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Abstract 
The fast evolution of cloud-native applications and the widespread adoption of Kubernetes clusters have 
revolutionized how modern software is developed, deployed, and managed. However, this paradigm shift 
has introduced new security challenges that require innovative solutions. This research explores the 
“Security as Code” (SaC) approach, which integrates security policies and practices into the development 
and deployment pipelines of cloud-native applications on Kubernetes clusters. The study begins by 
outlining the theoretical foundations of the SaC approach, emphasizing the need for automated and 
consistent security measures across all stages of the software development lifecycle. We then explore the 
implementation of the policy engine and its gatekeeper component, as core tools for enforcing security 
policies within Kubernetes environments. The research details the setup process on AWS using a cost-
effective configuration, augmented with GitOps tool for continuous deployment and container image 
vulnerability scanner. Our methodology includes configuring OPA Gatekeeper for admission control, 
defining and applying constraint templates, and integrating FluxCD to automate policy deployment and 
enforcement. We provide a step-by-step guide for setting up the environment, ensuring that the approach 
is practical and reproducible. The findings demonstrate that the SaC approach significantly improves 
security management in cloud-native environments, offering a scalable and flexible framework for 
integrating security into DevOps workflows. This research contributes to the broader understanding of 
how security can be codified and automated, paving the way for more secure and resilient cloud-native 
applications. 
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1. Introduction 
The introduction of cloud-native applications has marked a 
significant shift in the landscape of software development 
and deployment. These applications, designed to leverage 
the advantages of cloud computing, offer unparalleled 
scalability, flexibility, and resilience. At the heart of this 
transformation is Kubernetes, an open-source container 
orchestration platform that has become the de facto 
standard for deploying, scaling, and managing 
containerized applications. 

While Kubernetes simplifies many aspects of 
application management, it also introduces new security 
challenges. Traditional security practices often struggle to 
keep pace with the dynamic and ephemeral nature of cloud-
native environments. This gap has led to the emergence of 
the “Security as Code” (SaC) paradigm, which aims to 
embed security directly into the development and 
operational processes through code. 

Security as Code involves defining security policies and 
controls as code, allowing them to be versioned, reviewed, 
and deployed alongside application code. This approach 
ensures that security measures are consistently applied and 
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automatically enforced across all environments, from 
development to production. By integrating security into the 
DevOps pipeline, organizations can achieve continuous 
security and compliance, reducing the risk of vulnerabilities 
and misconfigurations. 

This research focuses on implementing the SaC 
approach within Kubernetes clusters, leveraging Open 
Policy Agent (OPA) and its Gatekeeper component. OPA is 
a general-purpose policy engine that enables the 
enforcement of fine-grained, context-aware policies. 
Gatekeeper extends OPA's capabilities by integrating with 
Kubernetes admission controllers, allowing policies to be 
enforced at the time of resource creation and modification. 

Additionally, this study incorporates FluxCD, a 
continuous delivery tool for Kubernetes, and Trivy, a 
comprehensive vulnerability scanner for container images. 
By combining these tools, we aim to create a robust 
framework for automating security policy enforcement and 
continuous monitoring of container vulnerabilities. 

The goal of this research is to demonstrate the practical 
implementation and effectiveness of the Security as Code 
approach in Kubernetes environments. Specifically, we aim 
to integrate and automate security policies, ensuring 
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continuous security and compliance throughout the 
development lifecycle of cloud-native applications. 

 Define Security Policies: Create and codify 
security policies that can be enforced within 
Kubernetes clusters using OPA Gatekeeper. 

 Automate Policy Enforcement: Integrate security 
policies into the CI/CD pipeline to ensure 
automated and consistent enforcement. 

 Implement Continuous Deployment: Use FluxCD 
to manage and automate the deployment of 
Kubernetes manifests, ensuring the desired state of 
the cluster is maintained. 

 Vulnerability Scanning: Incorporate Trivy to scan 
container images for vulnerabilities, adding a layer 
of security. 

 Cost-Effective Setup: Establish a cost-effective 
environment for testing and deploying the SaC 
solutions, particularly in cloud environments like 
AWS. 

The swift adoption of Kubernetes as a container 
orchestration platform has revolutionized the deployment 
and management of cloud-native applications. However, 
this shift has also introduced significant security challenges 
that traditional security approaches are ill-equipped to 
address. The need for dynamic, automated, and scalable 
security measures has become crucial. 

The primary problem this research addresses is the 
implementation of a “Security as Code” (SaC) approach in 
Kubernetes-based cloud environments. Specifically, the 
challenges include вynamic and ephemeral nature of 
containers, containers are inherently ephemeral and 
dynamic; сomplexity of Kubernetes, Kubernetes, while 
powerful, introduces significant complexity with its 
numerous components (e.g., API server, etcd, scheduler, 
controllers); multi-tenancy and Isolation; integration with 
existing security tools; continuous security and compliance; 
visibility and monitoring. 

Through this research, we aim to explore and address 
these challenges by providing a detailed implementation 
guide, evaluating the effectiveness of automated security 
policies, and offering practical insights into integrating 
security as code into Kubernetes-based workflows. By doing 
so, we contribute to the broader discourse on enhancing the 
security of cloud-native applications through innovative 
code-centric approaches. 

2. Related works 
The field of container orchestration and security has 
evolved significantly over the past decade, with numerous 
contributions from both academia and industry. This 
section reviews some of the seminal works and current 
research related to the “Security as Code” approach in 
Kubernetes environments. 

The article “Borg, Omega, and Kubernetes” by Burns et 
al. from Google Inc. provides an in-depth look at the 
evolution of container management systems within Google, 
starting with Borg, moving to Omega, and finally to 
Kubernetes. This progression highlights the increasing 
sophistication and scalability of container orchestration, 

emphasizing key innovations such as Borg, the initial 
system developed to manage both long-running services 
and batch jobs. Borg introduced resource sharing between 
different types of applications, significantly improving 
resource utilization. Omega, built to improve the software 
engineering of Borg, introduced a more consistent and 
principled architecture, using a centralized Paxos-based 
transaction-oriented store. Kubernetes was designed for a 
broader developer audience, emphasizing ease of use for 
deploying and managing distributed systems, leveraging a 
shared persistent store accessed through a REST API. 
Kubernetes’ architecture is designed to support scalability 
and flexibility while enforcing consistent security policies. 
This is achieved through a centralized API server that 
ensures all state changes are validated, defaulted, and 
versioned, providing a robust foundation for enforcing 
policies and maintaining system invariants. Reconciliation 
controllers improve resiliency by continuously aligning the 
desired and observed states, a concept shared with Borg and 
Omega [1]. 

“Kubernetes Security: Securing Microservices and 
Applications in the Cloud” by O’Reilly Media is a 
comprehensive guide that explores various security 
challenges and best practices for securing Kubernetes 
clusters. It covers topics such as securing the Kubernetes 
API server, controlling access with RBAC, network security 
policies, and monitoring and auditing Kubernetes clusters. 
The book emphasizes the importance of integrating security 
throughout the development lifecycle and provides 
practical examples of implementing security measures [2]. 

Practical guides and best practices for Kubernetes 
security, such as those by AquaSec and Red Hat, provide 
comprehensive overviews of necessary security measures. 
These include network policies to control traffic between 
pods, secret management to securely manage sensitive 
information, and admission controllers to enforce security 
policies at the point of deployment, ensuring that only 
compliant configurations and container images are 
deployed [3–4]. 

The concept of Policy as Code, particularly with tools 
like Open Policy Agent (OPA), has gained traction for 
automating and enforcing security policies within 
Kubernetes. Works such as those by O'Reilly and industry 
blogs discuss implementing OPA for dynamic policy 
enforcement, highlighting its flexibility and power in 
managing complex security policies programmatically [5]. 

The article “XI Commandments of Kubernetes Security: 
A Systematization of Knowledge Related to Kubernetes 
Security Practices” provides a systematic approach to 
securing Kubernetes environments by identifying eleven 
critical security practices. These practices, derived from a 
comprehensive analysis of internet artifacts, include Role-
Based Access Control (RBAC), network policies, and regular 
security patching. The systematic approach offers a 
structured framework for practitioners to enhance the 
security posture of their Kubernetes deployments [6]. 

The research article “Comprehensive Approach for 
Developing an Enterprise Cloud Infrastructure” by Khoma 
et al. emphasizes the need for a multilevel security approach 
in cloud environments. The article outlines the limitations 
of existing “Security as Code” practices and proposes a 
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comprehensive framework to enhance cloud infrastructure 
security. Key aspects include effective access and privilege 
management, logical isolation of network resources, 
continuous monitoring, and automated response to 
anomalies. This comprehensive approach aligns well with 
the principles of “Security as Code” by integrating security 
into every layer of the cloud infrastructure, thus providing 
a robust foundation for secure cloud-native applications [7]. 

The paper “Cloud Container Technologies: A State-of-
the-Art Review” by Pahl et al. provides a systematic 
mapping study of container technologies and their 
orchestration, particularly in cloud environments. The 
study identifies and classifies 46 selected studies on 
container technologies, highlighting the key concerns and 
trends in the field. It reveals that container technologies 
positively impact both development and deployment 
aspects, supporting continuous development and 
deployment pipelines. However, the study also notes the 
lack of tool support to automate and facilitate container 
management and orchestration, particularly in clustered 
cloud architectures. The findings underscore the need for 
advanced orchestration support and the importance of 
container-based orchestration techniques in balancing 
optimized resource utilization and performance in the cloud 
[8]. 

The paper “Expanding DevSecOps Practices and 
Clarifying the Concepts within Kubernetes Ecosystem” by 
Alawneh and Abbadi discusses the integration of 
DevSecOps principles within Kubernetes environments. 
The authors highlight the importance of incorporating 
security by design within organizational processes, 
including development, deployment, and operational 
management. The paper outlines several real-life examples 
that illustrate the integration of security into each practice, 
emphasizing how DevSecOps practices can enhance 
application delivery, resilience, elasticity, availability, and 
reliability. The paper also addresses the challenges of 
establishing robust mechanisms for integrating security 
within existing DevOps practices and provides insights into 
the roles of DevSecOps practices in securing the Kubernetes 
ecosystem. This work aligns with the Security as Code 
approach by demonstrating how security can be seamlessly 
integrated into the Kubernetes lifecycle, thereby enhancing 
the overall security posture of cloud-native applications [9]. 

The literature review highlights the importance of 
adopting a security-as-code approach in modern cloud-
native environments. By automating and codifying security 
policies, organizations can achieve continuous security, 
maintain compliance, and build more resilient systems. The 
articles and studies reviewed provide valuable insights, 
practical examples, and best practices that can guide 
practitioners in enhancing the security of their Kubernetes 
deployments. These resources emphasize the critical role of 
policy automation, continuous monitoring, and integration 
of security into DevOps practices in building secure and 
compliant cloud-native applications. 

The research and resources analyzed above underscore 
the critical importance of integrating security into the 
development and operational processes of cloud-native 
applications. By adopting a Security as Code approach and 
leveraging tools like OPA Gatekeeper, FluxCD, and Trivy, 

organizations can achieve continuous security and 
compliance, ensuring that their Kubernetes environments 
remain secure and resilient. These resources provide 
valuable insights, practical examples, and best practices that 
can guide practitioners in enhancing the security of their 
cloud-native applications. 

The field of container orchestration and security has 
evolved significantly over the past decade, with numerous 
contributions from both academia and industry. This 
section reviews some of the seminal works and current 
research related to the “Security as Code” approach in 
Kubernetes environments. 

3. General overview of container 
cluster and Kubernetes 
orchestration 

Container clusters and orchestration are fundamental to 
modern application deployment and management. 
Containers encapsulate an application and its dependencies, 
providing a consistent environment across development, 
testing, and production. Orchestration is crucial for 
managing these containers at scale, ensuring efficient 
resource utilization, high availability, and automated 
workflows. Kubernetes has emerged as the leading 
orchestration platform, offering robust tools for deploying, 
scaling, and operating containerized applications across 
clusters of machines. 

Kubernetes clusters are highly versatile and can be 
utilized to manage and orchestrate a range of innovative 
technologies. In blockchain [10], Kubernetes supports 
platforms like Hyperledger Fabric and Ethereum, ensuring 
scalable and resilient node deployment. For machine 
learning and AI, tools like TensorFlow Serving and 
Kubeflow benefit from Kubernetes’ scalability and 
automated management. In big data, Kubernetes efficiently 
manages Apache Spark and Elasticsearch clusters. 
Kubernetes is also pivotal in IoT with edge computing 
solutions like KubeEdge and in CI/CD with Jenkins X and 
Argo CD. Additionally, it supports microservices and 
serverless architectures through Istio and Knative, and 
manages databases such as Cassandra and PostgreSQL, 
making it an essential tool for modern, cloud-native 
applications. 

Core Concepts 
Containers are lightweight, portable, and consistent 

units of software that include everything needed to run an 
application. Unlike traditional virtual machines, containers 
share the host system’s kernel but operate in isolated user 
spaces. A container cluster is a group of interconnected 
nodes that work together to provide a scalable and resilient 
environment for running containerized applications. This 
clustering allows for efficient resource sharing, load 
balancing, and fault tolerance, making it possible to manage 
thousands of containers seamlessly. 

Kubernetes Architecture (Fig. 1): 
Kubernetes architecture consists of a master node and 

multiple worker nodes. The master node controls the 
cluster, housing components such as the API server, etcd (a 
key-value store for cluster data), the scheduler, and the 
controller manager. The API server serves as the main 
interface for interaction with the cluster. Etcd stores all 
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cluster configuration data persistently. The scheduler 
assigns workloads to nodes based on resource availability, 
and the controller manager handles routine tasks like 
replication and state management. Worker nodes run the 

actual applications in containers, managed within pods, 
which are the smallest deployable units in Kubernetes [11–
12]. 

 
Figure 1: Kubernetes architecture 

Operational Features: 
Kubernetes provides several critical operational 

features to enhance the management and resilience of 
containerized applications. Self-healing capabilities 
automatically replace failed containers, ensuring 
continuous availability. Load balancing distributes network 
traffic evenly across all running containers, optimizing 
resource usage and performance. Automated rollouts and 
rollbacks allow for seamless updates and rollbacks of 
applications without downtime, ensuring that deployments 
are both reliable and consistent. These features collectively 
contribute to the robustness and efficiency of Kubernetes 
as an orchestration platform. 

Declarative Configuration: 
Kubernetes employs a declarative approach to 

configuration management, where the desired state of the 
system is defined in configuration files using YAML or JSON. 
Users specify what the end state should be, and Kubernetes 
takes responsibility for achieving and maintaining that state. 
This approach simplifies management, as Kubernetes 
continuously monitors the current state and makes necessary 
adjustments to align it with the desired state. It ensures 
consistency, and repeatability, and reduces the complexity of 
managing configurations manually. 

In summary, Kubernetes has revolutionized the 
orchestration of container clusters, providing robust tools 
for managing containerized applications at scale. By 
leveraging a sophisticated architecture, operational 
features, and a declarative configuration approach, 
Kubernetes ensures efficient, reliable, and consistent 
application deployment and management. [13] This 
overview sets the stage for understanding the complexities 
and benefits of Kubernetes orchestration. 

In the next chapter, we will dive into the challenges 
associated with implementing security in Kubernetes 
environments, exploring the issues that must be addressed 
to maintain robust security postures. 

4. Problem statement: Challenges in 
implementing security for 
containerized services in cloud 
environments 

 
Figure 2: Main problems of ensuring a needed level of 
security for containerized services 

Let’s dive deeper into each of them: 

1. Dynamic and Ephemeral Nature of Containers: 
Containers are inherently ephemeral and dynamic, 

often created and destroyed within seconds. This transient 
nature makes it difficult to maintain consistent security 
policies and apply traditional security measures. Ensuring 
that security policies are consistently applied to every 
instance of a container can be challenging, leading to 
potential security gaps. 
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2. Complexity of Kubernetes: 
Kubernetes, while powerful, introduces significant 

complexity with its numerous components (e.g., API server, 
etcd, scheduler, controllers). Securing each component and 
ensuring secure communication between them requires a 
deep understanding of the Kubernetes architecture. 
Misconfigurations and overlooked security settings can lead 
to vulnerabilities, making the cluster susceptible to attacks. 

3. Multi-Tenancy and Isolation: 
In a multi-tenant environment, ensuring proper 

isolation between different tenants’ workloads is crucial to 
prevent unauthorized access and data leakage. Achieving 
strong multi-tenancy security requires robust network 
policies, resource quotas, and effective namespace 
management, which can be complex to implement and 
manage. 

4. Integration with existing Security Tools: 
Integrating Kubernetes with existing security tools and 

processes can be difficult due to differences in how these 
tools are designed to operate. Organizations may struggle to 
leverage their existing security investments, leading to 
potential gaps or redundant efforts in securing Kubernetes 
environments [14]. 

5. Continuous Security and Compliance: 
Maintaining continuous security and compliance in a 

fast-paced, CI/CD-driven development environment is 
challenging. Automated pipelines need to incorporate 
security checks without hindering development velocity. 
Ensuring that security checks are seamlessly integrated into 
the CI/CD pipeline is essential to catch vulnerabilities early 
and maintain compliance without slowing down 
development [15]. 

6. Visibility and Monitoring (Telemetry): 
Achieving comprehensive visibility and monitoring of 

containerized applications across a distributed cloud 
environment is challenging. Traditional monitoring tools 
may not provide the granularity needed for container 
environments. Lack of visibility can hinder the detection 
and response to security incidents, making it difficult to 
enforce security policies effectively.  

A critical issue highlighting these challenges is the fact 
that only 0.79% of Kubernetes commits are security-related, 
suggesting that security-related defects are under-reported 
and could lead to large-scale security breaches. This statistic 
underscores the need for a more proactive and integrated 
approach to security within the Kubernetes ecosystem. By 
addressing these problems, the implementation of a robust 
“Security as Code” framework can ensure that Kubernetes 
environments are secure, compliant, and resilient, 
protecting them against the evolving threat landscape [16]. 

Container security is a major concern for companies, 
with four generalized use cases and solutions relying on 
software-based and hardware-based solutions. Containers 
emerged as a lightweight alternative to virtual machines 
that offer better microservice architecture support. The 
value of the container market is expected to reach $2.7 
billion in 2020 compared to $762 million in 2016. Although 
they are considered the standardized method for 

microservices deployment, playing an important role in 
cloud computing emerging fields such as service meshes, 
market surveys show that container security is the main 
concern and adoption barrier for many companies. The 
literature on container security identifies four generalized 
use cases that cover security requirements within the host-
container threat landscape:  

1. Protecting a container from applications inside it. 
2. Inter-container protection. 
3. Protecting the host from containers. 
4. Protecting containers from a malicious or semi-

honest host. 

The first three use cases utilize software-based solutions 
that mainly rely on Linux kernel features and Linux security 
modules, the last use case relies on hardware-based solutions 
such as trusted platform modules [17]. 

The swift adoption of Kubernetes as a container 
orchestration platform has revolutionized the deployment 
and management of cloud-native applications. However, 
this shift has also introduced significant security challenges 
that traditional security approaches are ill-equipped to 
address. The need for dynamic, automated, and scalable 
security measures has become crucial. 

The primary problem this research addresses is the 
implementation of a “Security as Code” (SaC) approach in 
Kubernetes-based cloud environments. 

5. Review security as a code concept 
The SaC paradigm aims to embed security policies and 
practices into the development and deployment pipelines, 
ensuring consistent and automated enforcement across all 
stages of the application lifecycle. The “Security as Code” 
approach in cloud environments involves embedding 
security measures directly into the software development 
and deployment process. This method enables the 
automation of various security tasks, enhancing consistency 
and effectiveness. It is especially crucial in cloud 
environments, where rapid and flexible responses to 
changes and emerging security challenges are required. 
“Security as Code” helps in the early identification of 
potential vulnerabilities and ensures compliance with 
regulatory and security standards [18]. Despite its potential, 
the practical implementation of SaC in Kubernetes 
environments faces several challenges, which we should 
take into account: 

1. Defining and Enforcing Security Policies: 
How can organizations define and enforce security 

policies in a dynamic and scalable manner that aligns with 
the ephemeral nature of containers? 

2. Automation and Integration: 
How can security policies be automated and integrated 

into existing CI/CD pipelines to ensure continuous security 
without hindering development velocity? 

3. Tooling and Best Practices: 
What are the best practices and tools (e.g., OPA 

Gatekeeper, FluxCD, Trivy) for implementing SaC in 
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Kubernetes environments, and how can they be effectively 
configured and managed? 

4. Cost-Effective Deployment: 
How can organizations set up a cost-effective 

environment for testing and deploying SaC solutions, 
particularly in cloud environments like AWS? 

This research aims to explore and address these 
challenges by providing a detailed implementation guide, 
evaluating the effectiveness of automated security policies, 
and offering practical insights into integrating security as 
code into Kubernetes-based workflows. By doing so, it 
contributes to the broader discourse on enhancing the 
security of cloud-native applications through innovative, 
code-centric approaches. 

6. Overview of solution based on 
security as a code in the context 
of containerized cloud-native 
application 

Open Policy Agent (OPA) is a general-purpose policy 
engine that enables unified, context-aware policy 
enforcement across the stack. OPA decouples policy 
decisions from the application logic, allowing 
administrators to manage policies centrally [19]. 

OPA uses a high-level declarative language called Rego 
to write policies. Rego allows users to define policies based 
on various data inputs, supporting complex logic and 
queries to determine policy compliance [20]. 

 
Figure 3: Interaction between Kubernetes components and admission control with the Open Policy Agent (OPA) 

OPA can be integrated with a variety of systems, including 
Kubernetes, CI/CD pipelines, microservices, and more (Fig. 
3). In Kubernetes, OPA can enforce policies on resources 
such as pods, deployments, and services. It can also 
integrate with CI/CD pipelines to ensure compliance during 
the build and deployment phases. 

Gatekeeper is an admission controller for Kubernetes 
that uses OPA policies to enforce security and operational 
rules within the cluster. It provides a framework for policy 
enforcement and auditing, ensuring that all changes comply 
with predefined policies before being accepted by the 
Kubernetes API server. 

 
Figure 4: Integration of the Open Policy Agent (OPA) with Kubernetes through Gatekeeper 
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Fig. 4 shows the integration of the Open Policy Agent (OPA) 
with Kubernetes through Gatekeeper, detailing how policies 
are enforced and managed. 

1. Policy Templates and Instances: 
– Policy Template Custom Resource Definitions 
(CRDs) define reusable policy templates. 
– Policy Instance CRDs apply specific policies 
using these templates. 

2. Kubernetes API Server: 
– Handles resources like Pods, Services, and 
Configurations. 
– Uses Admission Controllers and AuthZ 
Webhooks for authorization and admission control. 

3. OPA and Gatekeeper: 
– Gatekeeper replicates policies to OPA. 
– OPA evaluates AdmissionReview requests 
against these policies. 
– Results are audited and enforced through the 
API server, ensuring compliance with defined 
policies. 

Policies in Gatekeeper are written using the Rego 
language and configured as ConstraintTemplates. These 
templates define the policy logic and the constraints that 
must be met. Examples of common policies include 
restricting certain container images, enforcing namespace-
specific policies, and ensuring resource quotas. 

Gatekeeper offers auditing and monitoring capabilities, 
providing visibility into policy violations and historical data 
for compliance audits. It helps identify non-compliant 
resources and offers detailed reports on policy enforcement 
across the cluster. 

Adding FluxCD to the setup enables continuous 
deployment for the Kubernetes environment. 

7. Practical implementation 
The foundation of the architecture is an Amazon EC2 
instance. This instance serves as the host for Minikube, 
which is used to create a local Kubernetes cluster. Minikube 
is installed and configured on the EC2 instance. It creates a 
local Kubernetes cluster within the EC2 environment, 
enabling Kubernetes functionalities in a contained setup. 

The Kubernetes cluster orchestrated by Minikube 
consists of multiple nodes that manage containerized 
applications. These nodes handle the deployment, scaling, 
and operation of application containers. OPA (Open Policy 
Agent) Gatekeeper is deployed within the Kubernetes 
cluster. It acts as a policy enforcement tool, ensuring that all 
resources and configurations within the cluster comply 
with predefined policies. It intercepts admission requests 
and validates them against the policies before allowing them 
into the cluster. [21–22] Trivy is integrated into the 
Kubernetes environment to scan container images for 
vulnerabilities. It runs security scans on images either 
before they are deployed or continuously as part of the 
CI/CD pipeline. [23] Trivy helps in identifying and 
mitigating potential security risks in container images. 
FluxCD is installed in the Kubernetes cluster to manage 
Kubernetes manifests and automate deployments based on 
changes in a Git repository. FluxCD continuously monitors 
the repository for changes and applies them to the cluster, 
ensuring that the cluster state matches the declared state in 

the Git repository. This process is known as GitOps. The 
EC2 instance runs Minikube, which sets up the Kubernetes 
cluster. Within this cluster, OPA Gatekeeper, Trivy, and 
FluxCD are deployed as separate services. OPA Gatekeeper 
enforces security and compliance policies by validating 
resources during the admission process. Trivy scans the 
container images used within the cluster for vulnerabilities, 
ensuring that only secure images are deployed. FluxCD 
watches the Git repository for changes and updates the 
Kubernetes cluster configuration accordingly, automating 
the deployment process and maintaining the desired state. 

This guide provides general steps for integrating 
FluxCD into a Kubernetes environment set up with 
Minikube on an EC2 instance, along with OPA Gatekeeper 
and Trivy for security scanning of container images. The 
steps include: 

1. Set Up Minikube on EC2: Install and configure 
Minikube on an EC2 instance to create a local 
Kubernetes cluster. 

2. Install OPA Gatekeeper: Deploy OPA Gatekeeper 
to enforce policies within the Kubernetes cluster. 

3. Integrate Trivy: Set up Trivy to scan container 
images for vulnerabilities. 

4. Deploy FluxCD: Install FluxCD to manage 
Kubernetes manifests and automate deployments 
based on changes in a Git repository. 

Step 1: Launch an EC2 Instance 

1. Create an EC2 Instance: 
   - Open the AWS Management Console and navigate 

to the EC2 service. 
   - Click on “Launch Instance.” 
   - Choose an Amazon Machine Image (AMI), such as 

Amazon Linux 2 AMI (HVM). 
   - Select an instance type, such as t3.small, for cost-

effectiveness. 
   - Configure the instance details, including network 

settings. 
   - Add storage (default settings are typically sufficient). 
   - Configure security groups to allow SSH (port 22) 

access. 
   - Review and launch the instance. 

2. Connect to the EC2 Instance: 
   - Use an SSH client to connect to your EC2 instance. 
   ```sh 
   ssh -i /path/to/your-key-pair.pem ec2-

user@<EC2_Instance_Public_IP> 
   `` 

Step 2: Install Minikube and Kubernetes Tools 

1. Install Docker: 
   - Update the package database and install Docker. 
   ```sh 
   sudo yum update -y 
   sudo amazon-linux-extras install docker -y 
   sudo service docker start 
   sudo usermod -aG docker ec2-user 
   ``` 
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2. Install Minikube: 
   - Download and install Minikube. 
   ```sh 
   curl -Lo minikube 

https://storage.googleapis.com/minikube/releases/latest/mi
nikube-linux-amd64 

   chmod +x minikube 
   sudo mv minikube /usr/local/bin/ 
   ``` 

3. Install kubectl: 
   - Download and install kubectl. 
   ```sh 
   curl -LO “https://storage.googleapis.com/kubernetes-

release/release/$(curl -s 
https://storage.googleapis.com/kubernetes-
release/release/stable.txt)/bin/linux/amd64/kubectl” 

   chmod +x kubectl 
   sudo mv kubectl /usr/local/bin/ 
   ``` 

4. Start Minikube: 
   - Start Minikube with a specific driver (e.g., Docker). 
   ```sh 
   minikube start --driver=docker 
   ``` 

Step 3: Install OPA Gatekeeper 

1. Deploy Gatekeeper: 
   - Apply the Gatekeeper manifest to deploy OPA 

Gatekeeper in your Minikube cluster. 
   ```sh 
   kubectl apply -f 

https://raw.githubusercontent.com/open-policy-
agent/gatekeeper/master/deploy/gatekeeper.yaml 

   ``` 

2. Verify Installation: 
   - Check the Gatekeeper pods to ensure they are 

running. 
   ```sh 
   kubectl get pods -n gatekeeper-system 
   ``` 

Step 4: Install FluxCD 

1. Install Flux CLI: 
   - Download and install the Flux CLI. 
   ```sh 
   curl -s https://fluxcd.io/install.sh | sudo bash 
   ``` 

2. Bootstrap FluxCD with GitHub: 
   - Bootstrap FluxCD with your GitHub repository. 
   ```sh 
   flux bootstrap github \ 
     --owner=<your-github-username> \ 
     --repository=<your-repo-name> \ 
     --branch=main \ 
     --path=clusters/my-cluster \ 
     --personal 
   ``` 

Step 5: Configure Admission Control Policies 

1. Create a ConstraintTemplate: 
   - Define a custom constraint template YAML file. For 

example, `k8srequiredlabels.yaml`: 
   ```yaml 
   apiVersion: templates.gatekeeper.sh/v1beta1 
   kind: ConstraintTemplate 
   metadata: 
     name: k8srequiredlabels 
   spec: 
     crd: 
       spec: 
         names: 
           kind: K8sRequiredLabels 
           ... 
     targets: 
       - target: admission.k8s.gatekeeper.sh 
         rego: | 
           package k8srequiredlabels 
 
           violation[{“msg”: msg}] { 
             ... 
           } 
   ``` 
 

2. Apply the ConstraintTemplate: 
   ```sh 
   kubectl apply -f k8srequiredlabels.yaml 
   ``` 

3. Create a Constraint: 
   - Define a constraint to enforce the policy, e.g., 

`requiredlabels.yaml`: 
   ```yaml 
   apiVersion: constraints.gatekeeper.sh/v1beta1 
   kind: K8sRequiredLabels 
   metadata: 
     name: ns-must-have-gk 
   spec: 
     match: 
       kinds: 
         - apiGroups: [“”] 
           kinds: [“Namespace”] 
     parameters: 
       labels: [“gatekeeper”] 
   ``` 

4. Apply the Constraint: 
   ```sh 
   kubectl apply -f requiredlabels.yaml 
   ``` 

Step 6: Check Container Image Vulnerabilities 

1. Install Trivy: 
   - Trivy is a popular tool for scanning container images 

for vulnerabilities. Install it on your EC2 instance. 
   ```sh 
   wget 

https://github.com/aquasecurity/trivy/releases/download/v
0.28.0/trivy_0.28.0_Linux-64bit.deb 
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   sudo dpkg -i trivy_0.28.0_Linux-64bit.deb 
   ``` 

2. Scan an Image: 
   - Use Trivy to scan an image, e.g., `nginx:latest`. 
   ```sh 
   trivy image nginx:latest 
   ``` 

3. Automate Scanning in CI/CD: 
   - Integrate Trivy into your CI/CD pipeline to automate 

image scanning. For example, add a step in your GitHub 
Actions workflow: 

   ```yaml 
   name: Scan Docker image for vulnerabilities 
   on: [push] 
   jobs: 
     scan: 
       runs-on: ubuntu-latest 
       steps: 
         - name: Checkout code 
           uses: actions/checkout@v2 
         - name: Set up Trivy 
           run: | 
             sudo apt-get install wget apt-transport-https 

gnupg lsb-release -y 
             wget -qO - https://aquasecurity.github.io/trivy-

repo/deb/public.key | sudo apt-key add - 
             echo deb https://aquasecurity.github.io/trivy-

repo/deb $(lsb_release -sc) main | sudo tee -a 
/etc/apt/sources.list.d/trivy.list 

             sudo apt-get update 
             sudo apt-get install trivy -y 
         - name: Scan image 
           run: trivy image nginx:latest 
   ``` 

Through our study, we demonstrated the practical 
implementation of SaC using Open Policy Agent (OPA) and 
its Gatekeeper component, integrated with FluxCD for 
continuous deployment and Trivy for container image 
vulnerability scanning. The research provided a detailed, 
step-by-step guide for setting up a cost-effective testing 
environment on AWS using Minikube, making it accessible 
for practitioners and researchers alike [24–25]. 

Key findings 

1. Automated and Consistent Security Policies: 
By defining security policies as code, organizations can 

ensure consistent enforcement across all stages of the 
application lifecycle. OPA Gatekeeper enables fine-grained 
control over Kubernetes resources, preventing 
misconfigurations and unauthorized changes. 

2. Seamless Integration with CI/CD Pipelines: 
Integrating security checks into CI/CD pipelines using 

FluxCD ensures that security is continuously maintained 
without hindering development velocity. Automated 
deployments and policy enforcement reduce the risk of 
human error and accelerate the development process. 

3. Effective Vulnerability Management: 
Incorporating Trivy for container image vulnerability 

scanning provides an additional layer of security by 
identifying and mitigating potential vulnerabilities before 
they can be exploited. This proactive approach helps 
maintain a secure application environment. 

4. Cost-Effective Setup: 
Using Minikube on an EC2 instance as a testing 

environment offers a cost-effective alternative to managed 
Kubernetes services like EKS. This setup allows for 
comprehensive testing and validation of security policies in 
a controlled, affordable manner. 

8. Comparison of approaches for 
Kubernetes cluster security 

This table compares three approaches to security in 
Kubernetes environments: Security as Code with OPA 
Gatekeeper, Traditional Security Methods, and Admission 
Controllers. The comparison is made based on various 
criteria, highlighting the strengths and weaknesses of each 
approach based on the aforementioned research. 

9. Implications in practice 
While this research provides a robust framework for 
implementing SaC in Kubernetes environments, several 
areas warrant further investigation: 

 Service Mesh Integration: Exploring the 
integration of service mesh solutions like Istio to 
enhance security, observability, and traffic 
management within Kubernetes clusters [26–27]. 

The topic of my next research will be centered around 
the benefits of fine-grained access control by integrating 
Open Policy Agent (OPA) with Istio. This integration allows 
for a more detailed and context-aware approach to access 
control within a Service Mesh architecture. Unlike 
traditional access control mechanisms, fine-grained access 
control enables policies that consider multiple attributes, 
including request context, user roles, resource types, and 
more. This level of granularity is crucial for implementing 
robust security measures, especially in complex 
microservices environments [28]. 

The research underscores the importance of adopting a 
security-as-code approach in modern cloud-native 
environments. By embedding security directly into the 
development and deployment processes, organizations can 
achieve a higher level of security automation, reduce the 
attack surface, and improve overall resilience. The findings 
provide practical insights and best practices that can be 
leveraged by DevOps teams, security engineers, and IT 
professionals to enhance the security of their Kubernetes 
deployments. 
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Table 1 
SaC with OPA Gatekeeper vs. Traditional Security Methods vs. Admission Controllers in Kubernetes Clusters 

Criteria 
Security as Code with OPA 
Gatekeeper 

Traditional Security Methods Admission Controllers 

Policy Management Centralized and consistent policy 
management through code 

Often decentralized, policies may 
be managed manually or with 
scripts 

Centralized management, 
predefined rules 

Automation The high degree of automation in 
policy enforcement and compliance 
checks 

Varies, and often requires 
manual intervention or custom 
automation scripts 

Automated enforcement of 
predefined policies 

Integration with 
CI/CD 

Seamless integration with CI/CD 
pipelines for continuous security 

Integration may require 
additional effort and custom 
tooling 

Limited integration, primarily 
focused on runtime 
enforcement 

Flexibility Highly flexible, supports complex 
and fine-grained policies using Rego 
language 

Limited flexibility, often 
constrained by predefined rules 
and configurations 

Moderate flexibility, 
dependent on the admission 
controller's capabilities 

Scalability Scales well with Kubernetes clusters, 
suitable for large environments 

Scalability varies and may face 
challenges in large or dynamic 
environments 

Generally scales well, but can 
add latency 

Visibility and 
Monitoring 

Enhanced visibility and auditing 
capabilities for policy violations 

Basic visibility often lacks 
detailed auditing features 

Basic visibility, some support 
for logging violations 

Complexity Initial setup and policy definition can 
be complex 

Generally simpler setup but may 
lack advanced features 

Moderate complexity, setup 
and configuration can vary 

Vendor Lock-in Open-source and vendor-neutral Varies, some methods may 
involve vendor-specific solutions 

Generally open-source or 
native to Kubernetes 

Community and 
Support 

Strong community support, 
extensive documentation and 
tutorials 

Varies, proprietary solutions 
may have limited community 
support 

Strong community support 
for popular admission 
controllers 

Real-time 
Enforcement 

Enforces policies at admission 
control, ensuring compliance before 
deployment 

Enforcement may be reactive, 
relying on post-deployment 
scans and checks 

Real-time enforcement at 
resource creation and 
modification 

Resource Overhead Low to moderate, depending on the 
complexity of policies 

Varies, can be high depending on 
the security tools used 

Low to moderate, depending 
on the controller and policies 
enforced 

Adaptability Easily adaptable to new security 
requirements and evolving threats 

Adaptability depends on the 
flexibility of the chosen security 
method 

Moderate adaptability, 
predefined rules may need 
updates for new threats 

Table 2 
Pros and Cons of SaC with OPA Gatekeeper 

Pros Cons 

Centralized and consistent policy management through code Initial setup and policy definition can be complex 
The high degree of automation in policy enforcement and compliance 
checks 

Requires learning Rego language for policy writing 

Seamless integration with CI/CD pipelines for continuous security Potential performance impact on admission control with 
complex policies 

Highly flexible, supports complex and fine-grained policies using Rego 
language 

May require significant time investment for initial 
configuration and policy creation 

Enhanced visibility and auditing capabilities for policy violations Debugging policy violations can be challenging 
Strong community support, extensive documentation, and tutorials Need for ongoing maintenance to keep policies up to date 

 

10. Conclusion 
The introduction of cloud-native applications has marked a 
significant shift in the landscape of software development 
and deployment. These applications, designed to leverage 
the advantages of cloud computing, offer unparalleled 
scalability, flexibility, and resilience. At the heart of this 
transformation is Kubernetes, an open-source container 
orchestration platform that has become the de facto 
standard for deploying, scaling, and managing containerized 
applications. 

While Kubernetes simplifies many aspects of application 
management, it also introduces new security challenges. 
Traditional security practices often struggle to keep pace 

with the dynamic and ephemeral nature of cloud-native 
environments. This gap has led to the emergence of the 
“Security as Code” (SaC) paradigm, which aims to embed 
security directly into the development and operational 
processes through code. 

Security as Code involves defining security policies and 
controls as code, allowing them to be versioned, reviewed, 
and deployed alongside application code. This approach 
ensures that security measures are consistently applied and 
automatically enforced across all environments, from 
development to production. By integrating security into the 
DevOps pipeline, organizations can achieve continuous 
security and compliance, reducing the risk of vulnerabilities 
and misconfigurations. 
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This research focuses on implementing the SaC approach 
within Kubernetes clusters, leveraging Open Policy Agent 
(OPA) and its Gatekeeper component. OPA is a general-
purpose policy engine that enables the enforcement of fine-
grained, context-aware policies. Gatekeeper extends OPA’s 
capabilities by integrating with Kubernetes admission 
controllers, allowing policies to be enforced at the time of 
resource creation and modification. Additionally, this study 
incorporates FluxCD, a continuous delivery tool for 
Kubernetes, and Trivy, a comprehensive vulnerability 
scanner for container images. By combining these tools, we 
aim to create a robust framework for automating security 
policy enforcement and continuous monitoring of container 
vulnerabilities. 

The swift adoption of Kubernetes as a container 
orchestration platform has revolutionized the deployment 
and management of cloud-native applications. However, 
this shift has also introduced significant security challenges 
that traditional security approaches are ill-equipped to 
address. The need for dynamic, automated, and scalable 
security measures has become crucial. The primary problem 
this research addresses is the implementation of a “Security 
as Code” (SaC) approach in Kubernetes-based cloud 
environments.  

Through this research, we aim to explore and address 
these challenges by providing a detailed implementation 
guide, evaluating the effectiveness of automated security 
policies, and offering practical insights into integrating 
security as code into Kubernetes-based workflows. By doing 
so, we contribute to the broader discourse on enhancing the 
security of cloud-native applications through innovative 
code-centric approaches. 

The arrival of cloud-native applications and the 
widespread adoption of Kubernetes have ushered in a new 
era of software development and deployment. While these 
technologies offer significant benefits in terms of scalability, 
flexibility, and resilience, they also present unique security 
challenges that traditional security practices are often ill-
equipped to handle. This research aimed to explore and 
implement a “Security as Code” (SaC) approach within 
Kubernetes environments to address these challenges 
effectively. 

By leveraging OPA’s powerful policy language, Rego, 
organizations can define precise access control policies that 
are dynamically enforced across the Kubernetes ecosystem. 
This not only enhances security by ensuring that only 
authorized requests are permitted but also allows for the rapid 
adaptation of policies in response to emerging threats or 
changes in compliance requirements. Additionally, the 
separation of policy logic from application code simplifies the 
development process, allowing developers to focus on 
business functionality while security teams manage access 
policies independently. 

Furthermore, the ability to update policies without 
redeploying services ensures minimal disruption and 

continuous enforcement of up-to-date security measures. 
This capability is essential for maintaining a strong security 
posture in an ever-evolving threat landscape. Through this 
research, we have demonstrated the practical 
implementation and effectiveness of the Security as Code 
approach in Kubernetes environments, offering insights into 
best practices and potential challenges. 

By integrating OPA Gatekeeper, FluxCD, and Trivy, we 
have established a comprehensive framework for 
automating security policy enforcement and continuous 
monitoring of container vulnerabilities. This integrated 
approach not only addresses the inherent challenges of 
dynamic and ephemeral container environments but also 
ensures continuous security and compliance throughout the 
development lifecycle of cloud-native applications. Our 
findings contribute to the advancement of secure 
Kubernetes deployments and provide a robust foundation 
for future research and practical implementations in the 
field of cloud-native security. 
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