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Abstract 
The paper discusses the process of block parallelization in the Advanced Encryption Standard (AES) cipher, 
focusing on the Counter (CTR) mode. It details the benefits of this process, including increased data 
processing performance and effective resource utilization; emphasizes the independent encryption of each 
data block in CTR mode, which allows for effective parallelization, especially when handling large data 
volumes. This work outlines the steps involved in the AES operation scheme in CTR mode, from splitting 
data into blocks to generating the final ciphertext. It further explains the concept of a unique “counter” or 
“initialization vector” for each block, which, combined with the key, generates a unique encryption key, 
enabling parallel processing. The idea implementation delves into the programming of the block 
parallelization algorithm using services on the Java Spring Boot platform. It describes the roles of the 
purposed Client Service and Server Service in encrypting and transmitting messages and files and 
decrypting received messages. This work presents an experiment that tests the hypothesis that blocks 
parallelization in AES cipher using CTR mode increases performance during the processing of large data 
volumes. The experiment involves different data volumes and compares the processing speeds of the AES 
algorithm with and without parallelization. The results confirm the hypothesis, showing that block 
parallelization in AES for large data volumes can double the data processing speed compared to the non-
parallel approach. The paper concludes that block parallelization might be effective not only for the AES 
algorithm but also for any block symmetric algorithm. It also suggests that parallelization allows for more 
efficient use of multi-core systems and reduces the execution time to complete the encryption operation. 
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1. Introduction 
In a world of increasing digital connectivity and Internet 
interaction, the issue of connection security is becoming one 
of the most crucial problems [1–9]. Ensuring the 
confidentiality, integrity, and availability of information is 
becoming a priority [9–11]. This work is focused on 
reviewing and improving block symmetric encryption 
methods aimed at solving the problems of connection 
security on the Internet. New technologies and encryption 
algorithms are important tools for maintaining data 
confidentiality and ensuring resilience to modern cyber 
threats [12–17]. 

Thus, there is a need to analyze, improve, and expand the 
methodological base of methods and tools that use block 
symmetric ciphers. 

The goal is to improve the methods of block symmetric 
encryption through the process of block parallelization to 
solve the problem of secure connections on the Internet. 

The object is the processes associated with the use of 
block encryption algorithms, in the context of their 
application on the Internet and the HTTPS protocol. 
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The subject is methods and means of protecting connections 
on the Internet, including the analysis of encryption 
efficiency. 

2. Related works 
It is known that the increasing number of digital connections 
during Internet interaction becomes the issue of connection 
security. Cristina Del-Real et al. [4] say that the design of 
software systems plays a crucial role in mitigating 
cybersecurity incidents; Sood et al. [5] and Jang et al. [9] are 
paying attention to DoS attacks through HTTP and IP. 

Gentile et al. In [1] showed the algorithms to ensure 
suitable data transmission and encryption ratios and used 
Transport Layer Security (TLS) tunnels for local sensor data 
and secure socket layer tunnels to transmit TLS-encrypted 
data to a cloud-based central broker. Also, Kampourakis et 
al. in [3] oसer a framework that can accurately detect all 
anomalous enterprise network activities. 

Nowadays connections to the Internet are connections 
to the Cloud. Cloud storage is popular among syudy and 
businesses because of cost reduction, performance 
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improvement, productivity enhancement, and security. 
However, Alqahtani et al. in [10] are focused on security 
risks since data is stored with third-party providers, and 
internet access can limit visibility and control. Compared to 
traditional on-premise computing, data security and 
protection are critical concerns in cloud computing. 
Ensuring data security in the cloud involves various 
methods, with cryptography being the most crucial 
(Sasikumar and Nagarajan in [11]).  

So, cryptography provides several security features, 
including authentication, conहdentiality, integrity, and 
availability.  

Today, it is important to analyze, improve, and expand 
the methodological base of methods and tools that use block 
symmetric ciphers.  

Boura et al. in [14] offer tools and algorithms to search 
for related-key distinguishers and attacks of a differential 
nature against the AES. Yevseiev et al. [15] offer the 
Niederreiter-modified crypto-code structure with additional 
initialization vectors that require an increase in the speed of 
cryptographic transformation of the system as a whole. 
While Opirskyy et al. [16] are working on standardizing 
post-quantum cryptography. 

So, there is a critical need to work on improving the 
methods of block symmetric encryption through the process 
of block parallelization to solve the problem of secure 
connections on the Internet. 

3. Initial information that 
establishes research 

Stream encryption algorithms. A stream cipher is a type 
of symmetric encryption that encrypts each digit of the 
plaintext separately using a key stream. Stream ciphers are 
faster than block ciphers and require less hardware but can 
be vulnerable to attacks [17–19].  

There are two types of stream ciphers: synchronous and 
self-synchronizing. Synchronous stream ciphers generate a 
sequence of pseudorandom digits independently of the 
plaintext and ciphertext messages. Self-synchronizing stream 
ciphers use the last N digits of the ciphertext to generate a key 
stream [20]. 

Block encryption algorithms. A block cipher is an 
algorithm that encrypts fixed-length data blocks to protect 
information. Electronic Code Book mode encrypts blocks 
independently, but patterns can be detected. To increase 
security, modes that introduce randomization through an 
Initialization Vector (IV) are used. Various modes of block 
cipher operation have been developed and defined in national 
and international standards [21–22]. The basic idea is to 
introduce randomization of the plaintext data using an IV to 
achieve probabilistic encryption. 

The rationale for using block symmetric encryption 
for secure Internet connections. Encryption algorithms 
are known for their high computational requirements, 
especially for wireless devices with limited resources [23].  

Encryption guarantees data confidentiality and 
protection against interception and plays an important role in 
authentication, data integrity, and access control. 

Encrypting even a small amount of data, such as 13.6 
kilobytes, using a 32-bit Blowfish key can consume about 75% 

of resources. Modern security standards recommend using 
keys of at least 80 bits. 

Encryption and data transmission are important in 
wireless networks. There is potential for encrypting test 
packets with lightweight encryption algorithms if the 
security of the device is not compromised. There are 
numerous encryption algorithms for wired networks, divided 
into two categories: symmetric key encryption and 
asymmetric key encryption. Symmetric key encryption 
requires the distribution of a key between the parties before 
data is transmitted. 

Asymmetric key encryption solves the problem of key 
distribution but is computationally intensive. In wireless 
devices, symmetric key encryption, such as RC4, is 
predominant, as it is fast and efficient. However, the 
discovered vulnerabilities in RC4 led to the introduction of a 
new security standard for WLANs—IEEE 802.11i, based on 
AES. AES is known for its speed, flexibility, and robust 
security features. 

Block ciphers, such as AES, are used in WLANs to encrypt 
data, ensuring its confidentiality. Security protocols such as 
WPA2 and WPA3 use AES-CCMP to ensure data integrity. 
Block ciphers are also used to authenticate devices and users, 
and to manage encryption keys. They are the core 
components of WLAN security. 

Block ciphers are used in WLANs to ensure data 
confidentiality and integrity, as well as device and user 
authentication. They are standardized, efficient, and scalable, 
making them a reliable choice for securing wireless 
communications. Overall, they enhance WLAN security by 
meeting security standards and requirements. 

Rationale for choosing the AES to solve the problem 
of secure Internet connection. DES, while a popular 
encryption standard in the past, has fallen out of favor due to 
its limited key length and vulnerability to modern attacks. 
AES is known for its high security, efficiency, and wide 
support, making it the best choice for secure Internet 
connections. The Twofish algorithm, although it has its 
advantages, is not as widespread as AES and is not a standard 
for general use. 

The rationale for choosing AES is based on its 
standardization, wide support, high level of security, and 
efficiency. Its status as a global standard recommended by key 
security institutions such as NIST emphasizes its reliability. 
Its ability to work efficiently in real time makes it an ideal 
choice for secure Internet connection tasks where speed and 
security of data transmission are important. 

This choice provides strong encryption, meets modern 
requirements, and helps to create secure connections in a 
virtual environment. 

AES can be slow when processing large amounts of data 
for several reasons. First, the AES block size is fixed (typically 
128 bits), and a large amount of data requires many blocks, 
which can affect the overall speed. In addition, some AES 
modes of operation may include padding operations and 
other additional operations that can also increase the time 
consumption. 

A large amount of data can lead to additional 
computational costs and increased execution time, in cases 
where enhanced security or authentication modes are used. 
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To improve the algorithm, a block parallelization mechanism 
was chosen. 

The decision to optimize the AES algorithm using block 
parallelization for secure Internet connections can be 
justified: 

 Large volumes of data: large amounts of data are 
commonly processed on the Internet, especially 
when transferring files or in other data-intensive 
scenarios. Block parallelization allows the 
efficient distribution of encryption tasks among 
different computing resources, ensuring fast 
processing. 

 Increased performance: performance is a key 
factor in determining the quality of an Internet 
connection. Parallelization allows you to use 
parallel resources to simultaneously process 
multiple blocks of data, increasing the speed of 
encryption and decryption operations. 

Data security: AES is a secure algorithm, but 
improving performance should not compromise security. 
Block parallelization allows for optimal performance 
without compromising encryption security. 

4. The block parallelization process 
Parallelization is a key strategy for encryption optimization 
aimed at increasing data processing performance in this 
work. It will show the main aspects of the block 
parallelization process, its benefits, and possible challenges, 
and consider how the implementation of block 
parallelization helps to optimize the AES cipher for high-
performance information processing tasks. 

4.1. Detailed description of the process 

When parallelizing blocks and using AES encryption, CTR 
(Counter) [24] mode is the most effective strategy, especially 
in situations where parallel processing and high performance 
are important. 

Optimized parallelization allows to maintenance of high 
performance in real-time processing areas where 
responsiveness to data is key. At the same time, efficient 
resource utilization and security ensure that large amounts of 
information are effectively handled, providing an optimal 
combination of performance and data privacy [25].  

The choice of AES ciphers in CTR mode for block 
parallelization is based on their combination of security, 
efficiency, and standardization, namely, keys of different 
lengths (including 256 bits) and implementation speed. 

In CTR mode, each block of data is encrypted 
independently, which allows to effectively parallelize the 
encryption process. This is especially important when 
processing large amounts of data, where parallel use of 
resources can significantly improve performance. 

The combination of AES and CTR modes provides a 
robust encryption mechanism that can work effectively in a 
parallelized environment, ensuring a high level of security 
and data processing efficiency. 

The main advantages of using CTR mode when 
parallelizing blocks: 

 Block independence (CTR mode uses encryption 
with a key and unpredictable counter values for each 
block. This allows each block of data to be encrypted 
independently, which is ideal for parallel processing). 
 Ease of implementation and computation (CTR 
mode is noted for its ease of implementation and 
minimized computation, as each block is encrypted 
independently of the others. This makes it effective for 
use in environments where computing resources are 
limited). 
 Parallel processing capability (since each block is 
encrypted independently, CTR mode lends itself easily 
to parallel computing. Different blocks can be processed 
by different computing units or even on different 
devices, contributing to speed and efficiency). 
 Data Structure Preservation (CTR mode allows 
you to preserve the structure of the original data during 
encryption. Each block is replaced by an encrypted 
block of the same length, which avoids data expansion 
or compression during encryption). 

Note that while CTR mode has many advantages for 
parallel processing, it is important to manage the counter and 
key properly to avoid vulnerabilities. When using CTR mode, 
you should avoid reusing counter values for the same key. 

The AES operation scheme in the CTR mode is shown in 
Fig. 1. 

 

Figure 1: Diagram of the AES algorithm in CTR mode 

The AES operation scheme in the CTR mode contains the 
following steps: 

1. Splitting Data into Blocks: the input data is divided 
into blocks of fixed size. Each block has a length due to the 
AES block size (128 bits or 16 bytes). 

2. Generate Counters: a unique counter is created for 
each block. It generates a unique key for each block. 

3. Encrypting Blocks with AES: the resulting counters 
are used as input for the AES block used in the encryption 
mode. The generated result is XOR'd with the corresponding 
block of input data, which ensures block encryption. 

4. Counter increment: after the block encryption is 
completed, the counter is incremented to generate a new 
value for the next block. 

5. Repeat the Process for Each Block: All input blocks 
are processed similarly, generating unique keys for each. 

6. Generate Ciphertext: the encrypted blocks are 
combined into the final ciphertext. 
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4.2. Block parallelization process diagram 

The main idea of the AES block parallelization algorithm in 
CTR mode is to create independent keys for each data block, 
which allows to effectively parallelize the encryption process. 
Each block is processed independently, which improves the 
speed of processing large amounts of information. The AES 
block parallelization scheme in CTR mode is shown in Fig. 2.  

 
Figure 2: Block parallelization scheme 

In this mode, a unique “counter” or “initialization vector” is 
created for each block, which is combined with the key to 
generate a unique encryption key. Thus, each block uses a 
different key, and they can be processed in parallel. 

The AES block parallelization algorithm in CTR mode 
(Fig. 3) involves partitioning into blocks, generating unique 
counters for each block, encrypting each block independently 
of the others, and combining the encrypted blocks to produce 
the final ciphertext. 

The key stream is an important part of the encryption 
process, especially when considering parallel computing to 
encrypt multiple blocks of data simultaneously. The key 
stream is used to create unique keys for each block of data. 
This is achieved by using a counter and key values. The 
counter value is determined by the stream number that points 
to a specific data block. The key is formed using the result of 
the Diffie-Hellman algorithm [26], which ensures the security 
of key exchange. 

 Parallel computation: all data blocks compute 
their keys in a parallel way, which significantly speeds 
up the encryption process. Each block uses its key 
stream to generate a unique key. This increases the 
efficiency of encryption because the blocks can be 
processed simultaneously without unnecessary delays. 
 

 
Figure 3: Block diagram of the AES encryption algorithm 
with block parallelization 

 Storing of encrypted blocks: when a block 
completes its work, the encrypted block is saved to a 
separate thread that functions as a container for 
collected encrypted blocks. This encrypted block 
collection stream can be used for further processing or 
transmission. 
 Creating of the ciphertext: whet the computation 
of all blocks is complete, the encrypted blocks are 
formed into ciphertext. This text can be used for storage, 
transmission, or other purposes, ensuring the data 
confidentiality and integrity. 
 Using the Diffie-Hellman algorithm: the DH 
algorithm guarantees the security of key exchange by 
defining a shared secret key between the parties, which 
ensures the confidentiality of information. The result of 
this algorithm is used as the basis for creating unique 
keys for each block of data in the stream. 

In general, this process ensures a high level of security 
and encryption efficiency for parallel data block computation. 
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5. Programming the block 
parallelization algorithm 

This section describes the process of developing and 
programming the AES block parallelization algorithm using 
developed services on the Java Spring Boot platform. These 
services will interact to securely exchange and process 
encrypted messages and files. 

Client Service is responsible for messages encrypting 
and messages transmitting to the server for further 
processing. It uses AES and keys to encrypt messages. The 
encrypted messages are sent to the server for decryption and 
saving to a file. 

Server Service is responsible for receiving encrypted 
messages and decrypting those messages. The decrypted 

messages are saved to a file. Server Service is responsible for 
encrypting files and sending encrypted files to the client. 

To implement this functionality, Java Spring Boot, a 
framework for developing web applications and 
microservices, is used. It ensures the configuration and 
efficiency of service deployment.  

The proposed approach ensures a secure and efficient 
mechanism for exchanging encrypted messages and files 
between the client and the server. 

So, two services, the client and the server, interact with a 
secure exchange of secret keys over an unreliable channel 
using the Diffie-Hellman algorithm. The structure of the 
server is shown in Fig. 4a and the structure of the client is 
shown in Fig. 4b. 

 

 

 

 
a) b) 

Figure 4: The structures of developed services

The Server Service diagram of classes is shown in Fig. 5. The 
developed Server Service consists of such classes: 

 ServerController: handles HTTP requests; 
receives and transmits data between the client and other 
services; initiates calls to other services for data 
processing. 
 AESService: implements the AES encryption and 
decryption algorithm. It is used by the ServerController 
to ensure the confidentiality of the exchanged data. 
 DataUtils: contains general methods for data 
operations. 
 KeyService: handles keys (generation, storage, and 
processing) necessary for data encryption and 
decryption. The ServerController and other services can 
interact with the KeyService to ensure the security of 
the exchanged data. 
 ServerService: receives and processes data from 
the ServerController; uses the AESService for 
encryption and decryption, DataUtils for data 
processing, and KeyService for key management.  

 
Figure 5: The Server Service diagram of classes 

The developed Client Service consists of (the diagram of 
classes is shown in Fig. 6). 
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Figure 6: The Client Service diagram of classes 

 ClientController: handles HTTP requests from the 
server; receives and transmits data between the 
server and other services; initiates calls to other 
services for data processing. 

Implementation of the proposed process of block 
parallelization in the AES cipher in CTR mode based on two 
developed services significantly optimizes and improves the 
operation of the encryption system. The increase in 
performance is the result of the efficient use of computing 
resources due to the process of parallelizing the processing 
of data blocks. Splitting the tasks between two services 
allows better management of encryption and decryption 
processes, contributing to the system's scalability needs. 

6. Conclusions 

6.1. Detailed description of the process 

It is assumed that the implementation of block parallelization 
in AES cipher using CTR mode increases performance during 
processing a large volume of data. The main idea is: that 
dividing into parallel blocks allows more efficient use of 
resources and reduces encryption and decryption time. The 
hypothesis assumes that because of parallelization 
implementation: (1) processing speed increases; (2) system 
scalability grows. The experiment contains a comparative 
analysis of speed and productivity between systems with and 
without block parallelization in the AES cipher during the 
processing of a real data volume. 

6.2. Input data and its analysis 

For the implementation of an improved AES algorithm, the 
text data was used. Each data block was defined by a size that 
corresponds to the AES standard, 128 bits. The considered 
data volume was determined by the number of blocks that 
were chosen for encryption. The chosen data volume value 
corresponded to specific experimental conditions to study the 
efficiency of parallelization in the algorithm. Input data for 
the AES algorithm with improved block parallelization came 
from user input. This considered the variety of algorithm 
usage scenarios and subjected it to realistic conditions. 
Algorithm parameters, including block size and data volume, 
were chosen based on the efficiency check of the 
improvement. 

6.3. Working with data 

Different data volumes were taken and checked by the AES 
algorithm without parallelization and with it to determine the 
efficiency of the improvement.  

To start, check the connection between the two services 
and generate a key for the algorithm (Fig. 7). 

 
Figure 7: Connecting two services 

For the request_1 in the first test, small data volumes (less 
500 blocks) and standard AES algorithm in CTR mode 
without parallelization were used (Fig. 8a). The result is 3 
milliseconds to encrypt the request_1. Then a request_1 is 
created with the same data sets, but the algorithm with 
parallelization is used. (Fig. 8b). 
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a) b) 

Figure 8: Test 1. Requests execution result with small data volumes

The parallelization does not play a significant role for small 
data (it was processed in 3 milliseconds). 

For the request_2 in the second test, bigger data volumes 
were used (10000 blocks) and the standard AES algorithm in 

CTR mode without (Fig.9a) and with (Fig. 9b) parallelization 
was used. The request_2 was executed in 94 milliseconds, 
which is 38 milliseconds less than the previous result. 

  
a) b) 

Figure 9: Test 2. Requests execution result with bigger data volumes

For the request_3 in the third test, big data volumes were 
used (1000000 blocks) and the standard AES algorithm in CTR 
mode without and with parallelization was used. The 

request_3 was processed for 10.39 seconds (Fig.10a) and 6.05 
seconds (Fig. 10b), which is twice as fast as the previous result. 

  
a) b) 

Figure 10: Test 3. Requests execution result with big data volumes 
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6.4. Implementation results 

In this section, the results of implementing the AES block 
parallelization process are shown. The data processing speeds 
with (Table 1) and without (Table 2) parallelization process 
are compared. 

Table 1 
Processing time of the AES algorithm (without 
parallelization) 

N
u

m
be

r 
of

 
bl

oc
k

s 

Processing Time of the Request (s) 

A
ve

ra
ge

 
T

im
e 

(s
) 

500 0.003 0.004 0.004 0.003 0.003 
0. 

0034 

10000 0.122 0.117 0.124 0.122 0.119 
0. 

121 

1000000 10.90 10.50 10.54 10.42 10.32 
10. 
384 

Table 2 
Processing Time of the Improved AES Algorithm (with 
parallelization) 

N
u

m
be

r 
of

 
bl

oc
k

s 

Processing Time of the Request (s) 

A
ve

ra
ge

 T
im

e 
(s

) 

500 0.003 0.004 0.003 0.003 0.004 0.0034 

10000 0.094 0.089 0.087 0.093 0.090 0.0906 

1000000 5.10 4.89 5.03 4.95 4.10 4.98 

 
The speed of encryption and decryption decreases with the 
data increase. 

6.5. Hypothesis Confirmation 

The hypothesis about the implementation of block 
parallelization in the AES cipher in CTR mode will lead to a 
significant improvement in speed and encryption efficiency 
in the context of processing large volumes of data. An 
experiment was conducted that involved testing two 
algorithms (with and without parallelization) for operation 
speed and efficiency.  

For this experiment, different volumes of data were 
used, which could be used in the real world. The experiment 
showed that the hypothesis was confirmed, so block 
parallelization might be effective not only for the AES 
algorithm but for any block symmetric algorithm. The 
experiment showed that block parallelization in AES for big 
data volumes increases data processing speed by 2 times 
compared to the non-parallel approach. Parallelization 
allows to use of multi-core systems more efficiently and 
accelerates the block processing by 50%. Without 
parallelization, each block processing is sequential and it 
takes a longer execution time (10.38 seconds) with 
processing over 100,000 blocks. Parallelization provides 
optimal resource usage, reducing the execution time by 2 

times to complete the encryption operation compared to the 
regular algorithm. 

7. Conclusions 
In this work, a detailed exploration of the block 
parallelization process when using the Advanced 
Encryption Standard (AES) cipher is presented. The focus is 
on the Counter (CTR) mode, which is identified as the most 
effective strategy for parallelizing blocks, particularly in 
contexts where parallel processing and high performance 
are crucial. The benefits of block parallelization, including 
block independence, ease of implementation and 
computation, parallel processing capability, and data 
structure preservation are shown. It also emphasizes the 
importance of proper management of the counter and key 
to avoid vulnerabilities.  

The process of block parallelization is described in 
detail, from splitting data into blocks, generating counters, 
encrypting blocks with AES, incrementing the counter, 
repeating the process for each block, to generating the 
ciphertext. The paper highlights that each block is processed 
independently, which enhances the speed of processing 
large volumes of information. The development and 
programming of the AES block parallelization algorithm 
were performed by developing services on the Java Spring 
Boot platform. These services interact to securely exchange 
and process encrypted messages and files. The structure and 
functions of the developed Server Service and Client Service 
are explained. 

The paper presents an experiment that tests the 
hypothesis that the implementation of block parallelization 
in the AES cipher in CTR mode increases performance 
during the processing of large volumes of data. The 
experiment involves testing two algorithms (with and 
without parallelization) for operation speed and efficiency 
using different volumes of data. The results of the 
experiment confirm the hypothesis. Block parallelization in 
AES for big data volumes increases data processing speed 
by two times compared to the non-parallel approach. 
Parallelization allows for more efficient use of multi-core 
systems and accelerates the block processing by 50%. 
Without parallelization, each block processing is sequential 
and takes a longer execution time. 

The work demonstrates that block parallelization is not 
only effective for the AES algorithm but for any block 
symmetric algorithm. It provides optimal resource usage, 
reducing the execution time by two times to complete the 
encryption operation compared to the regular algorithm. 
This process ensures a high level of security and encryption 
efficiency for parallel data block computation. The proposed 
approach ensures a secure and efficient mechanism for 
exchanging encrypted messages and files between the client 
and the server. The increase in performance is the result of 
the efficient use of computing resources due to the process 
of parallelizing the processing of data blocks. Splitting the 
tasks between two services allows better management of 
encryption and decryption processes, contributing to the 
system’s scalability needs. 
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