

114

The practice of block symmetric encryption for a secure
Internet connection⋆

Tetiana Korobeinikova1,*,†, Ihor Zhuravel1,†, Lesya Mychuda1,† and Axel Sikora2,†

1 Lviv Polytechnic National University, 12 Stepana Bandery str., 79000 Lviv, Ukraine
2 University of Applied Sciences Offenburg, 24 Badstrasse, 77652 Offenburg, Germany

Abstract
The paper discusses the process of block parallelization in the Advanced Encryption Standard (AES) cipher,
focusing on the Counter (CTR) mode. It details the benefits of this process, including increased data
processing performance and effective resource utilization; emphasizes the independent encryption of each
data block in CTR mode, which allows for effective parallelization, especially when handling large data
volumes. This work outlines the steps involved in the AES operation scheme in CTR mode, from splitting
data into blocks to generating the final ciphertext. It further explains the concept of a unique “counter” or
“initialization vector” for each block, which, combined with the key, generates a unique encryption key,
enabling parallel processing. The idea implementation delves into the programming of the block
parallelization algorithm using services on the Java Spring Boot platform. It describes the roles of the
purposed Client Service and Server Service in encrypting and transmitting messages and files and
decrypting received messages. This work presents an experiment that tests the hypothesis that blocks
parallelization in AES cipher using CTR mode increases performance during the processing of large data
volumes. The experiment involves different data volumes and compares the processing speeds of the AES
algorithm with and without parallelization. The results confirm the hypothesis, showing that block
parallelization in AES for large data volumes can double the data processing speed compared to the non-
parallel approach. The paper concludes that block parallelization might be effective not only for the AES
algorithm but also for any block symmetric algorithm. It also suggests that parallelization allows for more
efficient use of multi-core systems and reduces the execution time to complete the encryption operation.

Keywords
block parallelization, AES cipher, CTR mode, data processing performance, encryption optimization1

1. Introduction
In a world of increasing digital connectivity and Internet
interaction, the issue of connection security is becoming one
of the most crucial problems [1–9]. Ensuring the
confidentiality, integrity, and availability of information is
becoming a priority [9–11]. This work is focused on
reviewing and improving block symmetric encryption
methods aimed at solving the problems of connection
security on the Internet. New technologies and encryption
algorithms are important tools for maintaining data
confidentiality and ensuring resilience to modern cyber
threats [12–17].

Thus, there is a need to analyze, improve, and expand the
methodological base of methods and tools that use block
symmetric ciphers.

The goal is to improve the methods of block symmetric
encryption through the process of block parallelization to
solve the problem of secure connections on the Internet.

The object is the processes associated with the use of
block encryption algorithms, in the context of their
application on the Internet and the HTTPS protocol.

CSDP-2024: Cyber Security and Data Protection, June 30, 2024, Lviv,
Ukraine
∗ Corresponding author.
† These authors contributed equally.

 tetiana.i.korobeinikova@lpnu.ua (T. Korobeinikova);
ihor.m.zhuravel@lpnu.ua (I. Zhuravel); lesia.z.mychuda@lpnu.ua
(L. Mychuda); axel.sikora@hs-offenburg.de (A. Sikora)

The subject is methods and means of protecting connections
on the Internet, including the analysis of encryption
efficiency.

2. Related works
It is known that the increasing number of digital connections
during Internet interaction becomes the issue of connection
security. Cristina Del-Real et al. [4] say that the design of
software systems plays a crucial role in mitigating
cybersecurity incidents; Sood et al. [5] and Jang et al. [9] are
paying attention to DoS attacks through HTTP and IP.

Gentile et al. In [1] showed the algorithms to ensure
suitable data transmission and encryption ratios and used
Transport Layer Security (TLS) tunnels for local sensor data
and secure socket layer tunnels to transmit TLS-encrypted
data to a cloud-based central broker. Also, Kampourakis et
al. in [3] oसer a framework that can accurately detect all
anomalous enterprise network activities.

Nowadays connections to the Internet are connections
to the Cloud. Cloud storage is popular among syudy and
businesses because of cost reduction, performance

 0000-0003-2487-8742 (T. Korobeinikova); 0000-0003-1114-0124
(I. Zhuravel); 0000-0001-8266-1782 (L. Mychuda); 0000-0003-0878-2919
(A. Sikora)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

115

improvement, productivity enhancement, and security.
However, Alqahtani et al. in [10] are focused on security
risks since data is stored with third-party providers, and
internet access can limit visibility and control. Compared to
traditional on-premise computing, data security and
protection are critical concerns in cloud computing.
Ensuring data security in the cloud involves various
methods, with cryptography being the most crucial
(Sasikumar and Nagarajan in [11]).

So, cryptography provides several security features,
including authentication, conहdentiality, integrity, and
availability.

Today, it is important to analyze, improve, and expand
the methodological base of methods and tools that use block
symmetric ciphers.

Boura et al. in [14] offer tools and algorithms to search
for related-key distinguishers and attacks of a differential
nature against the AES. Yevseiev et al. [15] offer the
Niederreiter-modified crypto-code structure with additional
initialization vectors that require an increase in the speed of
cryptographic transformation of the system as a whole.
While Opirskyy et al. [16] are working on standardizing
post-quantum cryptography.

So, there is a critical need to work on improving the
methods of block symmetric encryption through the process
of block parallelization to solve the problem of secure
connections on the Internet.

3. Initial information that
establishes research

Stream encryption algorithms. A stream cipher is a type
of symmetric encryption that encrypts each digit of the
plaintext separately using a key stream. Stream ciphers are
faster than block ciphers and require less hardware but can
be vulnerable to attacks [17–19].

There are two types of stream ciphers: synchronous and
self-synchronizing. Synchronous stream ciphers generate a
sequence of pseudorandom digits independently of the
plaintext and ciphertext messages. Self-synchronizing stream
ciphers use the last N digits of the ciphertext to generate a key
stream [20].

Block encryption algorithms. A block cipher is an
algorithm that encrypts fixed-length data blocks to protect
information. Electronic Code Book mode encrypts blocks
independently, but patterns can be detected. To increase
security, modes that introduce randomization through an
Initialization Vector (IV) are used. Various modes of block
cipher operation have been developed and defined in national
and international standards [21–22]. The basic idea is to
introduce randomization of the plaintext data using an IV to
achieve probabilistic encryption.

The rationale for using block symmetric encryption
for secure Internet connections. Encryption algorithms
are known for their high computational requirements,
especially for wireless devices with limited resources [23].

Encryption guarantees data confidentiality and
protection against interception and plays an important role in
authentication, data integrity, and access control.

Encrypting even a small amount of data, such as 13.6
kilobytes, using a 32-bit Blowfish key can consume about 75%

of resources. Modern security standards recommend using
keys of at least 80 bits.

Encryption and data transmission are important in
wireless networks. There is potential for encrypting test
packets with lightweight encryption algorithms if the
security of the device is not compromised. There are
numerous encryption algorithms for wired networks, divided
into two categories: symmetric key encryption and
asymmetric key encryption. Symmetric key encryption
requires the distribution of a key between the parties before
data is transmitted.

Asymmetric key encryption solves the problem of key
distribution but is computationally intensive. In wireless
devices, symmetric key encryption, such as RC4, is
predominant, as it is fast and efficient. However, the
discovered vulnerabilities in RC4 led to the introduction of a
new security standard for WLANs—IEEE 802.11i, based on
AES. AES is known for its speed, flexibility, and robust
security features.

Block ciphers, such as AES, are used in WLANs to encrypt
data, ensuring its confidentiality. Security protocols such as
WPA2 and WPA3 use AES-CCMP to ensure data integrity.
Block ciphers are also used to authenticate devices and users,
and to manage encryption keys. They are the core
components of WLAN security.

Block ciphers are used in WLANs to ensure data
confidentiality and integrity, as well as device and user
authentication. They are standardized, efficient, and scalable,
making them a reliable choice for securing wireless
communications. Overall, they enhance WLAN security by
meeting security standards and requirements.

Rationale for choosing the AES to solve the problem
of secure Internet connection. DES, while a popular
encryption standard in the past, has fallen out of favor due to
its limited key length and vulnerability to modern attacks.
AES is known for its high security, efficiency, and wide
support, making it the best choice for secure Internet
connections. The Twofish algorithm, although it has its
advantages, is not as widespread as AES and is not a standard
for general use.

The rationale for choosing AES is based on its
standardization, wide support, high level of security, and
efficiency. Its status as a global standard recommended by key
security institutions such as NIST emphasizes its reliability.
Its ability to work efficiently in real time makes it an ideal
choice for secure Internet connection tasks where speed and
security of data transmission are important.

This choice provides strong encryption, meets modern
requirements, and helps to create secure connections in a
virtual environment.

AES can be slow when processing large amounts of data
for several reasons. First, the AES block size is fixed (typically
128 bits), and a large amount of data requires many blocks,
which can affect the overall speed. In addition, some AES
modes of operation may include padding operations and
other additional operations that can also increase the time
consumption.

A large amount of data can lead to additional
computational costs and increased execution time, in cases
where enhanced security or authentication modes are used.

116

To improve the algorithm, a block parallelization mechanism
was chosen.

The decision to optimize the AES algorithm using block
parallelization for secure Internet connections can be
justified:

 Large volumes of data: large amounts of data are
commonly processed on the Internet, especially
when transferring files or in other data-intensive
scenarios. Block parallelization allows the
efficient distribution of encryption tasks among
different computing resources, ensuring fast
processing.

 Increased performance: performance is a key
factor in determining the quality of an Internet
connection. Parallelization allows you to use
parallel resources to simultaneously process
multiple blocks of data, increasing the speed of
encryption and decryption operations.

Data security: AES is a secure algorithm, but
improving performance should not compromise security.
Block parallelization allows for optimal performance
without compromising encryption security.

4. The block parallelization process
Parallelization is a key strategy for encryption optimization
aimed at increasing data processing performance in this
work. It will show the main aspects of the block
parallelization process, its benefits, and possible challenges,
and consider how the implementation of block
parallelization helps to optimize the AES cipher for high-
performance information processing tasks.

4.1. Detailed description of the process

When parallelizing blocks and using AES encryption, CTR
(Counter) [24] mode is the most effective strategy, especially
in situations where parallel processing and high performance
are important.

Optimized parallelization allows to maintenance of high
performance in real-time processing areas where
responsiveness to data is key. At the same time, efficient
resource utilization and security ensure that large amounts of
information are effectively handled, providing an optimal
combination of performance and data privacy [25].

The choice of AES ciphers in CTR mode for block
parallelization is based on their combination of security,
efficiency, and standardization, namely, keys of different
lengths (including 256 bits) and implementation speed.

In CTR mode, each block of data is encrypted
independently, which allows to effectively parallelize the
encryption process. This is especially important when
processing large amounts of data, where parallel use of
resources can significantly improve performance.

The combination of AES and CTR modes provides a
robust encryption mechanism that can work effectively in a
parallelized environment, ensuring a high level of security
and data processing efficiency.

The main advantages of using CTR mode when
parallelizing blocks:

 Block independence (CTR mode uses encryption
with a key and unpredictable counter values for each
block. This allows each block of data to be encrypted
independently, which is ideal for parallel processing).
 Ease of implementation and computation (CTR
mode is noted for its ease of implementation and
minimized computation, as each block is encrypted
independently of the others. This makes it effective for
use in environments where computing resources are
limited).
 Parallel processing capability (since each block is
encrypted independently, CTR mode lends itself easily
to parallel computing. Different blocks can be processed
by different computing units or even on different
devices, contributing to speed and efficiency).
 Data Structure Preservation (CTR mode allows
you to preserve the structure of the original data during
encryption. Each block is replaced by an encrypted
block of the same length, which avoids data expansion
or compression during encryption).

Note that while CTR mode has many advantages for
parallel processing, it is important to manage the counter and
key properly to avoid vulnerabilities. When using CTR mode,
you should avoid reusing counter values for the same key.

The AES operation scheme in the CTR mode is shown in
Fig. 1.

Figure 1: Diagram of the AES algorithm in CTR mode

The AES operation scheme in the CTR mode contains the
following steps:

1. Splitting Data into Blocks: the input data is divided
into blocks of fixed size. Each block has a length due to the
AES block size (128 bits or 16 bytes).

2. Generate Counters: a unique counter is created for
each block. It generates a unique key for each block.

3. Encrypting Blocks with AES: the resulting counters
are used as input for the AES block used in the encryption
mode. The generated result is XOR'd with the corresponding
block of input data, which ensures block encryption.

4. Counter increment: after the block encryption is
completed, the counter is incremented to generate a new
value for the next block.

5. Repeat the Process for Each Block: All input blocks
are processed similarly, generating unique keys for each.

6. Generate Ciphertext: the encrypted blocks are
combined into the final ciphertext.

117

4.2. Block parallelization process diagram

The main idea of the AES block parallelization algorithm in
CTR mode is to create independent keys for each data block,
which allows to effectively parallelize the encryption process.
Each block is processed independently, which improves the
speed of processing large amounts of information. The AES
block parallelization scheme in CTR mode is shown in Fig. 2.

Figure 2: Block parallelization scheme

In this mode, a unique “counter” or “initialization vector” is
created for each block, which is combined with the key to
generate a unique encryption key. Thus, each block uses a
different key, and they can be processed in parallel.

The AES block parallelization algorithm in CTR mode
(Fig. 3) involves partitioning into blocks, generating unique
counters for each block, encrypting each block independently
of the others, and combining the encrypted blocks to produce
the final ciphertext.

The key stream is an important part of the encryption
process, especially when considering parallel computing to
encrypt multiple blocks of data simultaneously. The key
stream is used to create unique keys for each block of data.
This is achieved by using a counter and key values. The
counter value is determined by the stream number that points
to a specific data block. The key is formed using the result of
the Diffie-Hellman algorithm [26], which ensures the security
of key exchange.

 Parallel computation: all data blocks compute
their keys in a parallel way, which significantly speeds
up the encryption process. Each block uses its key
stream to generate a unique key. This increases the
efficiency of encryption because the blocks can be
processed simultaneously without unnecessary delays.

Figure 3: Block diagram of the AES encryption algorithm
with block parallelization

 Storing of encrypted blocks: when a block
completes its work, the encrypted block is saved to a
separate thread that functions as a container for
collected encrypted blocks. This encrypted block
collection stream can be used for further processing or
transmission.
 Creating of the ciphertext: whet the computation
of all blocks is complete, the encrypted blocks are
formed into ciphertext. This text can be used for storage,
transmission, or other purposes, ensuring the data
confidentiality and integrity.
 Using the Diffie-Hellman algorithm: the DH
algorithm guarantees the security of key exchange by
defining a shared secret key between the parties, which
ensures the confidentiality of information. The result of
this algorithm is used as the basis for creating unique
keys for each block of data in the stream.

In general, this process ensures a high level of security
and encryption efficiency for parallel data block computation.

118

5. Programming the block
parallelization algorithm

This section describes the process of developing and
programming the AES block parallelization algorithm using
developed services on the Java Spring Boot platform. These
services will interact to securely exchange and process
encrypted messages and files.

Client Service is responsible for messages encrypting
and messages transmitting to the server for further
processing. It uses AES and keys to encrypt messages. The
encrypted messages are sent to the server for decryption and
saving to a file.

Server Service is responsible for receiving encrypted
messages and decrypting those messages. The decrypted

messages are saved to a file. Server Service is responsible for
encrypting files and sending encrypted files to the client.

To implement this functionality, Java Spring Boot, a
framework for developing web applications and
microservices, is used. It ensures the configuration and
efficiency of service deployment.

The proposed approach ensures a secure and efficient
mechanism for exchanging encrypted messages and files
between the client and the server.

So, two services, the client and the server, interact with a
secure exchange of secret keys over an unreliable channel
using the Diffie-Hellman algorithm. The structure of the
server is shown in Fig. 4a and the structure of the client is
shown in Fig. 4b.

a) b)

Figure 4: The structures of developed services

The Server Service diagram of classes is shown in Fig. 5. The
developed Server Service consists of such classes:

 ServerController: handles HTTP requests;
receives and transmits data between the client and other
services; initiates calls to other services for data
processing.
 AESService: implements the AES encryption and
decryption algorithm. It is used by the ServerController
to ensure the confidentiality of the exchanged data.
 DataUtils: contains general methods for data
operations.
 KeyService: handles keys (generation, storage, and
processing) necessary for data encryption and
decryption. The ServerController and other services can
interact with the KeyService to ensure the security of
the exchanged data.
 ServerService: receives and processes data from
the ServerController; uses the AESService for
encryption and decryption, DataUtils for data
processing, and KeyService for key management.

Figure 5: The Server Service diagram of classes

The developed Client Service consists of (the diagram of
classes is shown in Fig. 6).

119

Figure 6: The Client Service diagram of classes

 ClientController: handles HTTP requests from the
server; receives and transmits data between the
server and other services; initiates calls to other
services for data processing.

Implementation of the proposed process of block
parallelization in the AES cipher in CTR mode based on two
developed services significantly optimizes and improves the
operation of the encryption system. The increase in
performance is the result of the efficient use of computing
resources due to the process of parallelizing the processing
of data blocks. Splitting the tasks between two services
allows better management of encryption and decryption
processes, contributing to the system's scalability needs.

6. Conclusions

6.1. Detailed description of the process

It is assumed that the implementation of block parallelization
in AES cipher using CTR mode increases performance during
processing a large volume of data. The main idea is: that
dividing into parallel blocks allows more efficient use of
resources and reduces encryption and decryption time. The
hypothesis assumes that because of parallelization
implementation: (1) processing speed increases; (2) system
scalability grows. The experiment contains a comparative
analysis of speed and productivity between systems with and
without block parallelization in the AES cipher during the
processing of a real data volume.

6.2. Input data and its analysis

For the implementation of an improved AES algorithm, the
text data was used. Each data block was defined by a size that
corresponds to the AES standard, 128 bits. The considered
data volume was determined by the number of blocks that
were chosen for encryption. The chosen data volume value
corresponded to specific experimental conditions to study the
efficiency of parallelization in the algorithm. Input data for
the AES algorithm with improved block parallelization came
from user input. This considered the variety of algorithm
usage scenarios and subjected it to realistic conditions.
Algorithm parameters, including block size and data volume,
were chosen based on the efficiency check of the
improvement.

6.3. Working with data

Different data volumes were taken and checked by the AES
algorithm without parallelization and with it to determine the
efficiency of the improvement.

To start, check the connection between the two services
and generate a key for the algorithm (Fig. 7).

Figure 7: Connecting two services

For the request_1 in the first test, small data volumes (less
500 blocks) and standard AES algorithm in CTR mode
without parallelization were used (Fig. 8a). The result is 3
milliseconds to encrypt the request_1. Then a request_1 is
created with the same data sets, but the algorithm with
parallelization is used. (Fig. 8b).

120

a) b)

Figure 8: Test 1. Requests execution result with small data volumes

The parallelization does not play a significant role for small
data (it was processed in 3 milliseconds).

For the request_2 in the second test, bigger data volumes
were used (10000 blocks) and the standard AES algorithm in

CTR mode without (Fig.9a) and with (Fig. 9b) parallelization
was used. The request_2 was executed in 94 milliseconds,
which is 38 milliseconds less than the previous result.

a) b)

Figure 9: Test 2. Requests execution result with bigger data volumes

For the request_3 in the third test, big data volumes were
used (1000000 blocks) and the standard AES algorithm in CTR
mode without and with parallelization was used. The

request_3 was processed for 10.39 seconds (Fig.10a) and 6.05
seconds (Fig. 10b), which is twice as fast as the previous result.

a) b)

Figure 10: Test 3. Requests execution result with big data volumes

121

6.4. Implementation results

In this section, the results of implementing the AES block
parallelization process are shown. The data processing speeds
with (Table 1) and without (Table 2) parallelization process
are compared.

Table 1
Processing time of the AES algorithm (without
parallelization)

N
u

m
be

r
of

bl

oc
k

s

Processing Time of the Request (s)

A
ve

ra
ge

T

im
e

(s
)

500 0.003 0.004 0.004 0.003 0.003
0.

0034

10000 0.122 0.117 0.124 0.122 0.119
0.

121

1000000 10.90 10.50 10.54 10.42 10.32
10.
384

Table 2
Processing Time of the Improved AES Algorithm (with
parallelization)

N
u

m
be

r
of

bl

oc
k

s

Processing Time of the Request (s)

A
ve

ra
ge

 T
im

e
(s

)

500 0.003 0.004 0.003 0.003 0.004 0.0034

10000 0.094 0.089 0.087 0.093 0.090 0.0906

1000000 5.10 4.89 5.03 4.95 4.10 4.98

The speed of encryption and decryption decreases with the
data increase.

6.5. Hypothesis Confirmation

The hypothesis about the implementation of block
parallelization in the AES cipher in CTR mode will lead to a
significant improvement in speed and encryption efficiency
in the context of processing large volumes of data. An
experiment was conducted that involved testing two
algorithms (with and without parallelization) for operation
speed and efficiency.

For this experiment, different volumes of data were
used, which could be used in the real world. The experiment
showed that the hypothesis was confirmed, so block
parallelization might be effective not only for the AES
algorithm but for any block symmetric algorithm. The
experiment showed that block parallelization in AES for big
data volumes increases data processing speed by 2 times
compared to the non-parallel approach. Parallelization
allows to use of multi-core systems more efficiently and
accelerates the block processing by 50%. Without
parallelization, each block processing is sequential and it
takes a longer execution time (10.38 seconds) with
processing over 100,000 blocks. Parallelization provides
optimal resource usage, reducing the execution time by 2

times to complete the encryption operation compared to the
regular algorithm.

7. Conclusions
In this work, a detailed exploration of the block
parallelization process when using the Advanced
Encryption Standard (AES) cipher is presented. The focus is
on the Counter (CTR) mode, which is identified as the most
effective strategy for parallelizing blocks, particularly in
contexts where parallel processing and high performance
are crucial. The benefits of block parallelization, including
block independence, ease of implementation and
computation, parallel processing capability, and data
structure preservation are shown. It also emphasizes the
importance of proper management of the counter and key
to avoid vulnerabilities.

The process of block parallelization is described in
detail, from splitting data into blocks, generating counters,
encrypting blocks with AES, incrementing the counter,
repeating the process for each block, to generating the
ciphertext. The paper highlights that each block is processed
independently, which enhances the speed of processing
large volumes of information. The development and
programming of the AES block parallelization algorithm
were performed by developing services on the Java Spring
Boot platform. These services interact to securely exchange
and process encrypted messages and files. The structure and
functions of the developed Server Service and Client Service
are explained.

The paper presents an experiment that tests the
hypothesis that the implementation of block parallelization
in the AES cipher in CTR mode increases performance
during the processing of large volumes of data. The
experiment involves testing two algorithms (with and
without parallelization) for operation speed and efficiency
using different volumes of data. The results of the
experiment confirm the hypothesis. Block parallelization in
AES for big data volumes increases data processing speed
by two times compared to the non-parallel approach.
Parallelization allows for more efficient use of multi-core
systems and accelerates the block processing by 50%.
Without parallelization, each block processing is sequential
and takes a longer execution time.

The work demonstrates that block parallelization is not
only effective for the AES algorithm but for any block
symmetric algorithm. It provides optimal resource usage,
reducing the execution time by two times to complete the
encryption operation compared to the regular algorithm.
This process ensures a high level of security and encryption
efficiency for parallel data block computation. The proposed
approach ensures a secure and efficient mechanism for
exchanging encrypted messages and files between the client
and the server. The increase in performance is the result of
the efficient use of computing resources due to the process
of parallelizing the processing of data blocks. Splitting the
tasks between two services allows better management of
encryption and decryption processes, contributing to the
system’s scalability needs.

122

References
[1] A. Gentile, et al., A Performance Analysis of Security

Protocols for Distributed Measurement Systems Based
on Internet of Things with Constrained Hardware and
Open Source Infrastructures, Sensors 24 (2024) 2781.
doi: 10.3390/s24092781.

[2] M. Baee, L. Simpson, W. Armstrong, Anomaly
Detection in the Key-Management Interoperability
Protocol Using Metadata, in IEEE Open Journal of the
Computer Society 5 (2024) 156–169. doi:
10.1109/OJCS.2024.3386715.

[3] V. Kampourakis, G. Makrakis, C. Kolias, From Seek-
and-Destroy to Split-and-Destroy: Connection
Partitioning as an Effective Tool against Low-Rate
DoS Attacks, Future Internet 16 (2024) 137. doi:
10.3390/fi16040137.

[4] C. Del-Real, E. De Busser, B. van den Berg, Shielding
Software Systems: A Comparison of Security by
Design and Privacy by Design Based on a Systematic
Literature Review, Computer Law & Security Review
52 (2024) 105933. doi: 10.1016/j.clsr.2023.105933.

[5] S. Sood, N. Hubballi, SlowTrack: Detecting Slow Rate
Denial of Service Attacks Against HTTP with
Behavioral Parameters, J. Supercomput. 80 (2024)
1788–1817. doi: 10.1007/s11227-023-05453-3.

[6] O. Harasymchuk et al., Generator of Pseudorandom
Bit Sequence with Increased Cryptographic Security,
Metallurgical and Mining Industry: Sci. Tech. J. 6(5)
(2014) 24–28.

[7] O. Yudin, et al., Efficiency Assessment of the
Steganographic Coding Method with Indirect
Integration of Critical Information (2019) 2019 IEEE
International Conference on Advanced Trends in
Information Theory, ATIT 2019 - Proceedings, pp. 36-
40.

[8] V. Maksymovych, M. Shabatura, O. Harasymchuk, M.
Karpinski, et al., Development of Additive Fibonacci
Generators with Improved Characteristics for
Cybersecurity Needs. Appl. Sci. (Basel) 2022, 12, 1519,
doi:10.3390/app12031519.

[9] M. Jang, K. Lee, An Advanced Approach for Detecting
Behavior-Based Intranet Attacks by Machine
Learning, in IEEE Access 12 (2024) 52480–52495. doi:
10.1109/ACCESS.2024.3387016.

[10] F. Alqahtani, M. Almutairi, F. Sheldon, Cloud Security
Using Fine-Grained Efficient Information Flow
Tracking, Future Internet 16 (2024) 110. doi:
10.3390/fi16040110.

[11] K. Sasikumar, S. Nagarajan, Comprehensive Review
and Analysis of Cryptography Techniques in Cloud
Computing, in IEEE Access 12 (2024) 52325–52351.
doi: 10.1109/ACCESS.20 24.3385449.

[12] T. Luong, N. Cuong, B. Vo, AES Security Improvement
by Utilizing New Key-Dependent XOR Tables, in IEEE
Access 12 (2024) 53158–53177. doi:
10.1109/ACCESS.2024.3387268.

[13] K. Rakhimberdiev, A. Bozorov, M. Berdimurodov,
Round Key Generation Algorithm Used in Symmetric
Block Encryption Algorithms to Ensure the Security
of Economic Systems, 7th International Conference on

Future Networks and Distributed Systems (ICFNDS
'23) (2024) 548–554. doi: 10.1145/3644713.3644794.

[14] C. Boura, P. Derbez, M. Funk, Related-Key Differential
Analysis of the AES, IACR Transactions on Symmetric
Cryptology 2023(4) (2023) 215–243. doi:
10.46586/tosc.v2023.i4.215-243.

[15] S. Yevseiev, et al., Development of Niederreiter Hybrid
Crypto-code Structure on Flawed Codes, Eastern-
European J. Enterp. Technol. 1(9(97) (2019) 27–38. doi:
10.15587/1729-4061.2019.156620.

[16] A. Horpenyuk, I. Opirskyy, P. Vorobets, Analysis of
Problems and Prospects of Implementation of Post-
Quantum Cryptographic Algorithms, in: CEUR
Workshop Proceedings, vol. 3504 (2023) 39–49.

[17] V. Luzhetsky, et al., Adaptive Compression Methods
of Data Based on Fibonacci Linear Forms, Proc. SPIE
10445, Photonics Applications in Astronomy,
Communications, Industry, and High Energy Physics
Experiments (2017). doi: 10.1117/12.2280944.

[18] F.-H. Hsiao, S.-W. Chang, Integrating RC6 Stream
Cipher to a Chaotic Synchronization System, in IEEE
Access 12 (2024) 26308–26323. doi:
10.1109/ACCESS.2024.3364702.

[19] N. Zidarič, et al., The Welch-gong Stream Cipher—
Evolutionary Path, Cryptogr. Commun. 16 (2024) 129–
165. doi: 10.1007/s12095-023-00656-0.

[20] Y. He, et al., Improved Cube Attacks on Some
Authenticated Encryption Ciphers and Stream
Ciphers in the Internet of Things, IEEE Access 8 (2020)
20920–20930. doi: 10.1109/ACCESS.2020.2967 070.

[21] O. Kara, Lower Data Attacks on Advanced Encryption
Standard, Turkish J. Electrical Eng. Comput. Sci.
32(2(8)) (2024). doi: 10.55730/1300-0632.4072.

[22] J. Qiu, Ciphertext Database Audit Technology Under
Searchable Encryption Algorithm and Blockchain
Technology, J. Global Inf. Manag. 30(11) (2022) 1–17.
doi: 10.4018/JGIM.315014.

[23] A. Sahun, et al., Devising a Method for Improving
Crypto Resistance of the Symmetric Block
Cryptosystem RC5 Using Nonlinear Shift Functions,
Eastern-European J. Enterp. Technol. 5(9(113)) (2021)
17–29. doi: 10.15587/1729-4061.2021.240344.

[24] J. Liang, H. Shahrzad, R. Miikkulainen, Asynchronous
Evolution of Deep Neural Network Architectures,
Appl. Soft Comput. 152 (2024) 111209. doi:
10.1016/j.asoc.2023.111209.

[25] V. Luzhetsky, et al., Adaptive Compression Methods
of Data Based on Fibonacci Linear Forms, Proc. SPIE
10445, Photonics Applications in Astronomy,
Communications, Industry, and High Energy Physics
Experiments (2017). doi: 10.1117/12.2280944.

[26] A. May, C. Schneider, Dlog is Practically as Hard (or
Easy) as DH – Solving Dlogs via DH Oracles on EC
Standards, IACR Transactions on Cryptographic
Hardware and Embedded Systems 2023(4) (2023) 146–
166. doi: 10.46586/tches.v2023.i4.146-166.

