift in neural networks, specifically designed to
recognize patterns in sequences of data [12]. Unlike
traditional feedforward neural networks, RNNs possess a
unique feature: the output from the previous step is fed back
into the output of the current step. This looping mechanism
allows RNNs to maintain an internal state that captures
information about the sequence they have processed so far,
making them ideal for tasks like speech recognition,
language modeling, and time series forecasting [2, 12].

The core architecture of an RNN involves a hidden layer
where the activation at a given time step is a function of the
output at the same step and the activation of the hidden
layer at the previous step [6]. This recurrent nature allows
the network to maintain a form of memory [12]. However,
RNNs are often challenged by long-term dependencies due
to issues like vanishing and exploding gradients during
backpropagation [2, 3], where the network becomes unable
to learn and retain information from earlier time steps in the
sequence [4].

Long Short-Term Memory Networks, a special kind of
RNN, were developed to overcome the limitations of
traditional RNNs. LSTMs are adept at learning long-term
dependencies, thanks to their unique internal structure [3].
Unlike standard RNNs, LSTMs have a complex architecture
with a series of gates: the forget gate, output gate, and
output gate [3, 4]. These gates regulate the flow of
information into and out of the cell, deciding what to keep
in memory and what to discard, thereby addressing the
vanishing gradient problem [4].

Forget Gate: Determines what information is discarded
from the cell state [4, 13].

Output Gate: Updates the cell state with new
information from the current output [13].

Output Gate: Determines the next hidden state and
output based on the current output and the updated cell
state [13].

44

This architecture allows LSTMs to make more precise
decisions about what information to store, modify, and
output. As a result, LSTMs have been successfully applied
in various complex sequence modeling tasks, including
machine translation, speech synthesis, and even generative
models for music composition [3, 4, 13].

While both RNNs and LSTMs are designed for sequence
processing, the key difference lies in their ability to handle
long-term dependencies [4, 14]. Standard RNNs, while
simpler and computationally less intensive, struggle with
retaining information over longer sequences. LSTMs, with
their intricate gating mechanism, excel in scenarios where
understanding long-range contextual information is
crucial [4].

The choice between RNNs and LSTMs often boils down
to the specific requirements of the task at hand, the
complexity of the sequences involved, and the
computational resources available. LSTMs are generally
preferred for more complex tasks with longer sequences [3],
while RNNs might suffice for simpler tasks with shorter
temporal dependencies [1].

4. Methodology
There are a large number of pseudorandom generators that
differ in their characteristics, construction methods, and
areas of possible application [15–19]. In our study, we
employed datasets generated by four distinct PRNG
algorithms, each offering unique challenges and
characteristics for sequence prediction using RNN and
LSTM models. These datasets serve as a testing ground to
evaluate and compare the performance of different neural
network architectures in sequence prediction tasks.

4.1. Linear congruential generator dataset

Description: The LCG is one of the oldest and simplest
PRNG algorithms [20]. It generates random numbers using
a linear equation [20]. The simplicity of its algorithm makes
it a good baseline for evaluating the predictive capabilities
of RNN and LSTM models.

Characteristics: The sequence generated by an LCG can
exhibit patterns due to its linear nature. These patterns,
while not immediately apparent, can be learned over time,
making it an interesting case for sequence prediction
models [20]. Despite their potential statistical issues, LCGs
have the advantage of offering all the auxiliary qualities,
such as seekability, numerous streams, and k-dimensional
equidistribution [20].

4.2. Mersenne twister dataset

Description: The Mersenne Twister, specifically the
MT19937 variant, is known for its long period and high-
quality outputs. It’s widely used in various applications due
to its reliability and speed [21].

Characteristics: MT generates sequences that are far
more complex and less predictable than LCG [20]. This
complexity provides a challenging scenario for RNNs and
LSTMs, testing their ability to model and predict more

intricate and seemingly random sequences. In addition to its
inability to produce the all-zero state, the Mersenne Twister
also finds it difficult to act randomly in its nearly all-zero
state [20].

4.3. Xorshift dataset

Description: Xorshift is a class of PRNGs that operates using
XOR (exclusive or) and bit-shifting operations [20]. It’s
known for its simplicity and speed, often used in scenarios
where the speed of random number generation is critical [20].

Characteristics: Despite its simplicity, Xorshift can
produce high-quality random sequences [20]. The non-
linear nature of its operations makes it an interesting case
for studying how well neural network models can adapt to
and predict outputs from non-linear algorithms [22]. A
bitwise xor operation is a type of permutation that involves
flipping certain bits in the target. It can be performed again
to reverse the effects [20]. The conventional understanding
of Xorshift would advise us to concentrate on lengthening
the bits’ period [20].

4.4. Middle square method dataset

Description: The Middle Square method is an older PRNG
technique that generates random numbers by squaring the
number and extracting the middle digits of the result [22].
It’s less commonly used today due to certain limitations.

Characteristics: This method is prone to quickly
converging to repetitive cycles or zeros, especially with
certain seed values [23]. The predictability and potential
repetition in the sequences makes it a unique dataset to test
the models’ ability to detect and adapt to less complex and
potentially degenerative patterns [22]. The field of
computer science began with the invention of the middle
square [22]. It is possible to develop a viable version with a
sufficiently long period (264 for each stream) thanks to
modern 64-bit computing architecture. The fastest RNGs are
comparable in processing speed [23]. This generator works
well for parallel processing because of its simple stream
capability. Because a square is nonlinear, it provides this
generator with an edge over linearly-based generators in
terms of data quality [22].

5. Dataset preparation
In our study on “Predicting PRNG Output with Sequential
Analysis”, we meticulously prepared a dataset to analyze
the predictability of various Pseudorandom Number
Generators (PRNGs), focusing on four widely recognized
algorithms: Linear Congruential Generator (LCG) (Fig. 2),
MiddleSquare (Fig. 4), Xorshift (Fig. 3), and Mersenne
Twister (MT) (Fig. 1). Each of these PRNGs was chosen for
its unique approach to generating sequences of
pseudorandom numbers, providing a diverse test bed for our
predictive models.

5.1. Data generation parameters

The dataset was generated using the following
parameters to ensure consistency across all PRNGs:

45

Figure 1: MT dataset distribution

Figure 2: LCG dataset distribution

Figure 3: Xorshift dataset distribution

Figure 4: MiddleSquare dataset distribution

46

Sample Size: Each PRNG was used to generate a sequence
of 10,000 numbers, with n = 10000, to create a
substantial dataset for training and evaluation. Seed
Value: A common seed value of 8956482 was applied to
initialize each PRNG, ensuring that the starting point of
the pseudorandom sequence was consistent across
different generators. Word Size: For PRNGs where
applicable, such as MiddleSquare, a word size of 8 bits
was selected, balancing the need for computational
efficiency with the desire for sequence complexity.
Sequence Length: The output was segmented into
sequences of length 10, which were then used as
individual data points for the subsequent analysis. This
sequence length was chosen to provide enough data for
recognizing patterns without overwhelming the
analytical models.

5.2. Dataset splitting

Once generated, the dataset was divided into three distinct
sets to facilitate the training, testing, and validation of our
predictive models:

Training Set: Used to train the models, allowing them to
learn and adapt to the patterns inherent in the
pseudorandom sequences generated by each PRNG.

Testing Set: Employed to assess the performance of the
models on unseen data, providing an unbiased evaluation of
their predictive capabilities.

Validation Set: Utilized during the model tuning phase
to fine-tune parameters and prevent overfitting, ensuring
that the models generalize well to new data.

This careful preparation and partitioning of the dataset
were critical in establishing a robust foundation for our
investigation into the predictability of PRNG outputs
through sequential analysis. By standardizing the
generation parameters and thoughtfully splitting the data,
we aimed to create a fair and consistent testing environment
for each of the predictive models applied in our study.

6. Model configuration
In our exploration of “Predicting PRNG Output with
Sequential Analysis”, we employed a comprehensive
approach by leveraging various neural network
architectures. Each model was selected based on its ability
to process sequential data, a core characteristic of PRNG
outputs. Our analysis incorporated Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs),
Long Short-Term Memory networks (LSTMs), and a custom
Hybrid model, each designed to handle the intricacies of
PRNG-generated data in distinct ways.

6.1. Convolutional neural networks

Application: Primarily used for single-value output
prediction, CNNs are adept at identifying patterns within a
fixed-size window of the sequence. This model excels at
capturing local dependencies and spatial hierarchies in data,
making it suitable for analyzing individual segments of the
PRNG output.

6.2. Recurrent neural networks

Application: RNNs were employed for both single-value and
continuous-value output predictions. Unlike CNNs, RNNs
have a memory mechanism that allows them to process
entire sequences of data, making them ideal for
understanding the temporal dynamics and dependencies
within PRNG outputs.

6.3. Long short-term memory networks

Application: Like RNNs, LSTMs were utilized for both
single-value and continuous-value output predictions.
LSTMs are a special kind of RNN capable of learning long-
term dependencies. They are particularly effective in
avoiding the vanishing gradient problem, enabling them to
capture patterns over longer sequences of PRNG outputs.

6.4. Hybrid model

Configuration: The Hybrid model represents an innovative
approach, integrating the strengths of CNNs and LSTMs
into a singular architecture. It comprises:

• CNN Layer: For extracting local features within
the subsequence of the PRNG output.

• LSTM Layer: To capture long-term dependencies
and temporal patterns in the data, building upon
the features extracted by the CNN layer.

• Dense Layer: Serving as the output layer, it
synthesizes the information processed by the CNN
and LSTM layers to make predictions.

Application: Designed for versatility, the Hybrid model
is equipped to handle both single-value and continuous-
value outputs, offering a robust solution for predicting
PRNG outputs by leveraging the complementary strengths
of convolutional and recurrent layers.

The strategic selection and configuration of these
models underpin our analytical methodology. By employing
a diverse array of architectures, each with its unique
advantages, our study aims to comprehensively evaluate the
predictability of PRNG outputs. The Hybrid model
underscores our commitment to innovation, integrating
multiple neural network paradigms to enhance predictive
accuracy and insight into the sequential nature of PRNG-
generated data.

7. Evaluation metrics
To rigorously assess the effectiveness of our models in
predicting PRNG outputs, we employed a set of
comprehensive evaluation metrics. These metrics are
crucial for quantifying the accuracy of our predictions and
facilitating a direct comparison between the different neural
network architectures utilized in our study. Our evaluation
framework is centered around the Mean Squared Error
(MSE) and a specially devised Model Performance Score.

7.1. Mean squared error

MSE serves as the cornerstone of our evaluation strategy. It
calculates the average squared difference between the
actual and predicted values, offering a precise measure of

47

the prediction error’s magnitude. By squaring the errors,
MSE gives more weight to larger errors, making it
particularly sensitive to outliers and significant prediction
inaccuracies.

In the context of predicting PRNG outputs, MSE
provides a clear and direct measure of how closely the
model’s predictions align with the actual sequence of
numbers generated by the PRNGs. A lower MSE indicates
higher prediction accuracy, reflecting a model’s ability to
effectively capture and replicate the underlying patterns of
the PRNG sequence.

7.2. Model performance score

Recognizing the need for a standardized metric that allows
for an intuitive understanding of model performance, we
introduced the Model Performance Score. This metric
normalizes the MSE to a scale ranging from 0 to 1, where 0
represents the poorest performance (highest MSE) and 1
denotes perfect prediction accuracy (zero MSE).

The Model Performance Score is calculated by inversely
scaling the MSE against a predetermined maximum error
threshold. This approach ensures that the performance
score is adjusted for the scale of the data and the expected
variation in prediction accuracy, allowing for a fair
comparison across different models and datasets.

This normalized score simplifies the interpretation of
our results, providing a straightforward metric to gauge
model effectiveness. It allows stakeholders to quickly assess
the relative performance of each model in predicting PRNG
outputs without delving into the complexities of raw MSE
values.

Together, these evaluation metrics form the foundation
of our analytical approach, enabling a nuanced analysis of
model performance. MSE offers a detailed view of the
prediction accuracy, while the Model Performance Score
provides a high-level, comparative perspective. By
incorporating both metrics, our study ensures a balanced and
comprehensive evaluation of how well each neural network
architecture can predict the seemingly unpredictable: output
of pseudorandom number generators.

8. Experiment variables and
observations

We conducted an extensive series of experiments to
evaluate the predictive capabilities of various neural
network configurations. These experiments were
meticulously designed to explore the impact of different
model parameters on the accuracy of PRNG output
predictions. Below, we detail the variables involved in these
experiments and highlight some critical observations
related to model performance.

8.1. Experiment variables

To systematically assess the effects of various
hyperparameters on model performance, we tested a
wide array of combinations, encompassing:

 Activation Functions: We exper.
 imented with two popular activation functions,

ReLU (Rectified Linear Unit) and tanh (Hyperbolic

Tangent). These functions were chosen for their
distinct characteristics in handling nonlinearities
in the data.

 Number of Neurons: The neuron counts tested
were 8, 16, and 32. This range allowed us to
explore the models’ capacity to learn and
generalize from the data, balancing complexity
with computational efficiency.

 Epochs: All models were trained for [1000] epochs,
providing ample opportunity for learning and
convergence.

 Model Layers: We varied the depth of the models
by testing configurations with [1, 2, 4] layers. This
variation aimed to understand how model depth
influences learning and prediction accuracy.

Output Lengths: For continuous value prediction,
output lengths of [1–4] were tested. This range was
selected to assess the models’ ability to forecast multiple
steps in the PRNG sequence.

8.1.1. Impact of dropout and L2 regularization

One of the most notable findings from our experiments was
the impact of dropout and L2 regularization techniques on
model learning capabilities. Contrary to common practice in
machine learning, where these techniques are employed to
enhance model generalization and prevent overfitting, our
experiments revealed that:

Models without dropout and L2 regularization
demonstrated superior performance in learning and
predicting PRNG outputs. The introduction of these
regularization techniques led to models that were unable to
adequately learn from the training data and, consequently,
failed to predict accurately.

This observation suggests a unique aspect of predicting
PRNG outputs: the data generated by PRNGs, while
seemingly random, follows deterministic algorithms. The
addition of regularization techniques, which are designed to
introduce randomness and constraint to the learning
process, may interfere with the model’s ability to capture
the underlying deterministic patterns of PRNG sequences.

The results of these experiments provide valuable
insights into the design and optimization of neural network
models for predicting PRNG outputs. Specifically, they
underscore the importance of tailoring model
configurations to the specific characteristics of the data and
the task at hand. In the context of PRNG prediction,
minimizing external sources of randomness and constraint
(e.g., through dropout and L2 regularization) appears to be
crucial for enabling models to learn and replicate the
deterministic patterns that govern PRNG behavior.

9. Experiment results analysis
Our exhaustive investigation into predicting PRNG output
through sequential analysis yielded compelling findings,
elucidated through the analysis of the top-performing
models for each PRNG. Here, we detail the significant
outcomes for both single-output and continuous-output
scenarios across different PRNGs: Xorshift, MT (Mersenne

48

Twister), LCG (Linear Congruential Generator), and
MiddleSquare.

9.1. Single-output scenario analysis

For single-output predictions, our experiments have the
following results.

Xorshift: The RNN model with 32 neurons, 5 layers,
and the ReLU activation function emerged as the top
performer, achieving a mean score of 0.9898 (Table 1).
However, both Hybrid and CNN models came close to the
same success rate suggesting that the Xorshift sequence
characteristics are not particularly difficult to capture.

Table 1
Xorshift, single output results

Scenario Model type Neuron Activation function Epochs Layers Mean score

Xorshift RNN 32 relu 1000 5 0.989848

Xorshift CNN 32 relu 1000 3 0.983555

Xorshift Hybrid 32 relu 1000 2 0.982930

Xorshift CNN 16 relu 1000 2 0.981882

Xorshift Hybrid 8 relu 1000 2 0.980837

Xorshift CNN 32 relu 1000 5 0.979213

Xorshift CNN 8 relu 1000 2 0.978671

Xorshift CNN 32 relu 1000 2 0.977584

Xorshift CNN 16 relu 1000 5 0.977577

50% of all models were able to reach 90% success thresholds
(Error! Reference source not found.).

Nevertheless, more improvement can get this number
higher.

Figure 5: Xorshift, single output, all models results

MT: The CNN model with 8 neurons, 3 layers, and ReLU
activation function led the pack with a mean score of 0.9832
(Table 2), indicating that CNN’s feature extraction

capabilities are effective at decoding the MT’s output
patterns.

28% of all models were able to reach 90% success
thresholds (Fig. 6).

49

Table 2
MT, single output results

Scenario Model type Neuron Activation function Epochs Layers Mean score

MT CNN 8 relu 1000 3 0.983227

MT CNN 32 relu 1000 3 0.980932

MT RNN 32 tanh 1000 5 0.978619

MT CNN 32 relu 1000 2 0.978589

MT CNN 16 relu 1000 2 0.977052

MT LSTM 32 relu 1000 5 0.976916

MT RNN 32 relu 1000 5 0.973991

MT CNN 32 tanh 1000 2 0.973030

MT CNN 32 relu 1000 5 0.972651

MT CNN 16 relu 1000 5 0.972521

Figure 6: MT, single output, all models results

LCG: The Hybrid model, combining CNN and LSTM
architectures with tanh activation, showed superior
performance, especially with 32 neurons and 5 layers,

reaching a mean score of 0.9831 (Table 3). This
underscores the Hybrid model’s robustness in capturing
both local and long-range dependencies in LCG sequences.

Table 2
LCG, single output results

Scenario Model type Neuron Activation function Epochs Layers Mean score

LCG Hybrid 32 tanh 1000 5 0.983155

LCG Hybrid 8 tanh 1000 2 0.982143

LCG Hybrid 8 tanh 1000 3 0.980809

LCG Hybrid 32 tanh 1000 2 0.980579

LCG Hybrid 16 tanh 1000 2 0.979036

LCG CNN 8 relu 1000 2 0.978362

LCG Hybrid 16 tanh 1000 3 0.978311

LCG Hybrid 32 tanh 1000 3 0.977490

LCG RNN 32 tanh 1000 3 0.976433

LCG CNN 32 relu 1000 5 0.975615

60% of all models were able to reach 90% success thresholds
(Fig. 7).

50

Figure 7: LCG, single output, all models results

MiddleSquare: The Hybrid model with tanh activation, 16
neurons, and 3 layers stood out with a mean score of 0.9883
(Table 4), highlighting the model’s effectiveness in

navigating the complex, squared calculations intrinsic to
MiddleSquare algorithm.

Table 4
MiddleSquare, single output results

Scenario Model type Neuron Activation function Epochs Layers Mean score

MiddleSquare Hybrid 16 tanh 1000 3 0.988377

MiddleSquare CNN 32 relu 1000 3 0.987493

MiddleSquare CNN 32 relu 1000 2 0.986276

MiddleSquare Hybrid 32 tanh 1000 3 0.983554

MiddleSquare Hybrid 16 tanh 1000 5 0.983326

MiddleSquare Hybrid 8 tanh 1000 2 0.982954

MiddleSquare CNN 32 relu 1000 5 0.980597

MiddleSquare Hybrid 32 tanh 1000 5 0.980450

MiddleSquare CNN 8 relu 1000 5 0.980440

MiddleSquare Hybrid 16 tanh 1000 2 0.980428

64% of all models were able to reach 90% success thresholds
(Fig. 8).

Figure 8: MiddleSquare, single output, all models results

51

These results underscore the nuanced relationship between
PRNG algorithms and neural network architectures,
suggesting that no single model architecture is universally
superior. Instead, the optimal choice depends on the specific
characteristics and mechanisms of the PRNG being

predicted. While the models have been fine-tuned to achieve
high predictive accuracy, the graphical analysis indicates
that there is an inherent limitation to the exactness of these
predictions.

Figure 9: Prediction vs actual values, MiddleSquare with the best result (0.988377)

A further performance plot (Error! Reference source not
found.) illustrates the correlation between the predicted and
actual values of the PRNG sequence. The near-perfect linear
alignment along the 45-degree line suggests that the model’s
predictions are highly correlated with the actual PRNG outputs.
The tight clustering of the points around this line demonstrates
the model’s effectiveness in capturing the underlying pattern
of the PRNG sequence. However, the slight deviation of points
from the line implies that while the model can predict the
general trend and distribution of the PRNG outputs, it cannot
replicate the sequence with absolute precision.

The scatter plot showing predictions versus actual
values (Fig. 10) for the Hybrid model using tanh activation,
16 neurons, and 3 layers reveals a close correspondence
between predicted and actual values. However, the
dispersion of points away from the line of perfect agreement
(where predicted values equal actual values) suggests that
while the model can approximate the PRNG’s output with
high fidelity, it cannot achieve complete accuracy. The
variance from the line of perfect prediction could be
attributed to the deterministic yet complex nature of
PRNGs, which inherently limits the predictability even with
sophisticated models.

Figure 10: Prediction vs actual values, MiddleSquare with the best result (0.988377)

9.2. Continuous-Output Scenario Analysis

The continuous-output models demonstrated even higher
predictive accuracy, with the Hybrid model configured for
continuous predictions (Hybrid-C) achieving remarkable
success.

For the MiddleSquare PRNG, the Hybrid-C model with tanh
activation, 16 neurons, 3 layers, and an output length of 3
achieved a near-perfect mean score of 0.9955. Only 29% of
all models were able to break the 90% success milestone (Fig.
11).

52

Table 5
MiddleSquare, continuous output results

Scenario Model type Neuron Activation function Epochs Layers Output length Mean score

MiddleSquare Hybrid-C 16 tanh 1000 3 3 0.995479

MiddleSquare Hybrid-C 16 tanh 1000 2 2 0.992588

MiddleSquare Hybrid-C 8 tanh 1000 5 2 0.990003

MiddleSquare Hybrid-C 8 relu 1000 5 1 0.988989

MiddleSquare Hybrid-C 32 relu 1000 5 3 0.988566

MiddleSquare Hybrid-C 8 tanh 1000 3 1 0.988066

MiddleSquare Hybrid-C 16 relu 1000 2 2 0.986359

MiddleSquare Hybrid-C 16 tanh 1000 5 3 0.985923

MiddleSquare Hybrid-C 16 tanh 1000 5 2 0.985797

MiddleSquare Hybrid-C 8 tanh 1000 5 1 0.984813

Figure 11: MiddleSquare, continuous output, all models results

For the LCG PRNG, the Hybrid-C model with tanh
activation, 8 neurons, 5 layers, and an output length of 2
achieved a near-perfect mean score of 0.992055. 20% of all

models were able to break the 90% success threshold
(Fig. 12).

Table 3
LCG, continuous output results

Scenario Model type Neuron Activation function Epochs Layers Output length Mean score

LCG Hybrid-C 8 tanh 1000 5 2 0.992055

LCG Hybrid-C 8 tanh 1000 5 3 0.989730

LCG Hybrid-C 16 tanh 1000 5 5 0.987614

LCG Hybrid-C 8 tanh 1000 3 5 0.986818

LCG Hybrid-C 8 tanh 1000 2 5 0.985174

LCG Hybrid-C 16 tanh 1000 3 2 0.984808

LCG Hybrid-C 32 tanh 1000 3 2 0.984462

LCG Hybrid-C 16 tanh 1000 2 1 0.984411

LCG Hybrid-C 32 tanh 1000 3 1 0.983866

LCG Hybrid-C 32 tanh 1000 2 1 0.983706

53

Figure 12: LCG, continuous output, all models results

For the Xorshift PRNG, the Hybrid-C model with relu
activation, 16 neurons, 2 layers, and an output length of 2
achieved a near-perfect mean score of 0.987906 (Table 7).

15% of all models were able to break the 90% success
threshold (Fig. 13).

Table 4
Xorshift, continuous output results

Scenario Model type Neuron Activation function Epochs Layers Output length Mean score

Xorshift Hybrid-C 16 relu 1000 2 2 0.987906

Xorshift Hybrid-C 16 relu 1000 2 5 0.985753

Xorshift Hybrid-C 8 relu 1000 5 5 0.985715

Xorshift Hybrid-C 8 relu 1000 2 2 0.984238

Xorshift Hybrid-C 32 relu 1000 2 2 0.983437

Xorshift Hybrid-C 16 relu 1000 2 3 0.981247

Xorshift Hybrid-C 8 relu 1000 2 1 0.980434

Xorshift Hybrid-C 32 relu 1000 2 1 0.978930

Xorshift RNN-C 32 tanh 1000 3 1 0.977685

Xorshift Hybrid-C 32 relu 1000 2 3 0.976177

Figure 13: Xorshift, continuous output, all models results

For the MT PRNG, the Hybrid-C model with relu
activation, 32 neurons, 2 layers, and an output length of 2
achieved a near-perfect mean score of 0.985006 (Table 8).

12% of all models were able to break the 90% success
threshold (Fig. 14).

54

Table 5
MT, continuous output results

Scenario Model type Neuron Activation function Epochs Layers Output length Mean score

MT Hybrid-C 32 relu 1000 2 2 0.985006
MT RNN-C 32 relu 1000 5 1 0.981523
MT RNN-C 32 tanh 1000 5 1 0.980135
MT Hybrid-C 16 tanh 1000 2 3 0.976324
MT LSTM-C 32 relu 1000 5 1 0.976245
MT Hybrid-C 8 tanh 1000 2 1 0.975258
MT RNN-C 32 tanh 1000 3 1 0.974210
MT RNN-C 32 relu 1000 3 1 0.972664
MT RNN-C 32 relu 1000 2 1 0.965829
MT RNN-C 32 tanh 1000 2 1 0.963914

Figure 14: MT, continuous output, all models results

The examination of continuous-output models reveals a
notable enhancement in predictive performance compared
to single-output models. This is particularly evident in the
context of predicting sequences generated by the
MiddleSquare PRNG.

The performance plot illustrating the correlation
between predicted and actual values (Fig. 15) for the
continuous-output model shows an even tighter linear
alignment than the single-output model. This near-perfect

correlation, along with a high success score of 0.9955,
reflects the model’s exceptional predictive accuracy. The
dense clustering of points along the diagonal suggests that
the model can reliably predict the MiddleSquare PRNG’s
output with high confidence, and such precision is
indicative of the model’s ability to capture both the
immediate and contextual dependencies within the PRNG’s
sequence.

Figure 15: Prediction vs actual values, MiddleSquare with the best result (0.9955)

55

The scatter plot for the continuous-output Hybrid model,
which integrates CNN and LSTM architectures (Hybrid-C),
showcases a substantial concentration of points closely
aligned with the line of perfect prediction (Fig. 16). The
model, employing tanh activation with 16 neurons across 3
layers, exhibits a remarkable ability to track the actual

values throughout the sequence. This tight clustering
indicates a substantial reduction in prediction errors and a
strong alignment with the true PRNG sequence, suggesting
a deeper understanding of the underlying patterns by the
model.

Figure 16: Prediction vs actual values, MiddleSquare with the best result (0.9955)

The continuous-output model’s superior performance, as
evidenced by the closer proximity of predicted to actual
values and the higher success score, highlights the benefit
of utilizing sequential context in PRNG output prediction.
The ability to forecast the sequence with a success score
reaching 0.9955 marks a significant milestone, suggesting
that models incorporating sequence history can more
effectively decode the deterministic yet complex structure
of PRNG outputs.

This analysis implies that continuous-output models
hold great promise for applications where forecasting
accuracy over sequences is critical. The insights gleaned
from this research can inform the development of more
secure PRNGs, capable of withstanding sophisticated
sequential analysis. Future work will likely explore the
expansion of this approach to more complex and higher-
dimensional sequences, potentially integrating additional
layers of complexity and exploring the impact on model
performance.

9.3. Model Performance Across PRNGs

Our study’s findings highlight the nuanced nature of PRNG
output prediction, with different models excelling for
specific generators. This variation underscores the
importance of model selection tailored to the characteristics
of the PRNG being analyzed. For instance, the best-
performing model for the Xorshift generator might leverage
its unique XOR and shift operations, whereas the optimal
model for the Mersenne Twister (MT) would need to
account for its complex bit manipulation and tempering
techniques.

Remarkably, the single-output models consistently
achieved a 98% success rate across various PRNGs,
demonstrating a high level of accuracy in predicting the
next output value based solely on a single preceding value.

This success rate is indicative of the models’ ability to
decipher the underlying deterministic patterns that govern
PRNG outputs.

Even more impressive, the continuous-output model,
which utilizes sequences of values to predict subsequent
outputs, reached a 99% success rate. This improvement
suggests that incorporating more context in the form of
continuous output sequences enables the models to better
capture the PRNGs’ inherent algorithms, leading to more
accurate predictions.

9.4. Implications for PRNG Analysis and
Security

The success of our models in predicting PRNG outputs with
such high accuracy has profound implications for the fields
of cryptography and random number generation. While
PRNGs are designed to produce sequences that are difficult
to predict, our results suggest that advanced neural network
models can uncover and exploit hidden patterns within
these sequences. This finding calls for ongoing efforts to
enhance the unpredictability and security of PRNGs,
ensuring they remain robust against sophisticated
analytical techniques.

10. Conclusions
This research delves into the predictability of PRNGs using
advanced neural network models. Our study demonstrates
that tested architectures possess a remarkable ability to
predict the outputs of various PRNGs, with enhanced
accuracy observed in continuous output prediction
scenarios showcasing a superior performance in capturing
long-term dependencies within PRNG sequences, affirming
their suitability for complex sequence prediction tasks.

56

Our findings illuminate the nuanced dynamics of PRNG
predictability and the potential vulnerabilities inherent
within commonly used generators. By leveraging neural
networks, we not only uncover the deterministic patterns
masked as randomness but also push the boundaries of
understanding in cryptographic security and random
number generation.

Future research should explore the integration of more
complex neural architectures and the application of these
findings in real-world scenarios, such as secure
communications and cryptographic key generation. The
implications of our work suggest a pivotal shift towards
more secure and unpredictable PRNG designs, bolstering
the defenses against adversarial predictions and enhancing
the integrity of cryptographic systems.

11. Future research directions
These findings have significantly advanced our
understanding of the capabilities and limitations of current
PRNG technologies when subjected to advanced neural
network-based predictive models. The high success rates
achieved by these models, particularly the 99% success rate
with continuous-output models, not only demonstrate the
feasibility of predicting PRNG outputs but also underscore
the intricate patterns that deterministic algorithms
generate—patterns that sophisticated models can uncover.

This study opens several avenues for future research,
aimed at both improving PRNG designs and developing
more advanced predictive models:

Advanced PRNG Algorithms: There is a clear need for
the development of new PRNG algorithms that incorporate
mechanisms specifically designed to counteract the
capabilities of neural network-based predictive models.
Future research should focus on exploring algorithmic
complexities that can more effectively obscure deterministic
patterns.

Neural Network Enhancements: Our research has
shown that certain neural network architectures are more
adept at predicting PRNG outputs than others. Investigating
the development of novel neural network models or hybrid
architectures that can more efficiently process and predict
complex sequences is an exciting frontier. This includes
exploring deeper networks, attention mechanisms, and
other advanced features that could further improve
prediction accuracy.

Cross-Disciplinary Approaches: Combining insights
from cryptography, machine learning, and complexity
theory could yield innovative approaches to both PRNG
design and predictive modeling. Interdisciplinary research
might uncover new principles for creating sequences that
are inherently more difficult to predict, as well as models
that are more adept at understanding complex patterns.

Real-World Application Scenarios: Applying our
findings to real-world scenarios, where PRNGs are used
under various constraints and for different purposes, will be
essential. This includes testing PRNGs in environments with
high-security requirements, such as in blockchain
technologies, secure communications, and digital
signatures.

Ethical Considerations and Security Implications: As
research progresses in predicting PRNG outputs, it is

imperative to consider the ethical implications and potential
security risks associated with disseminating advanced
predictive models. Developing guidelines and best practices
for responsible research and application in this area is
crucial.

Enhancing PRNG security: The ability of neural
networks to predict PRNG outputs with such accuracy
highlights an urgent need for the cryptographic community
to re-evaluate and enhance the design and implementation
of PRNGs. Ensuring that PRNGs can withstand analysis by
advanced predictive models is crucial for maintaining the
security and integrity of cryptographic systems, which rely
heavily on the unpredictability of these generators.

Acknowledgment
This work was supported by the Shota Rustaveli National
Foundation of Georgia (SRNSFG) [NFR-22-14060] as well as
the Ministry of Education and Science of Ukraine (grant
№0122U002361 “Intelligent system of secure packet data
transmission based on reconnaissance UAV”).

References
[1] K. Cho, et al., Learning Phrase Representations using

RNN Encoder-Decoder for Statistical Machine
Translation, arXiv:1406.1078 (2014).

[2] I. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence
Learning with Neural Networks, Advances in Neural
Information Processing Systems 27 (2014).

[3] S. Hochreiter, J. Schmidhuber, Long Short-Term
Memory, Neural Computation 9(8) (1997) 1735–1780.

[4] F. Gers, J. Schmidhuber, F. Cummins, Learning to
Forget: Continual Prediction with LSTM. Neural
Computation 12(10) (2000) 2451–2471.

[5] A. Graves, A.-R. Mohamed, G. Hinton, Speech
Recognition with Deep Recurrent Neural Networks,
IEEE International Conference on Acoustics, Speech
and Signal Processing (2013).

[6] A. Karpathy, The Unreasonable Effectiveness of
Recurrent Neural Networks (2015).

[7] M. Islam, G. Chen, S. Jin, An Overview of Neural
Network, American J. Neural Netw. Appl. 5(1) (2019)
7–11. doi: 10.11648/j.ajnna.20190501.12.

[8] K. O’Shea, R. Nash, An Introduction to Convolutional
Neural Networks (2015).

[9] Z. Li, et al., A Survey of Convolutional Neural
Networks: Analysis, Applications, and Prospects
(2021).

[10] T. Lin, T. Guo, K. Aberer, Hybrid Neural Networks for
Learning the Trend in Time Series.

[11] D. Psichogios, L. Ungar, A Hybrid Neural Network-
First Principles Approach to Process Modeling.

[12] A. Vaswani, et al., Attention Is All You Need.
Advances in Neural Information Processing Systems
30 (2017).

[13] J. Brownlee, Deep Learning for Time Series
Forecasting: Predict the Future with MLPs, CNNs and
LSTMs in Python, Machine Learning Mastery (2018).

[14] V. Desai, R. Patil, D. Rao, Using Layer Recurrent
Neural Network to Generate Pseudo Random Number
Sequences, Int. J. Comput. Sci. 9 (2012) 324–334.

[15] V. Maksymovych, et al., Hardware Modified Additive
Fibonacci Generators Using Prime Numbers,
Advances in Computer Science for Engineering and

57

Education VI, LNDECT 181 (2023). doi: 10.1007/978-3-
031-36118-0_44.

[16] V. Maksymovych, O. Harasymchuk, M. Shabatura,
Modified Generators of Poisson Pulse Sequences
Based on Linear Feedback Shift Registers, Advances in
Intelligent Systems and Computing, AISC 1247 (2021)
317–326.

[17] V. Maksymovych, O. Harasymchuk, I. Opirskyy, The
Designing and Research of Generators of Poisson
Pulse Sequences on Base of Fibonacci Modified
Additive Generator, International Conference on
Theory and Applications of Fuzzy Systems and Soft
Computing, ICCSEEA 2018: Advances in Intelligent
Systems and Computing 754 (2019) 43–53.

[18] R. Hamza, A Novel Pseudo Random Sequence
Generator for Image-Cryptographic Applications, J.
Info. Secur. Appl. 35 (2017) 119–127.

[19] O. Harasymchuk, Generator of Pseudorandom Bit
Sequence with Increased Cryptographic Security,
Metallurgical and Mining Industry: Sci. Tech. J. 6(5)
(2014) 24–28.

[20] M. O’Neill, PCG: A Family of Simple Fast Space-
Efficient Statistically Good Algorithms for Random
Number Generation (2014).

[21] M. Matsumoto, T. Nishimura, Dynamic Creation of
Pseudorandom Number Generators (2015).

[22] B. Widynski, Middle-Square Weyl Sequence RNG
(2017).

[23] K. Okada, et al., Learned Pseudo-Random Number
Generator: WGAN-GP for Generating Statistically
Robust Random Numbers, PLoS One 18(6) (2023). doi:
10.1371/journal.pone.0287025.

