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Abstract 
This study delves into the predictive capabilities of neural network models, specifically focusing on 
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks as well as the 
combination of both in a hybrid architecture, for forecasting the outputs of various pseudo-random number 
generators (PRNGs). The investigation extends across a diverse set of PRNG algorithms, including Linear 
Congruential Generator (LCG), Mersenne Twister (MT), Xorshift, and Middle Square. Through meticulous 
analysis, the study evaluates the accuracy of these models in predicting single and continuous outputs 
generated from the mentioned PRNGs. The research findings illuminate the superior predictive 
performance of hybrid models, attributed to their adeptness at capturing long-term dependencies, a crucial 
factor in decoding the complexities of PRNG sequences. Additionally, the impact of model optimization 
techniques, including dropout and L2 regularization, on enhancing predictive accuracy is thoroughly 
explored. This comprehensive examination not only underscores the potential of neural networks in 
identifying deterministic patterns within PRNG outputs but also offers valuable insights into optimal model 
selection and configuration. The implications of this work are significant, paving new avenues in 
cryptography and securing random number generation by highlighting the predictability of PRNGs under 
advanced neural network models. 
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1. Introduction 
In the ever-evolving landscape of machine learning, the 
ability to accurately predict future events based on 
sequential data stands as a cornerstone of numerous 
technological advancements and applications. From 
forecasting stock market trends to decoding human 
language, the significance of effective sequence prediction 
cannot be overstated. Central to this domain are Recurrent 
Neural Networks (RNNs) and Long Short-Term Memory 
(LSTM) networks, which have emerged as powerful tools in 
the machine learning arsenal for handling sequential data. 

RNNs, known for their unique architecture that allows 
information to persist, have been instrumental in modeling 
time-dependent data [1]. However, their application is often 
marred by challenges such as the vanishing gradient 
problem, which hinders the learning of long-range 
dependencies [2]. Enter LSTMs, a special kind of RNN 
designed specifically to overcome these limitations. With 
their sophisticated internal mechanisms, LSTMs have set 
new benchmarks in sequence prediction tasks, 
demonstrating remarkable success where traditional RNNs 
falter [2, 3]. 
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This paper embarks on a comprehensive exploration of 
RNNs and LSTMs in the context of sequence prediction. We 
delve into the architectural intricacies of these models, their 
strengths and weaknesses, and their performance across 
various sequence prediction scenarios. 

Our study is particularly focused on datasets generated 
by different Pseudo-Random Number Generators (PRNGs), 
offering a unique lens through which the capabilities of 
these models can be examined and understood. 

Through rigorous experimentation and analysis, we aim 
to shed light on the nuances of sequence prediction and 
provide insights that could guide future applications and 
research in this fascinating area of machine learning. 

2. Background and related work 
Recent advancements in sequence prediction have been 
significantly influenced by the development and refinement 
of Recurrent Neural Networks (RNNs) and Long Short-Term 
Memory (LSTM) networks. These models have shown 
remarkable proficiency in handling sequential data, 
particularly in domains where understanding temporal 
dynamics is crucial. 
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1. LSTM for Time Series Prediction: Studies have 
demonstrated the effectiveness of LSTM models in time 
series forecasting, a domain traditionally dominated by 
statistical methods like ARIMA. Unlike these methods, 
LSTMs can capture complex nonlinear relationships in time 
series data [2, 4]. Researchers have successfully applied 
LSTM models to forecast stock prices, energy demand, and 
weather patterns, achieving higher accuracy than 
traditional models, especially in scenarios with long-term 
dependencies and high volatility. 

2. RNNs in Natural Language Processing (NLP): RNNs 
have been pivotal in advancing NLP. Their ability to process 
sequential text data has led to breakthroughs in machine 
translation, text generation, and sentiment analysis [1, 2, 5]. 
The sequential processing capability of RNNs allows them 
to maintain context in text, a critical factor in understanding 
human language [5]. However, vanilla RNNs often struggle 
with long-term dependencies [6], leading to the adoption of 
LSTMs and GRUs (Gated Recurrent Units) in more complex 
NLP tasks. 

3. Sequence-to-Sequence Learning: The sequence-to-
sequence learning framework, often implemented using 
LSTMs, has revolutionized tasks like machine translation. 
This approach involves training models on pairs of output 
and output sequences, enabling the model to learn 
mappings from one sequence to another. This framework 
has been crucial in developing models that can translate 
entire sentences with context, rather than translating on a 
word-by-word basis [2]. 

4. Challenges and Limitations: Despite their successes, 
RNNs and LSTMs are not without challenges. The vanishing 
gradient problem in RNNs, where the model loses its ability 
to learn long-range dependencies, has been partially 
addressed by LSTMs but still poses limitations [4]. 
Additionally, the training of these models can be 
computationally intensive, requiring significant resources 
for large datasets. 

5. Future Directions: Ongoing research is exploring 
more efficient and effective variants of RNNs and LSTMs, 
such as attention mechanisms and Transformer models [4]. 
These developments aim to address existing limitations 
while enhancing the models’ ability to process longer 
sequences and maintain context over extended periods. 

3. Model architecture overview 
Neural networks are artificial intelligence models that 
mimic human brain function [2]. A neural network connects 
processing units, similar to neurons, rather than 
manipulating zeros and ones like a digital model does [2]. 
The result depends on how the connections are organized 
and weighted. Neural networks are algorithms modeled 
after the human brain that recognize patterns. Sensory data 
is interpreted using machine perception, which labels or 
clusters raw information. They recognize numerical 
patterns in vectors, which must be converted into real-
world data like as images, sounds, text, and time series [7]. 
Artificial Neural Networks (ANNs) are computing systems 
modeled after biological neural systems, including the 
human brain [8]. 

Convolutional Neural Networks (CNNs) are similar to 
standard artificial neural networks (ANNs) in that they use 

neurons to improve themselves through learning [8]. CNNs 
have made remarkable achievements. This neural network 
is now widely used in deep learning. Convolutional neural 
networks have revolutionized computer vision, enabling 
previously unthinkable feats like facial recognition, 
driverless automobiles, self-service supermarkets, and 
intelligent medical treatments, CNNs also differ from 
typical ANNs by focusing on picture pattern recognition. 
This allows us to encode image-specific properties into the 
architecture, making the network better suited for image-
focused tasks while also lowering the number of parameters 
needed to set up the model [8, 9]. 

Hybrid Neural Networks (HNNs), which integrate the 
strengths of many neural networks, are becoming 
increasingly popular in computer vision applications 
including picture captioning and action identification. 
However, there has been limited research on the effective 
use of hybrid architectures for time series data, particularly 
for trend forecasting purposes [10]. HNNs use their internal 
structure to limit the interactions between process variables 
to align with physical models. Compared to regular neural 
networks, coupled models are more accurate, dependable, 
and generalizable [11]. 

Recurrent Neural Networks (RNNs) represent a 
paradigm shift in neural networks, specifically designed to 
recognize patterns in sequences of data [12]. Unlike 
traditional feedforward neural networks, RNNs possess a 
unique feature: the output from the previous step is fed back 
into the output of the current step. This looping mechanism 
allows RNNs to maintain an internal state that captures 
information about the sequence they have processed so far, 
making them ideal for tasks like speech recognition, 
language modeling, and time series forecasting [2, 12]. 

The core architecture of an RNN involves a hidden layer 
where the activation at a given time step is a function of the 
output at the same step and the activation of the hidden 
layer at the previous step [6]. This recurrent nature allows 
the network to maintain a form of memory [12]. However, 
RNNs are often challenged by long-term dependencies due 
to issues like vanishing and exploding gradients during 
backpropagation [2, 3], where the network becomes unable 
to learn and retain information from earlier time steps in the 
sequence [4]. 

Long Short-Term Memory Networks, a special kind of 
RNN, were developed to overcome the limitations of 
traditional RNNs. LSTMs are adept at learning long-term 
dependencies, thanks to their unique internal structure [3]. 
Unlike standard RNNs, LSTMs have a complex architecture 
with a series of gates: the forget gate, output gate, and 
output gate [3, 4]. These gates regulate the flow of 
information into and out of the cell, deciding what to keep 
in memory and what to discard, thereby addressing the 
vanishing gradient problem [4]. 

Forget Gate: Determines what information is discarded 
from the cell state [4, 13]. 

Output Gate: Updates the cell state with new 
information from the current output [13]. 

Output Gate: Determines the next hidden state and 
output based on the current output and the updated cell 
state [13]. 
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This architecture allows LSTMs to make more precise 
decisions about what information to store, modify, and 
output. As a result, LSTMs have been successfully applied 
in various complex sequence modeling tasks, including 
machine translation, speech synthesis, and even generative 
models for music composition [3, 4, 13].  

While both RNNs and LSTMs are designed for sequence 
processing, the key difference lies in their ability to handle 
long-term dependencies [4, 14]. Standard RNNs, while 
simpler and computationally less intensive, struggle with 
retaining information over longer sequences. LSTMs, with 
their intricate gating mechanism, excel in scenarios where 
understanding long-range contextual information is 
crucial [4]. 

The choice between RNNs and LSTMs often boils down 
to the specific requirements of the task at hand, the 
complexity of the sequences involved, and the 
computational resources available. LSTMs are generally 
preferred for more complex tasks with longer sequences [3], 
while RNNs might suffice for simpler tasks with shorter 
temporal dependencies [1]. 

4. Methodology 
There are a large number of pseudorandom generators that 
differ in their characteristics, construction methods, and 
areas of possible application [15–19]. In our study, we 
employed datasets generated by four distinct PRNG 
algorithms, each offering unique challenges and 
characteristics for sequence prediction using RNN and 
LSTM models. These datasets serve as a testing ground to 
evaluate and compare the performance of different neural 
network architectures in sequence prediction tasks. 

4.1. Linear congruential generator dataset 

Description: The LCG is one of the oldest and simplest 
PRNG algorithms [20]. It generates random numbers using 
a linear equation [20]. The simplicity of its algorithm makes 
it a good baseline for evaluating the predictive capabilities 
of RNN and LSTM models. 

Characteristics: The sequence generated by an LCG can 
exhibit patterns due to its linear nature. These patterns, 
while not immediately apparent, can be learned over time, 
making it an interesting case for sequence prediction 
models [20]. Despite their potential statistical issues, LCGs 
have the advantage of offering all the auxiliary qualities, 
such as seekability, numerous streams, and k-dimensional 
equidistribution [20]. 

4.2. Mersenne twister dataset 

Description: The Mersenne Twister, specifically the 
MT19937 variant, is known for its long period and high-
quality outputs. It’s widely used in various applications due 
to its reliability and speed [21]. 

Characteristics: MT generates sequences that are far 
more complex and less predictable than LCG [20]. This 
complexity provides a challenging scenario for RNNs and 
LSTMs, testing their ability to model and predict more 

intricate and seemingly random sequences. In addition to its 
inability to produce the all-zero state, the Mersenne Twister 
also finds it difficult to act randomly in its nearly all-zero 
state [20]. 

4.3. Xorshift dataset 

Description: Xorshift is a class of PRNGs that operates using 
XOR (exclusive or) and bit-shifting operations [20]. It’s 
known for its simplicity and speed, often used in scenarios 
where the speed of random number generation is critical [20]. 

Characteristics: Despite its simplicity, Xorshift can 
produce high-quality random sequences [20]. The non-
linear nature of its operations makes it an interesting case 
for studying how well neural network models can adapt to 
and predict outputs from non-linear algorithms [22]. A 
bitwise xor operation is a type of permutation that involves 
flipping certain bits in the target. It can be performed again 
to reverse the effects [20]. The conventional understanding 
of Xorshift would advise us to concentrate on lengthening 
the bits’ period [20].  

4.4. Middle square method dataset 

Description: The Middle Square method is an older PRNG 
technique that generates random numbers by squaring the 
number and extracting the middle digits of the result [22]. 
It’s less commonly used today due to certain limitations. 

Characteristics: This method is prone to quickly 
converging to repetitive cycles or zeros, especially with 
certain seed values [23]. The predictability and potential 
repetition in the sequences makes it a unique dataset to test 
the models’ ability to detect and adapt to less complex and 
potentially degenerative patterns [22]. The field of 
computer science began with the invention of the middle 
square [22]. It is possible to develop a viable version with a 
sufficiently long period (264 for each stream) thanks to 
modern 64-bit computing architecture. The fastest RNGs are 
comparable in processing speed [23]. This generator works 
well for parallel processing because of its simple stream 
capability. Because a square is nonlinear, it provides this 
generator with an edge over linearly-based generators in 
terms of data quality [22]. 

5. Dataset preparation 
In our study on “Predicting PRNG Output with Sequential 
Analysis”, we meticulously prepared a dataset to analyze 
the predictability of various Pseudorandom Number 
Generators (PRNGs), focusing on four widely recognized 
algorithms: Linear Congruential Generator (LCG) (Fig. 2), 
MiddleSquare (Fig. 4), Xorshift (Fig. 3), and Mersenne 
Twister (MT) (Fig. 1). Each of these PRNGs was chosen for 
its unique approach to generating sequences of 
pseudorandom numbers, providing a diverse test bed for our 
predictive models. 

5.1. Data generation parameters 

The dataset was generated using the following 
parameters to ensure consistency across all PRNGs: 
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Figure 1: MT dataset distribution 

 
Figure 2: LCG dataset distribution 

 
Figure 3: Xorshift dataset distribution 

 
Figure 4: MiddleSquare dataset distribution 
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Sample Size: Each PRNG was used to generate a sequence 
of 10,000 numbers, with n = 10000, to create a 
substantial dataset for training and evaluation. Seed 
Value: A common seed value of 8956482 was applied to 
initialize each PRNG, ensuring that the starting point of 
the pseudorandom sequence was consistent across 
different generators. Word Size: For PRNGs where 
applicable, such as MiddleSquare, a word size of 8 bits 
was selected, balancing the need for computational 
efficiency with the desire for sequence complexity. 
Sequence Length: The output was segmented into 
sequences of length 10, which were then used as 
individual data points for the subsequent analysis. This 
sequence length was chosen to provide enough data for 
recognizing patterns without overwhelming the 
analytical models. 

5.2. Dataset splitting 

Once generated, the dataset was divided into three distinct 
sets to facilitate the training, testing, and validation of our 
predictive models: 

Training Set: Used to train the models, allowing them to 
learn and adapt to the patterns inherent in the 
pseudorandom sequences generated by each PRNG. 

Testing Set: Employed to assess the performance of the 
models on unseen data, providing an unbiased evaluation of 
their predictive capabilities. 

Validation Set: Utilized during the model tuning phase 
to fine-tune parameters and prevent overfitting, ensuring 
that the models generalize well to new data. 

This careful preparation and partitioning of the dataset 
were critical in establishing a robust foundation for our 
investigation into the predictability of PRNG outputs 
through sequential analysis. By standardizing the 
generation parameters and thoughtfully splitting the data, 
we aimed to create a fair and consistent testing environment 
for each of the predictive models applied in our study. 

6. Model configuration 
In our exploration of “Predicting PRNG Output with 
Sequential Analysis”, we employed a comprehensive 
approach by leveraging various neural network 
architectures. Each model was selected based on its ability 
to process sequential data, a core characteristic of PRNG 
outputs. Our analysis incorporated Convolutional Neural 
Networks (CNNs), Recurrent Neural Networks (RNNs), 
Long Short-Term Memory networks (LSTMs), and a custom 
Hybrid model, each designed to handle the intricacies of 
PRNG-generated data in distinct ways. 

6.1. Convolutional neural networks 

Application: Primarily used for single-value output 
prediction, CNNs are adept at identifying patterns within a 
fixed-size window of the sequence. This model excels at 
capturing local dependencies and spatial hierarchies in data, 
making it suitable for analyzing individual segments of the 
PRNG output. 

6.2. Recurrent neural networks 

Application: RNNs were employed for both single-value and 
continuous-value output predictions. Unlike CNNs, RNNs 
have a memory mechanism that allows them to process 
entire sequences of data, making them ideal for 
understanding the temporal dynamics and dependencies 
within PRNG outputs. 

6.3. Long short-term memory networks 

Application: Like RNNs, LSTMs were utilized for both 
single-value and continuous-value output predictions. 
LSTMs are a special kind of RNN capable of learning long-
term dependencies. They are particularly effective in 
avoiding the vanishing gradient problem, enabling them to 
capture patterns over longer sequences of PRNG outputs. 

6.4. Hybrid model 

Configuration: The Hybrid model represents an innovative 
approach, integrating the strengths of CNNs and LSTMs 
into a singular architecture. It comprises: 

• CNN Layer: For extracting local features within 
the subsequence of the PRNG output. 

• LSTM Layer: To capture long-term dependencies 
and temporal patterns in the data, building upon 
the features extracted by the CNN layer. 

• Dense Layer: Serving as the output layer, it 
synthesizes the information processed by the CNN 
and LSTM layers to make predictions. 

Application: Designed for versatility, the Hybrid model 
is equipped to handle both single-value and continuous-
value outputs, offering a robust solution for predicting 
PRNG outputs by leveraging the complementary strengths 
of convolutional and recurrent layers. 

The strategic selection and configuration of these 
models underpin our analytical methodology. By employing 
a diverse array of architectures, each with its unique 
advantages, our study aims to comprehensively evaluate the 
predictability of PRNG outputs. The Hybrid model 
underscores our commitment to innovation, integrating 
multiple neural network paradigms to enhance predictive 
accuracy and insight into the sequential nature of PRNG-
generated data. 

7. Evaluation metrics 
To rigorously assess the effectiveness of our models in 
predicting PRNG outputs, we employed a set of 
comprehensive evaluation metrics. These metrics are 
crucial for quantifying the accuracy of our predictions and 
facilitating a direct comparison between the different neural 
network architectures utilized in our study. Our evaluation 
framework is centered around the Mean Squared Error 
(MSE) and a specially devised Model Performance Score. 

7.1. Mean squared error 

MSE serves as the cornerstone of our evaluation strategy. It 
calculates the average squared difference between the 
actual and predicted values, offering a precise measure of 
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the prediction error’s magnitude. By squaring the errors, 
MSE gives more weight to larger errors, making it 
particularly sensitive to outliers and significant prediction 
inaccuracies. 

In the context of predicting PRNG outputs, MSE 
provides a clear and direct measure of how closely the 
model’s predictions align with the actual sequence of 
numbers generated by the PRNGs. A lower MSE indicates 
higher prediction accuracy, reflecting a model’s ability to 
effectively capture and replicate the underlying patterns of 
the PRNG sequence. 

7.2. Model performance score 

Recognizing the need for a standardized metric that allows 
for an intuitive understanding of model performance, we 
introduced the Model Performance Score. This metric 
normalizes the MSE to a scale ranging from 0 to 1, where 0 
represents the poorest performance (highest MSE) and 1 
denotes perfect prediction accuracy (zero MSE). 

The Model Performance Score is calculated by inversely 
scaling the MSE against a predetermined maximum error 
threshold. This approach ensures that the performance 
score is adjusted for the scale of the data and the expected 
variation in prediction accuracy, allowing for a fair 
comparison across different models and datasets. 

This normalized score simplifies the interpretation of 
our results, providing a straightforward metric to gauge 
model effectiveness. It allows stakeholders to quickly assess 
the relative performance of each model in predicting PRNG 
outputs without delving into the complexities of raw MSE 
values. 

Together, these evaluation metrics form the foundation 
of our analytical approach, enabling a nuanced analysis of 
model performance. MSE offers a detailed view of the 
prediction accuracy, while the Model Performance Score 
provides a high-level, comparative perspective. By 
incorporating both metrics, our study ensures a balanced and 
comprehensive evaluation of how well each neural network 
architecture can predict the seemingly unpredictable: output 
of pseudorandom number generators. 

8. Experiment variables and 
observations 

We conducted an extensive series of experiments to 
evaluate the predictive capabilities of various neural 
network configurations. These experiments were 
meticulously designed to explore the impact of different 
model parameters on the accuracy of PRNG output 
predictions. Below, we detail the variables involved in these 
experiments and highlight some critical observations 
related to model performance. 

8.1. Experiment variables 

To systematically assess the effects of various 
hyperparameters on model performance, we tested a 
wide array of combinations, encompassing: 

 Activation Functions: We exper. 
 imented with two popular activation functions, 

ReLU (Rectified Linear Unit) and tanh (Hyperbolic 

Tangent). These functions were chosen for their 
distinct characteristics in handling nonlinearities 
in the data. 

 Number of Neurons: The neuron counts tested 
were 8, 16, and 32. This range allowed us to 
explore the models’ capacity to learn and 
generalize from the data, balancing complexity 
with computational efficiency. 

 Epochs: All models were trained for [1000] epochs, 
providing ample opportunity for learning and 
convergence. 

 Model Layers: We varied the depth of the models 
by testing configurations with [1, 2, 4] layers. This 
variation aimed to understand how model depth 
influences learning and prediction accuracy. 

Output Lengths: For continuous value prediction, 
output lengths of [1–4] were tested. This range was 
selected to assess the models’ ability to forecast multiple 
steps in the PRNG sequence. 

8.1.1. Impact of dropout and L2 regularization 

One of the most notable findings from our experiments was 
the impact of dropout and L2 regularization techniques on 
model learning capabilities. Contrary to common practice in 
machine learning, where these techniques are employed to 
enhance model generalization and prevent overfitting, our 
experiments revealed that: 

Models without dropout and L2 regularization 
demonstrated superior performance in learning and 
predicting PRNG outputs. The introduction of these 
regularization techniques led to models that were unable to 
adequately learn from the training data and, consequently, 
failed to predict accurately. 

This observation suggests a unique aspect of predicting 
PRNG outputs: the data generated by PRNGs, while 
seemingly random, follows deterministic algorithms. The 
addition of regularization techniques, which are designed to 
introduce randomness and constraint to the learning 
process, may interfere with the model’s ability to capture 
the underlying deterministic patterns of PRNG sequences. 

The results of these experiments provide valuable 
insights into the design and optimization of neural network 
models for predicting PRNG outputs. Specifically, they 
underscore the importance of tailoring model 
configurations to the specific characteristics of the data and 
the task at hand. In the context of PRNG prediction, 
minimizing external sources of randomness and constraint 
(e.g., through dropout and L2 regularization) appears to be 
crucial for enabling models to learn and replicate the 
deterministic patterns that govern PRNG behavior. 

9. Experiment results analysis 
Our exhaustive investigation into predicting PRNG output 
through sequential analysis yielded compelling findings, 
elucidated through the analysis of the top-performing 
models for each PRNG. Here, we detail the significant 
outcomes for both single-output and continuous-output 
scenarios across different PRNGs: Xorshift, MT (Mersenne 
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Twister), LCG (Linear Congruential Generator), and 
MiddleSquare. 

9.1. Single-output scenario analysis 

For single-output predictions, our experiments have the 
following results. 

Xorshift: The RNN model with 32 neurons, 5 layers, 
and the ReLU activation function emerged as the top 
performer, achieving a mean score of 0.9898 (Table 1). 
However, both Hybrid and CNN models came close to the 
same success rate suggesting that the Xorshift sequence 
characteristics are not particularly difficult to capture. 

Table 1  
Xorshift, single output results 

Scenario Model type Neuron Activation function Epochs Layers Mean score 

Xorshift RNN 32 relu 1000 5 0.989848 

Xorshift CNN 32 relu 1000 3 0.983555 

Xorshift Hybrid 32 relu 1000 2 0.982930 

Xorshift CNN 16 relu 1000 2 0.981882 

Xorshift Hybrid 8 relu 1000 2 0.980837 

Xorshift CNN 32 relu 1000 5 0.979213 

Xorshift CNN 8 relu 1000 2 0.978671 

Xorshift CNN 32 relu 1000 2 0.977584 

Xorshift CNN 16 relu 1000 5 0.977577 

50% of all models were able to reach 90% success thresholds 
(Error! Reference source not found.). 

Nevertheless, more improvement can get this number 
higher.

 
Figure 5: Xorshift, single output, all models results 

MT: The CNN model with 8 neurons, 3 layers, and ReLU 
activation function led the pack with a mean score of 0.9832 
(Table 2), indicating that CNN’s feature extraction 

capabilities are effective at decoding the MT’s output 
patterns. 

28% of all models were able to reach 90% success 
thresholds (Fig. 6). 
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Table 2 
MT, single output results 

Scenario Model type Neuron Activation function Epochs Layers Mean score 

MT CNN 8 relu 1000 3 0.983227 

MT CNN 32 relu 1000 3 0.980932 

MT RNN 32 tanh 1000 5 0.978619 

MT CNN 32 relu 1000 2 0.978589 

MT CNN 16 relu 1000 2 0.977052 

MT LSTM 32 relu 1000 5 0.976916 

MT RNN 32 relu 1000 5 0.973991 

MT CNN 32 tanh 1000 2 0.973030 

MT CNN 32 relu 1000 5 0.972651 

MT CNN 16 relu 1000 5 0.972521 

 
Figure 6: MT, single output, all models results 

LCG: The Hybrid model, combining CNN and LSTM 
architectures with tanh activation, showed superior 
performance, especially with 32 neurons and 5 layers, 

reaching a mean score of 0.9831 (Table 3). This 
underscores the Hybrid model’s robustness in capturing 
both local and long-range dependencies in LCG sequences.

Table 2 
LCG, single output results 

Scenario Model type Neuron Activation function Epochs Layers Mean score 

LCG Hybrid 32 tanh 1000 5 0.983155 

LCG Hybrid 8 tanh 1000 2 0.982143 

LCG Hybrid 8 tanh 1000 3 0.980809 

LCG Hybrid 32 tanh 1000 2 0.980579 

LCG Hybrid 16 tanh 1000 2 0.979036 

LCG CNN 8 relu 1000 2 0.978362 

LCG Hybrid 16 tanh 1000 3 0.978311 

LCG Hybrid 32 tanh 1000 3 0.977490 

LCG RNN 32 tanh 1000 3 0.976433 

LCG CNN 32 relu 1000 5 0.975615 

60% of all models were able to reach 90% success thresholds 
(Fig. 7). 
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Figure 7: LCG, single output, all models results 

MiddleSquare: The Hybrid model with tanh activation, 16 
neurons, and 3 layers stood out with a mean score of 0.9883 
(Table 4), highlighting the model’s effectiveness in 

navigating the complex, squared calculations intrinsic to 
MiddleSquare algorithm. 

Table 4 
MiddleSquare, single output results 

Scenario Model type Neuron Activation function Epochs Layers Mean score 

MiddleSquare Hybrid 16 tanh 1000 3 0.988377 

MiddleSquare CNN 32 relu 1000 3 0.987493 

MiddleSquare CNN 32 relu 1000 2 0.986276 

MiddleSquare Hybrid 32 tanh 1000 3 0.983554 

MiddleSquare Hybrid 16 tanh 1000 5 0.983326 

MiddleSquare Hybrid 8 tanh 1000 2 0.982954 

MiddleSquare CNN 32 relu 1000 5 0.980597 

MiddleSquare Hybrid 32 tanh 1000 5 0.980450 

MiddleSquare CNN 8 relu 1000 5 0.980440 

MiddleSquare Hybrid 16 tanh 1000 2 0.980428 

64% of all models were able to reach 90% success thresholds 
(Fig. 8). 

 
Figure 8: MiddleSquare, single output, all models results 
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These results underscore the nuanced relationship between 
PRNG algorithms and neural network architectures, 
suggesting that no single model architecture is universally 
superior. Instead, the optimal choice depends on the specific 
characteristics and mechanisms of the PRNG being 

predicted. While the models have been fine-tuned to achieve 
high predictive accuracy, the graphical analysis indicates 
that there is an inherent limitation to the exactness of these 
predictions.

 
Figure 9: Prediction vs actual values, MiddleSquare with the best result (0.988377) 

A further performance plot (Error! Reference source not 
found.) illustrates the correlation between the predicted and 
actual values of the PRNG sequence. The near-perfect linear 
alignment along the 45-degree line suggests that the model’s 
predictions are highly correlated with the actual PRNG outputs. 
The tight clustering of the points around this line demonstrates 
the model’s effectiveness in capturing the underlying pattern 
of the PRNG sequence. However, the slight deviation of points 
from the line implies that while the model can predict the 
general trend and distribution of the PRNG outputs, it cannot 
replicate the sequence with absolute precision. 

The scatter plot showing predictions versus actual 
values (Fig. 10) for the Hybrid model using tanh activation, 
16 neurons, and 3 layers reveals a close correspondence 
between predicted and actual values. However, the 
dispersion of points away from the line of perfect agreement 
(where predicted values equal actual values) suggests that 
while the model can approximate the PRNG’s output with 
high fidelity, it cannot achieve complete accuracy. The 
variance from the line of perfect prediction could be 
attributed to the deterministic yet complex nature of 
PRNGs, which inherently limits the predictability even with 
sophisticated models.

 
Figure 10: Prediction vs actual values, MiddleSquare with the best result (0.988377) 

9.2. Continuous-Output Scenario Analysis 

The continuous-output models demonstrated even higher 
predictive accuracy, with the Hybrid model configured for 
continuous predictions (Hybrid-C) achieving remarkable 
success. 

For the MiddleSquare PRNG, the Hybrid-C model with tanh 
activation, 16 neurons, 3 layers, and an output length of 3 
achieved a near-perfect mean score of 0.9955. Only 29% of 
all models were able to break the 90% success milestone (Fig. 
11). 
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Table 5 
MiddleSquare, continuous output results 

Scenario Model type Neuron Activation function Epochs Layers Output length Mean score 

MiddleSquare Hybrid-C 16 tanh 1000 3 3 0.995479 

MiddleSquare Hybrid-C 16 tanh 1000 2 2 0.992588 

MiddleSquare Hybrid-C 8 tanh 1000 5 2 0.990003 

MiddleSquare Hybrid-C 8 relu 1000 5 1 0.988989 

MiddleSquare Hybrid-C 32 relu 1000 5 3 0.988566 

MiddleSquare Hybrid-C 8 tanh 1000 3 1 0.988066 

MiddleSquare Hybrid-C 16 relu 1000 2 2 0.986359 

MiddleSquare Hybrid-C 16 tanh 1000 5 3 0.985923 

MiddleSquare Hybrid-C 16 tanh 1000 5 2 0.985797 

MiddleSquare Hybrid-C 8 tanh 1000 5 1 0.984813 

 
Figure 11: MiddleSquare, continuous output, all models results 

For the LCG PRNG, the Hybrid-C model with tanh 
activation, 8 neurons, 5 layers, and an output length of 2 
achieved a near-perfect mean score of 0.992055. 20% of all 

models were able to break the 90% success threshold 
(Fig. 12). 

Table 3 
LCG, continuous output results 

Scenario Model type Neuron Activation function Epochs Layers Output length Mean score 

LCG Hybrid-C 8 tanh 1000 5 2 0.992055 

LCG Hybrid-C 8 tanh 1000 5 3 0.989730 

LCG Hybrid-C 16 tanh 1000 5 5 0.987614 

LCG Hybrid-C 8 tanh 1000 3 5 0.986818 

LCG Hybrid-C 8 tanh 1000 2 5 0.985174 

LCG Hybrid-C 16 tanh 1000 3 2 0.984808 

LCG Hybrid-C 32 tanh 1000 3 2 0.984462 

LCG Hybrid-C 16 tanh 1000 2 1 0.984411 

LCG Hybrid-C 32 tanh 1000 3 1 0.983866 

LCG Hybrid-C 32 tanh 1000 2 1 0.983706 
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Figure 12: LCG, continuous output, all models results 

For the Xorshift PRNG, the Hybrid-C model with relu 
activation, 16 neurons, 2 layers, and an output length of 2 
achieved a near-perfect mean score of 0.987906 (Table 7). 

15% of all models were able to break the 90% success 
threshold (Fig. 13). 

Table 4 
Xorshift, continuous output results 

Scenario Model type Neuron Activation function Epochs Layers Output length Mean score 

Xorshift Hybrid-C 16 relu 1000 2 2 0.987906 

Xorshift Hybrid-C 16 relu 1000 2 5 0.985753 

Xorshift Hybrid-C 8 relu 1000 5 5 0.985715 

Xorshift Hybrid-C 8 relu 1000 2 2 0.984238 

Xorshift Hybrid-C 32 relu 1000 2 2 0.983437 

Xorshift Hybrid-C 16 relu 1000 2 3 0.981247 

Xorshift Hybrid-C 8 relu 1000 2 1 0.980434 

Xorshift Hybrid-C 32 relu 1000 2 1 0.978930 

Xorshift RNN-C 32 tanh 1000 3 1 0.977685 

Xorshift Hybrid-C 32 relu 1000 2 3 0.976177 

 
Figure 13: Xorshift, continuous output, all models results 

For the MT PRNG, the Hybrid-C model with relu 
activation, 32 neurons, 2 layers, and an output length of 2 
achieved a near-perfect mean score of 0.985006 (Table 8). 

12% of all models were able to break the 90% success 
threshold (Fig. 14). 
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Table 5 
MT, continuous output results 

Scenario Model type Neuron Activation function Epochs Layers Output length Mean score 

MT Hybrid-C 32 relu 1000 2 2 0.985006 
MT RNN-C 32 relu 1000 5 1 0.981523 
MT RNN-C 32 tanh 1000 5 1 0.980135 
MT Hybrid-C 16 tanh 1000 2 3 0.976324 
MT LSTM-C 32 relu 1000 5 1 0.976245 
MT Hybrid-C 8 tanh 1000 2 1 0.975258 
MT RNN-C 32 tanh 1000 3 1 0.974210 
MT RNN-C 32 relu 1000 3 1 0.972664 
MT RNN-C 32 relu 1000 2 1 0.965829 
MT RNN-C 32 tanh 1000 2 1 0.963914 

 
Figure 14: MT, continuous output, all models results 

The examination of continuous-output models reveals a 
notable enhancement in predictive performance compared 
to single-output models. This is particularly evident in the 
context of predicting sequences generated by the 
MiddleSquare PRNG.  

The performance plot illustrating the correlation 
between predicted and actual values (Fig. 15) for the 
continuous-output model shows an even tighter linear 
alignment than the single-output model. This near-perfect 

correlation, along with a high success score of 0.9955, 
reflects the model’s exceptional predictive accuracy. The 
dense clustering of points along the diagonal suggests that 
the model can reliably predict the MiddleSquare PRNG’s 
output with high confidence, and such precision is 
indicative of the model’s ability to capture both the 
immediate and contextual dependencies within the PRNG’s 
sequence.

 
Figure 15: Prediction vs actual values, MiddleSquare with the best result (0.9955) 
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The scatter plot for the continuous-output Hybrid model, 
which integrates CNN and LSTM architectures (Hybrid-C), 
showcases a substantial concentration of points closely 
aligned with the line of perfect prediction (Fig. 16). The 
model, employing tanh activation with 16 neurons across 3 
layers, exhibits a remarkable ability to track the actual 

values throughout the sequence. This tight clustering 
indicates a substantial reduction in prediction errors and a 
strong alignment with the true PRNG sequence, suggesting 
a deeper understanding of the underlying patterns by the 
model.

 
Figure 16: Prediction vs actual values, MiddleSquare with the best result (0.9955) 

The continuous-output model’s superior performance, as 
evidenced by the closer proximity of predicted to actual 
values and the higher success score, highlights the benefit 
of utilizing sequential context in PRNG output prediction. 
The ability to forecast the sequence with a success score 
reaching 0.9955 marks a significant milestone, suggesting 
that models incorporating sequence history can more 
effectively decode the deterministic yet complex structure 
of PRNG outputs. 

This analysis implies that continuous-output models 
hold great promise for applications where forecasting 
accuracy over sequences is critical. The insights gleaned 
from this research can inform the development of more 
secure PRNGs, capable of withstanding sophisticated 
sequential analysis. Future work will likely explore the 
expansion of this approach to more complex and higher-
dimensional sequences, potentially integrating additional 
layers of complexity and exploring the impact on model 
performance. 

9.3. Model Performance Across PRNGs 

Our study’s findings highlight the nuanced nature of PRNG 
output prediction, with different models excelling for 
specific generators. This variation underscores the 
importance of model selection tailored to the characteristics 
of the PRNG being analyzed. For instance, the best-
performing model for the Xorshift generator might leverage 
its unique XOR and shift operations, whereas the optimal 
model for the Mersenne Twister (MT) would need to 
account for its complex bit manipulation and tempering 
techniques. 

Remarkably, the single-output models consistently 
achieved a 98% success rate across various PRNGs, 
demonstrating a high level of accuracy in predicting the 
next output value based solely on a single preceding value. 

This success rate is indicative of the models’ ability to 
decipher the underlying deterministic patterns that govern 
PRNG outputs. 

Even more impressive, the continuous-output model, 
which utilizes sequences of values to predict subsequent 
outputs, reached a 99% success rate. This improvement 
suggests that incorporating more context in the form of 
continuous output sequences enables the models to better 
capture the PRNGs’ inherent algorithms, leading to more 
accurate predictions. 

9.4. Implications for PRNG Analysis and 
Security 

The success of our models in predicting PRNG outputs with 
such high accuracy has profound implications for the fields 
of cryptography and random number generation. While 
PRNGs are designed to produce sequences that are difficult 
to predict, our results suggest that advanced neural network 
models can uncover and exploit hidden patterns within 
these sequences. This finding calls for ongoing efforts to 
enhance the unpredictability and security of PRNGs, 
ensuring they remain robust against sophisticated 
analytical techniques. 

10. Conclusions 
This research delves into the predictability of PRNGs using 
advanced neural network models. Our study demonstrates 
that tested architectures possess a remarkable ability to 
predict the outputs of various PRNGs, with enhanced 
accuracy observed in continuous output prediction 
scenarios showcasing a superior performance in capturing 
long-term dependencies within PRNG sequences, affirming 
their suitability for complex sequence prediction tasks. 
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Our findings illuminate the nuanced dynamics of PRNG 
predictability and the potential vulnerabilities inherent 
within commonly used generators. By leveraging neural 
networks, we not only uncover the deterministic patterns 
masked as randomness but also push the boundaries of 
understanding in cryptographic security and random 
number generation. 

Future research should explore the integration of more 
complex neural architectures and the application of these 
findings in real-world scenarios, such as secure 
communications and cryptographic key generation. The 
implications of our work suggest a pivotal shift towards 
more secure and unpredictable PRNG designs, bolstering 
the defenses against adversarial predictions and enhancing 
the integrity of cryptographic systems. 

11. Future research directions 
These findings have significantly advanced our 
understanding of the capabilities and limitations of current 
PRNG technologies when subjected to advanced neural 
network-based predictive models. The high success rates 
achieved by these models, particularly the 99% success rate 
with continuous-output models, not only demonstrate the 
feasibility of predicting PRNG outputs but also underscore 
the intricate patterns that deterministic algorithms 
generate—patterns that sophisticated models can uncover. 

This study opens several avenues for future research, 
aimed at both improving PRNG designs and developing 
more advanced predictive models: 

Advanced PRNG Algorithms: There is a clear need for 
the development of new PRNG algorithms that incorporate 
mechanisms specifically designed to counteract the 
capabilities of neural network-based predictive models. 
Future research should focus on exploring algorithmic 
complexities that can more effectively obscure deterministic 
patterns. 

Neural Network Enhancements: Our research has 
shown that certain neural network architectures are more 
adept at predicting PRNG outputs than others. Investigating 
the development of novel neural network models or hybrid 
architectures that can more efficiently process and predict 
complex sequences is an exciting frontier. This includes 
exploring deeper networks, attention mechanisms, and 
other advanced features that could further improve 
prediction accuracy. 

Cross-Disciplinary Approaches: Combining insights 
from cryptography, machine learning, and complexity 
theory could yield innovative approaches to both PRNG 
design and predictive modeling. Interdisciplinary research 
might uncover new principles for creating sequences that 
are inherently more difficult to predict, as well as models 
that are more adept at understanding complex patterns. 

Real-World Application Scenarios: Applying our 
findings to real-world scenarios, where PRNGs are used 
under various constraints and for different purposes, will be 
essential. This includes testing PRNGs in environments with 
high-security requirements, such as in blockchain 
technologies, secure communications, and digital 
signatures. 

Ethical Considerations and Security Implications: As 
research progresses in predicting PRNG outputs, it is 

imperative to consider the ethical implications and potential 
security risks associated with disseminating advanced 
predictive models. Developing guidelines and best practices 
for responsible research and application in this area is 
crucial. 

Enhancing PRNG security: The ability of neural 
networks to predict PRNG outputs with such accuracy 
highlights an urgent need for the cryptographic community 
to re-evaluate and enhance the design and implementation 
of PRNGs. Ensuring that PRNGs can withstand analysis by 
advanced predictive models is crucial for maintaining the 
security and integrity of cryptographic systems, which rely 
heavily on the unpredictability of these generators. 
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