

58

Research on security as code approach for cloud-native
applications based on Kubernetes clusters⋆

Oleksandr Vakhula1,† and Ivan Opirskyy1,*,†

1 Lviv Polytechnic National University, 12 Stepan Bandera str., 79000 Lviv, Ukraine

Abstract
The fast evolution of cloud-native applications and the widespread adoption of Kubernetes clusters have
revolutionized how modern software is developed, deployed, and managed. However, this paradigm shift
has introduced new security challenges that require innovative solutions. This research explores the
“Security as Code” (SaC) approach, which integrates security policies and practices into the development
and deployment pipelines of cloud-native applications on Kubernetes clusters. The study begins by
outlining the theoretical foundations of the SaC approach, emphasizing the need for automated and
consistent security measures across all stages of the software development lifecycle. We then explore the
implementation of the policy engine and its gatekeeper component, as core tools for enforcing security
policies within Kubernetes environments. The research details the setup process on AWS using a cost-
effective configuration, augmented with GitOps tool for continuous deployment and container image
vulnerability scanner. Our methodology includes configuring OPA Gatekeeper for admission control,
defining and applying constraint templates, and integrating FluxCD to automate policy deployment and
enforcement. We provide a step-by-step guide for setting up the environment, ensuring that the approach
is practical and reproducible. The findings demonstrate that the SaC approach significantly improves
security management in cloud-native environments, offering a scalable and flexible framework for
integrating security into DevOps workflows. This research contributes to the broader understanding of
how security can be codified and automated, paving the way for more secure and resilient cloud-native
applications.

Keywords
security-as-code, cloud-native applications, Kubernetes clusters, open policy agent, gatekeeper, GitOps,
continuous deployment, container security, DevOps, policy-as-code, service mesh, shift-left security1

1. Introduction
The introduction of cloud-native applications has marked a
significant shift in the landscape of software development
and deployment. These applications, designed to leverage
the advantages of cloud computing, offer unparalleled
scalability, flexibility, and resilience. At the heart of this
transformation is Kubernetes, an open-source container
orchestration platform that has become the de facto
standard for deploying, scaling, and managing
containerized applications.

While Kubernetes simplifies many aspects of
application management, it also introduces new security
challenges. Traditional security practices often struggle to
keep pace with the dynamic and ephemeral nature of cloud-
native environments. This gap has led to the emergence of
the “Security as Code” (SaC) paradigm, which aims to
embed security directly into the development and
operational processes through code.

Security as Code involves defining security policies and
controls as code, allowing them to be versioned, reviewed,
and deployed alongside application code. This approach
ensures that security measures are consistently applied and

CSDP-2024: Cyber Security and Data Protection, June 30, 2024, Lviv,
Ukraine
∗ Corresponding author.
† These authors contributed equally.

 oleksandr.p.vakhula@lpnu.ua (O. Vakhula); ivan.r.opirskyi@lpnu.ua
(I. Opirskyy)

automatically enforced across all environments, from
development to production. By integrating security into the
DevOps pipeline, organizations can achieve continuous
security and compliance, reducing the risk of vulnerabilities
and misconfigurations.

This research focuses on implementing the SaC
approach within Kubernetes clusters, leveraging Open
Policy Agent (OPA) and its Gatekeeper component. OPA is
a general-purpose policy engine that enables the
enforcement of fine-grained, context-aware policies.
Gatekeeper extends OPA's capabilities by integrating with
Kubernetes admission controllers, allowing policies to be
enforced at the time of resource creation and modification.

Additionally, this study incorporates FluxCD, a
continuous delivery tool for Kubernetes, and Trivy, a
comprehensive vulnerability scanner for container images.
By combining these tools, we aim to create a robust
framework for automating security policy enforcement and
continuous monitoring of container vulnerabilities.

The goal of this research is to demonstrate the practical
implementation and effectiveness of the Security as Code
approach in Kubernetes environments. Specifically, we aim
to integrate and automate security policies, ensuring

 0009-0008-5367-3344 (O. Vakhula); 0000-0002-8461-8996 (I. Opirskyy)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

59

continuous security and compliance throughout the
development lifecycle of cloud-native applications.

 Define Security Policies: Create and codify
security policies that can be enforced within
Kubernetes clusters using OPA Gatekeeper.

 Automate Policy Enforcement: Integrate security
policies into the CI/CD pipeline to ensure
automated and consistent enforcement.

 Implement Continuous Deployment: Use FluxCD
to manage and automate the deployment of
Kubernetes manifests, ensuring the desired state of
the cluster is maintained.

 Vulnerability Scanning: Incorporate Trivy to scan
container images for vulnerabilities, adding a layer
of security.

 Cost-Effective Setup: Establish a cost-effective
environment for testing and deploying the SaC
solutions, particularly in cloud environments like
AWS.

The swift adoption of Kubernetes as a container
orchestration platform has revolutionized the deployment
and management of cloud-native applications. However,
this shift has also introduced significant security challenges
that traditional security approaches are ill-equipped to
address. The need for dynamic, automated, and scalable
security measures has become crucial.

The primary problem this research addresses is the
implementation of a “Security as Code” (SaC) approach in
Kubernetes-based cloud environments. Specifically, the
challenges include вynamic and ephemeral nature of
containers, containers are inherently ephemeral and
dynamic; сomplexity of Kubernetes, Kubernetes, while
powerful, introduces significant complexity with its
numerous components (e.g., API server, etcd, scheduler,
controllers); multi-tenancy and Isolation; integration with
existing security tools; continuous security and compliance;
visibility and monitoring.

Through this research, we aim to explore and address
these challenges by providing a detailed implementation
guide, evaluating the effectiveness of automated security
policies, and offering practical insights into integrating
security as code into Kubernetes-based workflows. By doing
so, we contribute to the broader discourse on enhancing the
security of cloud-native applications through innovative
code-centric approaches.

2. Related works
The field of container orchestration and security has
evolved significantly over the past decade, with numerous
contributions from both academia and industry. This
section reviews some of the seminal works and current
research related to the “Security as Code” approach in
Kubernetes environments.

The article “Borg, Omega, and Kubernetes” by Burns et
al. from Google Inc. provides an in-depth look at the
evolution of container management systems within Google,
starting with Borg, moving to Omega, and finally to
Kubernetes. This progression highlights the increasing
sophistication and scalability of container orchestration,

emphasizing key innovations such as Borg, the initial
system developed to manage both long-running services
and batch jobs. Borg introduced resource sharing between
different types of applications, significantly improving
resource utilization. Omega, built to improve the software
engineering of Borg, introduced a more consistent and
principled architecture, using a centralized Paxos-based
transaction-oriented store. Kubernetes was designed for a
broader developer audience, emphasizing ease of use for
deploying and managing distributed systems, leveraging a
shared persistent store accessed through a REST API.
Kubernetes’ architecture is designed to support scalability
and flexibility while enforcing consistent security policies.
This is achieved through a centralized API server that
ensures all state changes are validated, defaulted, and
versioned, providing a robust foundation for enforcing
policies and maintaining system invariants. Reconciliation
controllers improve resiliency by continuously aligning the
desired and observed states, a concept shared with Borg and
Omega [1].

“Kubernetes Security: Securing Microservices and
Applications in the Cloud” by O’Reilly Media is a
comprehensive guide that explores various security
challenges and best practices for securing Kubernetes
clusters. It covers topics such as securing the Kubernetes
API server, controlling access with RBAC, network security
policies, and monitoring and auditing Kubernetes clusters.
The book emphasizes the importance of integrating security
throughout the development lifecycle and provides
practical examples of implementing security measures [2].

Practical guides and best practices for Kubernetes
security, such as those by AquaSec and Red Hat, provide
comprehensive overviews of necessary security measures.
These include network policies to control traffic between
pods, secret management to securely manage sensitive
information, and admission controllers to enforce security
policies at the point of deployment, ensuring that only
compliant configurations and container images are
deployed [3–4].

The concept of Policy as Code, particularly with tools
like Open Policy Agent (OPA), has gained traction for
automating and enforcing security policies within
Kubernetes. Works such as those by O'Reilly and industry
blogs discuss implementing OPA for dynamic policy
enforcement, highlighting its flexibility and power in
managing complex security policies programmatically [5].

The article “XI Commandments of Kubernetes Security:
A Systematization of Knowledge Related to Kubernetes
Security Practices” provides a systematic approach to
securing Kubernetes environments by identifying eleven
critical security practices. These practices, derived from a
comprehensive analysis of internet artifacts, include Role-
Based Access Control (RBAC), network policies, and regular
security patching. The systematic approach offers a
structured framework for practitioners to enhance the
security posture of their Kubernetes deployments [6].

The research article “Comprehensive Approach for
Developing an Enterprise Cloud Infrastructure” by Khoma
et al. emphasizes the need for a multilevel security approach
in cloud environments. The article outlines the limitations
of existing “Security as Code” practices and proposes a

60

comprehensive framework to enhance cloud infrastructure
security. Key aspects include effective access and privilege
management, logical isolation of network resources,
continuous monitoring, and automated response to
anomalies. This comprehensive approach aligns well with
the principles of “Security as Code” by integrating security
into every layer of the cloud infrastructure, thus providing
a robust foundation for secure cloud-native applications [7].

The paper “Cloud Container Technologies: A State-of-
the-Art Review” by Pahl et al. provides a systematic
mapping study of container technologies and their
orchestration, particularly in cloud environments. The
study identifies and classifies 46 selected studies on
container technologies, highlighting the key concerns and
trends in the field. It reveals that container technologies
positively impact both development and deployment
aspects, supporting continuous development and
deployment pipelines. However, the study also notes the
lack of tool support to automate and facilitate container
management and orchestration, particularly in clustered
cloud architectures. The findings underscore the need for
advanced orchestration support and the importance of
container-based orchestration techniques in balancing
optimized resource utilization and performance in the cloud
[8].

The paper “Expanding DevSecOps Practices and
Clarifying the Concepts within Kubernetes Ecosystem” by
Alawneh and Abbadi discusses the integration of
DevSecOps principles within Kubernetes environments.
The authors highlight the importance of incorporating
security by design within organizational processes,
including development, deployment, and operational
management. The paper outlines several real-life examples
that illustrate the integration of security into each practice,
emphasizing how DevSecOps practices can enhance
application delivery, resilience, elasticity, availability, and
reliability. The paper also addresses the challenges of
establishing robust mechanisms for integrating security
within existing DevOps practices and provides insights into
the roles of DevSecOps practices in securing the Kubernetes
ecosystem. This work aligns with the Security as Code
approach by demonstrating how security can be seamlessly
integrated into the Kubernetes lifecycle, thereby enhancing
the overall security posture of cloud-native applications [9].

The literature review highlights the importance of
adopting a security-as-code approach in modern cloud-
native environments. By automating and codifying security
policies, organizations can achieve continuous security,
maintain compliance, and build more resilient systems. The
articles and studies reviewed provide valuable insights,
practical examples, and best practices that can guide
practitioners in enhancing the security of their Kubernetes
deployments. These resources emphasize the critical role of
policy automation, continuous monitoring, and integration
of security into DevOps practices in building secure and
compliant cloud-native applications.

The research and resources analyzed above underscore
the critical importance of integrating security into the
development and operational processes of cloud-native
applications. By adopting a Security as Code approach and
leveraging tools like OPA Gatekeeper, FluxCD, and Trivy,

organizations can achieve continuous security and
compliance, ensuring that their Kubernetes environments
remain secure and resilient. These resources provide
valuable insights, practical examples, and best practices that
can guide practitioners in enhancing the security of their
cloud-native applications.

The field of container orchestration and security has
evolved significantly over the past decade, with numerous
contributions from both academia and industry. This
section reviews some of the seminal works and current
research related to the “Security as Code” approach in
Kubernetes environments.

3. General overview of container
cluster and Kubernetes
orchestration

Container clusters and orchestration are fundamental to
modern application deployment and management.
Containers encapsulate an application and its dependencies,
providing a consistent environment across development,
testing, and production. Orchestration is crucial for
managing these containers at scale, ensuring efficient
resource utilization, high availability, and automated
workflows. Kubernetes has emerged as the leading
orchestration platform, offering robust tools for deploying,
scaling, and operating containerized applications across
clusters of machines.

Kubernetes clusters are highly versatile and can be
utilized to manage and orchestrate a range of innovative
technologies. In blockchain [10], Kubernetes supports
platforms like Hyperledger Fabric and Ethereum, ensuring
scalable and resilient node deployment. For machine
learning and AI, tools like TensorFlow Serving and
Kubeflow benefit from Kubernetes’ scalability and
automated management. In big data, Kubernetes efficiently
manages Apache Spark and Elasticsearch clusters.
Kubernetes is also pivotal in IoT with edge computing
solutions like KubeEdge and in CI/CD with Jenkins X and
Argo CD. Additionally, it supports microservices and
serverless architectures through Istio and Knative, and
manages databases such as Cassandra and PostgreSQL,
making it an essential tool for modern, cloud-native
applications.

Core Concepts
Containers are lightweight, portable, and consistent

units of software that include everything needed to run an
application. Unlike traditional virtual machines, containers
share the host system’s kernel but operate in isolated user
spaces. A container cluster is a group of interconnected
nodes that work together to provide a scalable and resilient
environment for running containerized applications. This
clustering allows for efficient resource sharing, load
balancing, and fault tolerance, making it possible to manage
thousands of containers seamlessly.

Kubernetes Architecture (Fig. 1):
Kubernetes architecture consists of a master node and

multiple worker nodes. The master node controls the
cluster, housing components such as the API server, etcd (a
key-value store for cluster data), the scheduler, and the
controller manager. The API server serves as the main
interface for interaction with the cluster. Etcd stores all

61

cluster configuration data persistently. The scheduler
assigns workloads to nodes based on resource availability,
and the controller manager handles routine tasks like
replication and state management. Worker nodes run the

actual applications in containers, managed within pods,
which are the smallest deployable units in Kubernetes [11–
12].

Figure 1: Kubernetes architecture

Operational Features:
Kubernetes provides several critical operational

features to enhance the management and resilience of
containerized applications. Self-healing capabilities
automatically replace failed containers, ensuring
continuous availability. Load balancing distributes network
traffic evenly across all running containers, optimizing
resource usage and performance. Automated rollouts and
rollbacks allow for seamless updates and rollbacks of
applications without downtime, ensuring that deployments
are both reliable and consistent. These features collectively
contribute to the robustness and efficiency of Kubernetes
as an orchestration platform.

Declarative Configuration:
Kubernetes employs a declarative approach to

configuration management, where the desired state of the
system is defined in configuration files using YAML or JSON.
Users specify what the end state should be, and Kubernetes
takes responsibility for achieving and maintaining that state.
This approach simplifies management, as Kubernetes
continuously monitors the current state and makes necessary
adjustments to align it with the desired state. It ensures
consistency, and repeatability, and reduces the complexity of
managing configurations manually.

In summary, Kubernetes has revolutionized the
orchestration of container clusters, providing robust tools
for managing containerized applications at scale. By
leveraging a sophisticated architecture, operational
features, and a declarative configuration approach,
Kubernetes ensures efficient, reliable, and consistent
application deployment and management. [13] This
overview sets the stage for understanding the complexities
and benefits of Kubernetes orchestration.

In the next chapter, we will dive into the challenges
associated with implementing security in Kubernetes
environments, exploring the issues that must be addressed
to maintain robust security postures.

4. Problem statement: Challenges in
implementing security for
containerized services in cloud
environments

Figure 2: Main problems of ensuring a needed level of
security for containerized services

Let’s dive deeper into each of them:

1. Dynamic and Ephemeral Nature of Containers:
Containers are inherently ephemeral and dynamic,

often created and destroyed within seconds. This transient
nature makes it difficult to maintain consistent security
policies and apply traditional security measures. Ensuring
that security policies are consistently applied to every
instance of a container can be challenging, leading to
potential security gaps.

62

2. Complexity of Kubernetes:
Kubernetes, while powerful, introduces significant

complexity with its numerous components (e.g., API server,
etcd, scheduler, controllers). Securing each component and
ensuring secure communication between them requires a
deep understanding of the Kubernetes architecture.
Misconfigurations and overlooked security settings can lead
to vulnerabilities, making the cluster susceptible to attacks.

3. Multi-Tenancy and Isolation:
In a multi-tenant environment, ensuring proper

isolation between different tenants’ workloads is crucial to
prevent unauthorized access and data leakage. Achieving
strong multi-tenancy security requires robust network
policies, resource quotas, and effective namespace
management, which can be complex to implement and
manage.

4. Integration with existing Security Tools:
Integrating Kubernetes with existing security tools and

processes can be difficult due to differences in how these
tools are designed to operate. Organizations may struggle to
leverage their existing security investments, leading to
potential gaps or redundant efforts in securing Kubernetes
environments [14].

5. Continuous Security and Compliance:
Maintaining continuous security and compliance in a

fast-paced, CI/CD-driven development environment is
challenging. Automated pipelines need to incorporate
security checks without hindering development velocity.
Ensuring that security checks are seamlessly integrated into
the CI/CD pipeline is essential to catch vulnerabilities early
and maintain compliance without slowing down
development [15].

6. Visibility and Monitoring (Telemetry):
Achieving comprehensive visibility and monitoring of

containerized applications across a distributed cloud
environment is challenging. Traditional monitoring tools
may not provide the granularity needed for container
environments. Lack of visibility can hinder the detection
and response to security incidents, making it difficult to
enforce security policies effectively.

A critical issue highlighting these challenges is the fact
that only 0.79% of Kubernetes commits are security-related,
suggesting that security-related defects are under-reported
and could lead to large-scale security breaches. This statistic
underscores the need for a more proactive and integrated
approach to security within the Kubernetes ecosystem. By
addressing these problems, the implementation of a robust
“Security as Code” framework can ensure that Kubernetes
environments are secure, compliant, and resilient,
protecting them against the evolving threat landscape [16].

Container security is a major concern for companies,
with four generalized use cases and solutions relying on
software-based and hardware-based solutions. Containers
emerged as a lightweight alternative to virtual machines
that offer better microservice architecture support. The
value of the container market is expected to reach $2.7
billion in 2020 compared to $762 million in 2016. Although
they are considered the standardized method for

microservices deployment, playing an important role in
cloud computing emerging fields such as service meshes,
market surveys show that container security is the main
concern and adoption barrier for many companies. The
literature on container security identifies four generalized
use cases that cover security requirements within the host-
container threat landscape:

1. Protecting a container from applications inside it.
2. Inter-container protection.
3. Protecting the host from containers.
4. Protecting containers from a malicious or semi-

honest host.

The first three use cases utilize software-based solutions
that mainly rely on Linux kernel features and Linux security
modules, the last use case relies on hardware-based solutions
such as trusted platform modules [17].

The swift adoption of Kubernetes as a container
orchestration platform has revolutionized the deployment
and management of cloud-native applications. However,
this shift has also introduced significant security challenges
that traditional security approaches are ill-equipped to
address. The need for dynamic, automated, and scalable
security measures has become crucial.

The primary problem this research addresses is the
implementation of a “Security as Code” (SaC) approach in
Kubernetes-based cloud environments.

5. Review security as a code concept
The SaC paradigm aims to embed security policies and
practices into the development and deployment pipelines,
ensuring consistent and automated enforcement across all
stages of the application lifecycle. The “Security as Code”
approach in cloud environments involves embedding
security measures directly into the software development
and deployment process. This method enables the
automation of various security tasks, enhancing consistency
and effectiveness. It is especially crucial in cloud
environments, where rapid and flexible responses to
changes and emerging security challenges are required.
“Security as Code” helps in the early identification of
potential vulnerabilities and ensures compliance with
regulatory and security standards [18]. Despite its potential,
the practical implementation of SaC in Kubernetes
environments faces several challenges, which we should
take into account:

1. Defining and Enforcing Security Policies:
How can organizations define and enforce security

policies in a dynamic and scalable manner that aligns with
the ephemeral nature of containers?

2. Automation and Integration:
How can security policies be automated and integrated

into existing CI/CD pipelines to ensure continuous security
without hindering development velocity?

3. Tooling and Best Practices:
What are the best practices and tools (e.g., OPA

Gatekeeper, FluxCD, Trivy) for implementing SaC in

63

Kubernetes environments, and how can they be effectively
configured and managed?

4. Cost-Effective Deployment:
How can organizations set up a cost-effective

environment for testing and deploying SaC solutions,
particularly in cloud environments like AWS?

This research aims to explore and address these
challenges by providing a detailed implementation guide,
evaluating the effectiveness of automated security policies,
and offering practical insights into integrating security as
code into Kubernetes-based workflows. By doing so, it
contributes to the broader discourse on enhancing the
security of cloud-native applications through innovative,
code-centric approaches.

6. Overview of solution based on
security as a code in the context
of containerized cloud-native
application

Open Policy Agent (OPA) is a general-purpose policy
engine that enables unified, context-aware policy
enforcement across the stack. OPA decouples policy
decisions from the application logic, allowing
administrators to manage policies centrally [19].

OPA uses a high-level declarative language called Rego
to write policies. Rego allows users to define policies based
on various data inputs, supporting complex logic and
queries to determine policy compliance [20].

Figure 3: Interaction between Kubernetes components and admission control with the Open Policy Agent (OPA)

OPA can be integrated with a variety of systems, including
Kubernetes, CI/CD pipelines, microservices, and more (Fig.
3). In Kubernetes, OPA can enforce policies on resources
such as pods, deployments, and services. It can also
integrate with CI/CD pipelines to ensure compliance during
the build and deployment phases.

Gatekeeper is an admission controller for Kubernetes
that uses OPA policies to enforce security and operational
rules within the cluster. It provides a framework for policy
enforcement and auditing, ensuring that all changes comply
with predefined policies before being accepted by the
Kubernetes API server.

Figure 4: Integration of the Open Policy Agent (OPA) with Kubernetes through Gatekeeper

64

Fig. 4 shows the integration of the Open Policy Agent (OPA)
with Kubernetes through Gatekeeper, detailing how policies
are enforced and managed.

1. Policy Templates and Instances:
– Policy Template Custom Resource Definitions
(CRDs) define reusable policy templates.
– Policy Instance CRDs apply specific policies
using these templates.

2. Kubernetes API Server:
– Handles resources like Pods, Services, and
Configurations.
– Uses Admission Controllers and AuthZ
Webhooks for authorization and admission control.

3. OPA and Gatekeeper:
– Gatekeeper replicates policies to OPA.
– OPA evaluates AdmissionReview requests
against these policies.
– Results are audited and enforced through the
API server, ensuring compliance with defined
policies.

Policies in Gatekeeper are written using the Rego
language and configured as ConstraintTemplates. These
templates define the policy logic and the constraints that
must be met. Examples of common policies include
restricting certain container images, enforcing namespace-
specific policies, and ensuring resource quotas.

Gatekeeper offers auditing and monitoring capabilities,
providing visibility into policy violations and historical data
for compliance audits. It helps identify non-compliant
resources and offers detailed reports on policy enforcement
across the cluster.

Adding FluxCD to the setup enables continuous
deployment for the Kubernetes environment.

7. Practical implementation
The foundation of the architecture is an Amazon EC2
instance. This instance serves as the host for Minikube,
which is used to create a local Kubernetes cluster. Minikube
is installed and configured on the EC2 instance. It creates a
local Kubernetes cluster within the EC2 environment,
enabling Kubernetes functionalities in a contained setup.

The Kubernetes cluster orchestrated by Minikube
consists of multiple nodes that manage containerized
applications. These nodes handle the deployment, scaling,
and operation of application containers. OPA (Open Policy
Agent) Gatekeeper is deployed within the Kubernetes
cluster. It acts as a policy enforcement tool, ensuring that all
resources and configurations within the cluster comply
with predefined policies. It intercepts admission requests
and validates them against the policies before allowing them
into the cluster. [21–22] Trivy is integrated into the
Kubernetes environment to scan container images for
vulnerabilities. It runs security scans on images either
before they are deployed or continuously as part of the
CI/CD pipeline. [23] Trivy helps in identifying and
mitigating potential security risks in container images.
FluxCD is installed in the Kubernetes cluster to manage
Kubernetes manifests and automate deployments based on
changes in a Git repository. FluxCD continuously monitors
the repository for changes and applies them to the cluster,
ensuring that the cluster state matches the declared state in

the Git repository. This process is known as GitOps. The
EC2 instance runs Minikube, which sets up the Kubernetes
cluster. Within this cluster, OPA Gatekeeper, Trivy, and
FluxCD are deployed as separate services. OPA Gatekeeper
enforces security and compliance policies by validating
resources during the admission process. Trivy scans the
container images used within the cluster for vulnerabilities,
ensuring that only secure images are deployed. FluxCD
watches the Git repository for changes and updates the
Kubernetes cluster configuration accordingly, automating
the deployment process and maintaining the desired state.

This guide provides general steps for integrating
FluxCD into a Kubernetes environment set up with
Minikube on an EC2 instance, along with OPA Gatekeeper
and Trivy for security scanning of container images. The
steps include:

1. Set Up Minikube on EC2: Install and configure
Minikube on an EC2 instance to create a local
Kubernetes cluster.

2. Install OPA Gatekeeper: Deploy OPA Gatekeeper
to enforce policies within the Kubernetes cluster.

3. Integrate Trivy: Set up Trivy to scan container
images for vulnerabilities.

4. Deploy FluxCD: Install FluxCD to manage
Kubernetes manifests and automate deployments
based on changes in a Git repository.

Step 1: Launch an EC2 Instance

1. Create an EC2 Instance:
 - Open the AWS Management Console and navigate

to the EC2 service.
 - Click on “Launch Instance.”
 - Choose an Amazon Machine Image (AMI), such as

Amazon Linux 2 AMI (HVM).
 - Select an instance type, such as t3.small, for cost-

effectiveness.
 - Configure the instance details, including network

settings.
 - Add storage (default settings are typically sufficient).
 - Configure security groups to allow SSH (port 22)

access.
 - Review and launch the instance.

2. Connect to the EC2 Instance:
 - Use an SSH client to connect to your EC2 instance.
   ```sh 
   ssh -i /path/to/your-key-pair.pem ec2-

user@<EC2_Instance_Public_IP> 
   `` 

Step 2: Install Minikube and Kubernetes Tools 

1. Install Docker: 
   - Update the package database and install Docker. 
   ```sh 
 sudo yum update -y
 sudo amazon-linux-extras install docker -y
 sudo service docker start
 sudo usermod -aG docker ec2-user
   ``` 



 

65 

2. Install Minikube: 
   - Download and install Minikube. 
   ```sh 
 curl -Lo minikube

https://storage.googleapis.com/minikube/releases/latest/mi
nikube-linux-amd64

 chmod +x minikube
 sudo mv minikube /usr/local/bin/
   ``` 

3. Install kubectl: 
   - Download and install kubectl. 
   ```sh 
 curl -LO “https://storage.googleapis.com/kubernetes-

release/release/$(curl -s
https://storage.googleapis.com/kubernetes-
release/release/stable.txt)/bin/linux/amd64/kubectl”

 chmod +x kubectl
 sudo mv kubectl /usr/local/bin/
   ``` 

4. Start Minikube: 
   - Start Minikube with a specific driver (e.g., Docker). 
   ```sh 
 minikube start --driver=docker
   ``` 

Step 3: Install OPA Gatekeeper 

1. Deploy Gatekeeper: 
   - Apply the Gatekeeper manifest to deploy OPA 

Gatekeeper in your Minikube cluster. 
   ```sh 
 kubectl apply -f

https://raw.githubusercontent.com/open-policy-
agent/gatekeeper/master/deploy/gatekeeper.yaml

   ``` 

2. Verify Installation: 
   - Check the Gatekeeper pods to ensure they are 

running. 
   ```sh 
 kubectl get pods -n gatekeeper-system
   ``` 

Step 4: Install FluxCD 

1. Install Flux CLI: 
   - Download and install the Flux CLI. 
   ```sh 
 curl -s https://fluxcd.io/install.sh | sudo bash
   ``` 

2. Bootstrap FluxCD with GitHub: 
   - Bootstrap FluxCD with your GitHub repository. 
   ```sh 
 flux bootstrap github \
 --owner=<your-github-username> \
 --repository=<your-repo-name> \
 --branch=main \
 --path=clusters/my-cluster \
 --personal
   ``` 

Step 5: Configure Admission Control Policies 

1. Create a ConstraintTemplate: 
   - Define a custom constraint template YAML file. For 

example, `k8srequiredlabels.yaml`: 
   ```yaml 
 apiVersion: templates.gatekeeper.sh/v1beta1
 kind: ConstraintTemplate
 metadata:
 name: k8srequiredlabels
 spec:
 crd:
 spec:
 names:
 kind: K8sRequiredLabels
 ...
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8srequiredlabels

 violation[{“msg”: msg}] {
 ...
 }
   ``` 
 

2. Apply the ConstraintTemplate: 
   ```sh 
 kubectl apply -f k8srequiredlabels.yaml
   ``` 

3. Create a Constraint: 
   - Define a constraint to enforce the policy, e.g., 

`requiredlabels.yaml`: 
   ```yaml 
 apiVersion: constraints.gatekeeper.sh/v1beta1
 kind: K8sRequiredLabels
 metadata:
 name: ns-must-have-gk
 spec:
 match:
 kinds:
 - apiGroups: [“”]
 kinds: [“Namespace”]
 parameters:
 labels: [“gatekeeper”]
   ``` 

4. Apply the Constraint: 
   ```sh 
 kubectl apply -f requiredlabels.yaml
   ``` 

Step 6: Check Container Image Vulnerabilities 

1. Install Trivy: 
   - Trivy is a popular tool for scanning container images 

for vulnerabilities. Install it on your EC2 instance. 
   ```sh 
 wget

https://github.com/aquasecurity/trivy/releases/download/v
0.28.0/trivy_0.28.0_Linux-64bit.deb

66

 sudo dpkg -i trivy_0.28.0_Linux-64bit.deb
   ``` 

2. Scan an Image: 
   - Use Trivy to scan an image, e.g., `nginx:latest`. 
   ```sh 
 trivy image nginx:latest
   ``` 

3. Automate Scanning in CI/CD: 
   - Integrate Trivy into your CI/CD pipeline to automate 

image scanning. For example, add a step in your GitHub 
Actions workflow: 

   ```yaml 
 name: Scan Docker image for vulnerabilities
 on: [push]
 jobs:
 scan:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout code
 uses: actions/checkout@v2
 - name: Set up Trivy
 run: |
 sudo apt-get install wget apt-transport-https

gnupg lsb-release -y
 wget -qO - https://aquasecurity.github.io/trivy-

repo/deb/public.key | sudo apt-key add -
 echo deb https://aquasecurity.github.io/trivy-

repo/deb $(lsb_release -sc) main | sudo tee -a
/etc/apt/sources.list.d/trivy.list

 sudo apt-get update
 sudo apt-get install trivy -y
 - name: Scan image
 run: trivy image nginx:latest
   ``` 

Through our study, we demonstrated the practical 
implementation of SaC using Open Policy Agent (OPA) and 
its Gatekeeper component, integrated with FluxCD for 
continuous deployment and Trivy for container image 
vulnerability scanning. The research provided a detailed, 
step-by-step guide for setting up a cost-effective testing 
environment on AWS using Minikube, making it accessible 
for practitioners and researchers alike [24–25]. 

Key findings 

1. Automated and Consistent Security Policies: 
By defining security policies as code, organizations can 

ensure consistent enforcement across all stages of the 
application lifecycle. OPA Gatekeeper enables fine-grained 
control over Kubernetes resources, preventing 
misconfigurations and unauthorized changes. 

2. Seamless Integration with CI/CD Pipelines: 
Integrating security checks into CI/CD pipelines using 

FluxCD ensures that security is continuously maintained 
without hindering development velocity. Automated 
deployments and policy enforcement reduce the risk of 
human error and accelerate the development process. 

3. Effective Vulnerability Management: 
Incorporating Trivy for container image vulnerability 

scanning provides an additional layer of security by 
identifying and mitigating potential vulnerabilities before 
they can be exploited. This proactive approach helps 
maintain a secure application environment. 

4. Cost-Effective Setup: 
Using Minikube on an EC2 instance as a testing 

environment offers a cost-effective alternative to managed 
Kubernetes services like EKS. This setup allows for 
comprehensive testing and validation of security policies in 
a controlled, affordable manner. 

8. Comparison of approaches for 
Kubernetes cluster security 

This table compares three approaches to security in 
Kubernetes environments: Security as Code with OPA 
Gatekeeper, Traditional Security Methods, and Admission 
Controllers. The comparison is made based on various 
criteria, highlighting the strengths and weaknesses of each 
approach based on the aforementioned research. 

9. Implications in practice 
While this research provides a robust framework for 
implementing SaC in Kubernetes environments, several 
areas warrant further investigation: 

 Service Mesh Integration: Exploring the 
integration of service mesh solutions like Istio to 
enhance security, observability, and traffic 
management within Kubernetes clusters [26–27]. 

The topic of my next research will be centered around 
the benefits of fine-grained access control by integrating 
Open Policy Agent (OPA) with Istio. This integration allows 
for a more detailed and context-aware approach to access 
control within a Service Mesh architecture. Unlike 
traditional access control mechanisms, fine-grained access 
control enables policies that consider multiple attributes, 
including request context, user roles, resource types, and 
more. This level of granularity is crucial for implementing 
robust security measures, especially in complex 
microservices environments [28]. 

The research underscores the importance of adopting a 
security-as-code approach in modern cloud-native 
environments. By embedding security directly into the 
development and deployment processes, organizations can 
achieve a higher level of security automation, reduce the 
attack surface, and improve overall resilience. The findings 
provide practical insights and best practices that can be 
leveraged by DevOps teams, security engineers, and IT 
professionals to enhance the security of their Kubernetes 
deployments. 

 



 

67 

Table 1 
SaC with OPA Gatekeeper vs. Traditional Security Methods vs. Admission Controllers in Kubernetes Clusters 

Criteria 
Security as Code with OPA 
Gatekeeper 

Traditional Security Methods Admission Controllers 

Policy Management Centralized and consistent policy 
management through code 

Often decentralized, policies may 
be managed manually or with 
scripts 

Centralized management, 
predefined rules 

Automation The high degree of automation in 
policy enforcement and compliance 
checks 

Varies, and often requires 
manual intervention or custom 
automation scripts 

Automated enforcement of 
predefined policies 

Integration with 
CI/CD 

Seamless integration with CI/CD 
pipelines for continuous security 

Integration may require 
additional effort and custom 
tooling 

Limited integration, primarily 
focused on runtime 
enforcement 

Flexibility Highly flexible, supports complex 
and fine-grained policies using Rego 
language 

Limited flexibility, often 
constrained by predefined rules 
and configurations 

Moderate flexibility, 
dependent on the admission 
controller's capabilities 

Scalability Scales well with Kubernetes clusters, 
suitable for large environments 

Scalability varies and may face 
challenges in large or dynamic 
environments 

Generally scales well, but can 
add latency 

Visibility and 
Monitoring 

Enhanced visibility and auditing 
capabilities for policy violations 

Basic visibility often lacks 
detailed auditing features 

Basic visibility, some support 
for logging violations 

Complexity Initial setup and policy definition can 
be complex 

Generally simpler setup but may 
lack advanced features 

Moderate complexity, setup 
and configuration can vary 

Vendor Lock-in Open-source and vendor-neutral Varies, some methods may 
involve vendor-specific solutions 

Generally open-source or 
native to Kubernetes 

Community and 
Support 

Strong community support, 
extensive documentation and 
tutorials 

Varies, proprietary solutions 
may have limited community 
support 

Strong community support 
for popular admission 
controllers 

Real-time 
Enforcement 

Enforces policies at admission 
control, ensuring compliance before 
deployment 

Enforcement may be reactive, 
relying on post-deployment 
scans and checks 

Real-time enforcement at 
resource creation and 
modification 

Resource Overhead Low to moderate, depending on the 
complexity of policies 

Varies, can be high depending on 
the security tools used 

Low to moderate, depending 
on the controller and policies 
enforced 

Adaptability Easily adaptable to new security 
requirements and evolving threats 

Adaptability depends on the 
flexibility of the chosen security 
method 

Moderate adaptability, 
predefined rules may need 
updates for new threats 

Table 2 
Pros and Cons of SaC with OPA Gatekeeper 

Pros Cons 

Centralized and consistent policy management through code Initial setup and policy definition can be complex 
The high degree of automation in policy enforcement and compliance 
checks 

Requires learning Rego language for policy writing 

Seamless integration with CI/CD pipelines for continuous security Potential performance impact on admission control with 
complex policies 

Highly flexible, supports complex and fine-grained policies using Rego 
language 

May require significant time investment for initial 
configuration and policy creation 

Enhanced visibility and auditing capabilities for policy violations Debugging policy violations can be challenging 
Strong community support, extensive documentation, and tutorials Need for ongoing maintenance to keep policies up to date 

 

10. Conclusion 
The introduction of cloud-native applications has marked a 
significant shift in the landscape of software development 
and deployment. These applications, designed to leverage 
the advantages of cloud computing, offer unparalleled 
scalability, flexibility, and resilience. At the heart of this 
transformation is Kubernetes, an open-source container 
orchestration platform that has become the de facto 
standard for deploying, scaling, and managing containerized 
applications. 

While Kubernetes simplifies many aspects of application 
management, it also introduces new security challenges. 
Traditional security practices often struggle to keep pace 

with the dynamic and ephemeral nature of cloud-native 
environments. This gap has led to the emergence of the 
“Security as Code” (SaC) paradigm, which aims to embed 
security directly into the development and operational 
processes through code. 

Security as Code involves defining security policies and 
controls as code, allowing them to be versioned, reviewed, 
and deployed alongside application code. This approach 
ensures that security measures are consistently applied and 
automatically enforced across all environments, from 
development to production. By integrating security into the 
DevOps pipeline, organizations can achieve continuous 
security and compliance, reducing the risk of vulnerabilities 
and misconfigurations. 



 

68 

This research focuses on implementing the SaC approach 
within Kubernetes clusters, leveraging Open Policy Agent 
(OPA) and its Gatekeeper component. OPA is a general-
purpose policy engine that enables the enforcement of fine-
grained, context-aware policies. Gatekeeper extends OPA’s 
capabilities by integrating with Kubernetes admission 
controllers, allowing policies to be enforced at the time of 
resource creation and modification. Additionally, this study 
incorporates FluxCD, a continuous delivery tool for 
Kubernetes, and Trivy, a comprehensive vulnerability 
scanner for container images. By combining these tools, we 
aim to create a robust framework for automating security 
policy enforcement and continuous monitoring of container 
vulnerabilities. 

The swift adoption of Kubernetes as a container 
orchestration platform has revolutionized the deployment 
and management of cloud-native applications. However, 
this shift has also introduced significant security challenges 
that traditional security approaches are ill-equipped to 
address. The need for dynamic, automated, and scalable 
security measures has become crucial. The primary problem 
this research addresses is the implementation of a “Security 
as Code” (SaC) approach in Kubernetes-based cloud 
environments.  

Through this research, we aim to explore and address 
these challenges by providing a detailed implementation 
guide, evaluating the effectiveness of automated security 
policies, and offering practical insights into integrating 
security as code into Kubernetes-based workflows. By doing 
so, we contribute to the broader discourse on enhancing the 
security of cloud-native applications through innovative 
code-centric approaches. 

The arrival of cloud-native applications and the 
widespread adoption of Kubernetes have ushered in a new 
era of software development and deployment. While these 
technologies offer significant benefits in terms of scalability, 
flexibility, and resilience, they also present unique security 
challenges that traditional security practices are often ill-
equipped to handle. This research aimed to explore and 
implement a “Security as Code” (SaC) approach within 
Kubernetes environments to address these challenges 
effectively. 

By leveraging OPA’s powerful policy language, Rego, 
organizations can define precise access control policies that 
are dynamically enforced across the Kubernetes ecosystem. 
This not only enhances security by ensuring that only 
authorized requests are permitted but also allows for the rapid 
adaptation of policies in response to emerging threats or 
changes in compliance requirements. Additionally, the 
separation of policy logic from application code simplifies the 
development process, allowing developers to focus on 
business functionality while security teams manage access 
policies independently. 

Furthermore, the ability to update policies without 
redeploying services ensures minimal disruption and 

continuous enforcement of up-to-date security measures. 
This capability is essential for maintaining a strong security 
posture in an ever-evolving threat landscape. Through this 
research, we have demonstrated the practical 
implementation and effectiveness of the Security as Code 
approach in Kubernetes environments, offering insights into 
best practices and potential challenges. 

By integrating OPA Gatekeeper, FluxCD, and Trivy, we 
have established a comprehensive framework for 
automating security policy enforcement and continuous 
monitoring of container vulnerabilities. This integrated 
approach not only addresses the inherent challenges of 
dynamic and ephemeral container environments but also 
ensures continuous security and compliance throughout the 
development lifecycle of cloud-native applications. Our 
findings contribute to the advancement of secure 
Kubernetes deployments and provide a robust foundation 
for future research and practical implementations in the 
field of cloud-native security. 

References 
[1] B. Burns, et al., Borg, Omega, and Kubernetes, Queue 

14(1) (2016) 70–93. doi: 10.1145/2898442.2898444. 
[2] B. Creane, A. Gupta, Kubernetes Security and 

Observability, O'Reilly Media (2016). 
[3] R. Osnat, Kubernetes Security Basics and 10 Essential 

Best Practices (2020). URL: 
https://www.aquasec.com/cloud-native-
academy/kubernetes-in-production/kubernetes-
security-best-practices-10-steps-to-securing-k8s/ 

[4] M. Isberner, 11 Kubernetes Admission Controller Best 
Practices for Security (2019). URL: 
https://www.redhat.com/en/blog/11-kubernetes-
admission-controller-best-practices-for-security 

[5] J. Ray, Policy as Code (2018). URL: 
https://www.oreilly.com/library/view/policy-as-
code/9781098139179/ch04. html 

[6] Md S. Shamim, F. A. Bhuiyan, A. Rahman, XI 
Commandments of Kubernetes Security: A 
Systematization of Knowledge Related to Kubernetes 
Security Practices, IEEE Secure Development (SecDev) 
(2020) 58–64. doi: 10.1109/SecDev45635.2020.00025. 

[7] V. Khoma, et al., Comprehensive Approach for 
Developing an Enterprise Cloud Infrastructure, in: 
Cybersecurity Providing in Information and 
Telecommunication Systems, vol. 3654, (2024) 201–
215. 

[8] C. Pahl, et al., Cloud Container Technologies: A State-
of-the-Art Review, IEEE Transactions on Cloud 
Computing 7 (2024) 677–692. doi: /10.1109/TCC.201 
7.2702586. 

[9] M. Alawneh, I. Abbadi, Expanding DevSecOps 
Practices and Clarifying the Concepts within 
Kubernetes Ecosystem, Ninth International 



 

69 

Conference on Software Defined Systems (SDS) (2022) 
1–7. doi: 10.1109/SDS57574.2022.1006 2874. 

[10] S. Vasylyshyn, et al., A Model of Decoy System Based 
on Dynamic Attributes for Cybercrime Investigation, 
Eastern-European J. Enterp. Technol. 1 (9(121)) (2023) 
6–20. doi: 10.15587/1729-4061.2023.273363.  

[11] The Linux Foundation, Official Kubernetes 
documentation (2024). URL: 
https://kubernetes.io/docs/concepts/overview/compo
nents/#control-plane-components 

[12] Veritis, An Advanced Approach for Deploying 
Containerized Applications in a Cloud Environment 
(2024). URL: 
https://www.veritis.com/solutions/devops/kubernetes/ 

[13] The Linux Foundation, Official Kubernetes 
documentation (2024). URL: 
https://kubernetes.io/docs/concepts/security/ 

[14] The Linux Foundation, Cloud Native Security and 
Kubernetes (2024). URL: 
https://kubernetes.io/docs/concepts/security/cloud-
native-security/ 

[15] Y. Martseniuk, Automated Conformity Verification 
Concept for Cloud Security, in: Cybersecurity 
Providing in Information and Telecommunication 
Systems, vol. 3654 (2024) 25–37.  

[16] D. Bose, A. Rahman, M. Shamim, ‘Under-reported’ 
Security Defects in Kubernetes Manifests, IEEE/ACM 
2nd International Workshop on Engineering and 
Cybersecurity of Critical Systems (EnCyCriS) (2021) 
9–12. doi: /10.1109/EnCyCriS52570.2021.00009. 

[17] Sultan, S., Ahmad, I., & Dimitriou, T. “Container 
Security: Issues, Challenges, and the Road Ahead”, 
(2019), IEEE Access, 7, 52976-52996. doi: 
10.1109/ACCESS.2019.2911732. 

[18] O. Vakhula, et al., Security-As-Code Concept for 
Fulfilling ISO/IEC 27001:2022 Requirements, in: 
Cybersecurity Providing in Information and 
Telecommunication Systems, vol. 3654 (2024) 59–72. 

[19] O. Vakhula, I. Opirskyy, O. Mykhaylova, Research on 
Security Challenges in Cloud Environments and 
Solutions based on the “Security-As-Code” Approach, 
in: Cybersecurity Providing in Information and 
Telecommunication Systems, vol. 3550 (2023) 55–69. 

[20] Guest Expert on GitGuardian blog, What is Policy-as-
Code? An Introduction to Open Policy Agent (2020). 
URL: https://blog.gitguardian.com/what-is-policy-as-
code-an-introduction-to-open-policy-agent/ 

[21] OPA Official documentation (2024). URL: 
https://www.openpolicyagent.org/docs/latest/kubern
etes-tutorial/ 

[22] S. Ragonessi, Secure your Kubernetes environment 
with OPA and Gatekeeper (2023). URL: 
https://www.cncf.io/blog/ 2023/10/09/secure-your-
kubernetes-environment-with-opa-and-gatekeeper/ 

[23] G. Olaoye, A. Luz, DevSecOps and Integrating Security 
into the Cloud Development Lifecycle (2024). URL: 
https://www.researchgate.net/publication/378233643_
DevSecOps_and_integrating_security_into_the_cloud
_development_lifecycle 

[24] G. Sayfan, Policy as Code and the Open Policy Agent 
(2022). URL: 
https://blogs.cisco.com/developer/policyascode01 

[25] SecureFlag blog, Securing Kubernetes: Using 
Gatekeeper to Enforce Effective Security Policies 
(2024). URL: 
https://blog.secureflag.com/2024/03/13/security-
policy-enforcement-in-kubernetes/ 

[26] Taikun, A Beginner’s Guide to Istio: A Service Mesh 
for Kubernetes (2024). URL: 
https://taikun.cloud/beginner-guide-to-istio-service-
mesh-for-kubernetes/ 

[27] AquaSecurity, Service Mesh: Architec-ture, Concepts, 
and Top 4 Frameworks (2021). URL: 
https://www.aquasec.com/cloud-native-
academy/container-security/service-mesh/ 

[28] R. Chandramouli, Z. Butcher, A Zero Trust 
Architecture Model for Access Control in Cloud-
Native Applications in Multi-Location Environments, 
NIST (2023). doi: 10.6028/NIST.SP.800-207A. 


