CEUR-WS.org/Vol-3806/S_43_Chebanyuk.pdf

C

CEUR
Workshop
Proceedings

Requirement Analysis Approach to Estimate the Possibility of
Software Development Artifacts Reusing Consulting with
Artificial Intelligence Technologies

Olena Chebanyuk

! Institut d'Investigacié en Intel-ligéncia Artificial, Campus Universitat Autonoma Barcelona
Carrer de Can Planas, Zona 2, 08193 Bellaterra, Barcelona, Catalonia (Spain)

2
National Aviation University, 1, Liubomyra Huzara ave., 03058, Kyiv, Ukraine

Abstract

This paper proposes a domain engineering approach to estimate the possibility of reusing software
development artifacts with the consultation of artificial intelligence technologies. Estimation is done by
means of comparing the semantics of software artifacts with the semantics of the requirement
specification. The approach is based on the following ideas:
two lists of user stories are formed where the first list contains the user stories of software artifacts, while
the second list contains user stories of the future project. Then, the semantics of these two lists are
compared. Software components with the same semantics from both lists of user stories are marked as
possible candidates for reuse. The requirements engineer manages the artificial intelligence that performs
all routine tasks for this approach. As a result of these activities, a software developer receives
recommendations on which software components need to be reviewed for reuse.

The proposed approach addresses one more challenge of using artificial intelligence technologies to
generate software models, represented as UML diagrams, despite the limitation that artificial intelligence
tools may only generate text answers. The choice of an environment for UML diagram visualization in the
case of communication with artificial technologies is grounded.

The paper also considers questions about the effectiveness of using different natural language groups,
namely Germanic, Romance, and Cpyrillic, to support communication with artificial intelligence
technologies.

Keywords:
Requirement Analysis, AGILE, PlantUML, Artificial Intelligence, Domain Engineering, Model-Driven
Engineering

1. Introduction

Artificial Intelligence (AI) technologies open up new opportunities to address current challenges in
software engineering. One such challenge is the semantic analysis of software artifacts to support
the software development lifecycle processes within the Agile methodology. Semantic comparison
increases the accuracy of software reuse procedures.

This paper initiates a series of works that leverage the fundamentals of Model-Driven
Engineering as a foundation for approaches supporting Al-powered software development lifecycle
processes.

This work focuses on describing an approach for evaluating the feasibility of reusing software
development artifacts using Al technologies.

According to ISO/IEC/IEEE 24765:2017 standard, a software development artifact is any artifact
related to the software development process. Examples include UML diagrams, interface
screenshots, *.dll files, and test cases [1].

114th International Scientific and Practical Conference from Programming UkrPROG’2024, May 14-15, 2024, Kyiv, Ukraine
" Corresponding author.
Q@ elena.chebanyuk@iiia.csic.es (O. Chebanyuk)
@ 0000-0002-9873-6010 (O. Chebanyuk)
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).




The same standard defines a software artifact as any type of software, such as source code, *.dll
files, frameworks used in a project, or executable code [1].

Artificial intelligence technologies are envisioned to handle routine tasks of semantic analysis
for various software development artifacts, with a human subsequently verifying the results. This
paper considers Agile requirements analysis within the software product line approach.

A core principle of Agile is to adapt to changing customer requirements (as outlined in the Agile
Manifesto). Changing requirements necessitate a sequence of actions to update the associated
software development artifacts. This involves requirements verification, validation, and elicitation
(review and editing of software models and requirements specifications). These activities consume a
significant portion of the time spent on requirements analysis.

Al technologies can take on routine tasks, reducing the time required for artifact analysis and
minimizing human error when updating data and making recommendations for reusing existing
software artifacts in new projects. Semantic comparison of different user stories falls under the
umbrella of semantic search. The main challenge of the semantic search procedure lies in
representing various software development artifacts in a format that enables exact comparisons.
Following the semantic search procedure, the requirements engineer will need to verify the results
of the requirements analysis, while the developer will only need to evaluate the AI's
recommendations.

2. Literature Review

Research investigating the principles of communication between users and Al technologies (e.g.,
chatbots) can be organized according to the steps involved in supporting the user-Al tool
communication process. The schema for organizing a conversation between a user and an Al tool is
represented in Figure 1.

Frontend Backend ChatGPT

POST /ap|/ana|yze-50urce-cOde' The frontend sends the source code in the body of the request. B

Prepare Request g 1
p q The backend prepares the request for ChatGPT )

Convert request to JSON

POST /vl/englnes/davmu-codex/completlons’ The backend sends the request to ChatGPT asynchronously. N

le ResPonse ChatGPT returns the generated epics and user stories. ]
_ IActionResult The backend returns the response from ChatGPT to the frontend as an IActionResult. )
Frontend Backend ChatGPT

Figure 1: Representation of an algorithm of Organization of conversation between user and Al
tool. (ChatGTP is considered).

Here are the main steps involved in organizing conversation support between a user and an Al
tool:
1. Sending request to chatbot (the first four messages in Figure 1).
2. Processing a user request and extracting semantics from it.
3. Searching for an answer to the question that corresponds to the defined semantics.
4. Returning the answer to the client side and interpreting it (the last message on Figure 1).
Consider review of papers representing results about the main steps of described algorithm.



2.1. Processing User Request and Extracting Semantics of the User’s Query

Formal query creation methods for knowledge bases are based on a series of checks performed
on the user's natural language query. These checks may include the presence of question words,
subordinating conjunctions, semantically colored marker verbs, subject and predicate groups, etc.,
in the input phrase. The program uses the set of results compiled after passing these checks to
automatically construct a formal query from template blocks. Named entities found in the phrase
become input parameters for the queries created in this way [2].

Widely used knowledge systematization approaches utilize ontologies to organize information
about the problem domain. Ontological knowledge bases are effective for systematizing large
amounts of knowledge, particularly in the development of natural language dialogue systems.
Today, there is widespread development of various approaches for information systematization in
the medical field. Examples include the medical rehabilitation support system presented in [3] and
medical diagnostic software systems [4].

In developing reference dialogue systems, neural network approaches can be combined with the
usage of ontological knowledge bases, thereby increasing each other's effectiveness. So, for
example, as described in [4], the ontology stores marked fragments of texts that are extracted using
queries formed on the basis of user phrase data. These texts are then utilized to form a response
through a large language model according to the semantic intentions defined in the user's phrase.

2.2. Searching for an Answer to the Question that Corresponds to the Defined
Semantics

A knowledge base can increase the level of accuracy and precision in retrieving answers.

Consider the use of artificial intelligence techniques for requirement analysis, specifically for
analyzing non-functional requirements in security system development [5]. A requirements
engineer can prepare additional prompts for the Al using the analytical fundamentals of security
key distribution [6], open and closed key generation for cryptographic algorithms [7], or ensuring
the safe use of credit cards [8] or networks to develop software systems that meet high-level
security requirements [9].

Conclusion from the review. The current level of AI development is sufficient to begin
experiments on applying these technologies to software development within the Agile
methodology.

3. The task, the Research Questions, and a Scientific Novelty of the
Proposed Approach

Task: To propose an approach to estimate the possibility of reusing software artifacts during
the requirement analysis consulting with artificial intelligence technologies

3.1. Research questions (RQs):

1. Propose a concept for semantic comparison of different types of software development
artifacts, namely software artifacts and user stories.

2. Ground the selection criteria for the environment used to visualize software models (UML
diagrams).

3. Provide the support for different natural language groups, including Cyrillic, Romance, and
Germanic languages.

4. Enable the analysis of source code written in various object-oriented programming
languages.



5. Choose effective Al tools for source code analysis and semantic comparison of user stories
written in natural languages.

3.2. Scientific novelty of the proposed approach

The approach addresses the challenge of analyzing the semantics of source code written in
different object-oriented programming languages. The analysis results can be represented in various
natural languages depending on user preferences. To achieve this, the approach combines Al
technologies with established software engineering principles.

Technologies that provide scientific novelty of the proposed approach:

e TFrom Model-Driven Engineering fundamentals Text-to-Text and Text-to-Model
Transformations are used. Leverages the concept of text-to-model transformation from
software engineering to represent the software artifact semantics in a structured format.

e From AI technologies Large Language Model (LLM) Prompt Engineering is used: Utilizes Al
by employing LLM prompt engineering techniques to guide the extraction of semantic
attributes while considering the specific characteristics of the chosen LLM.

4. Model-Driven Engineering Foundations of the Proposed Approach

The first step to involve Model-Driven Engineering fundamentals to approaches of software
development lifecycle management is to provide the analysis of modelling environments “for text to
model transformation”

Aim of this analysis is to select modelling environment with the simplest representation of
textual description of UML diagram. Simple representation requires minimum efforts to teach Al
tools to prepare a correct and full text representation of UML diagram. Figure 2 represents a classic
model to model transformation scheme [10] with propositions (blue text labels) of elements’ names
that participate in the proposed approach.

Introduction To Model-to-Model Transformation
M2M Transformation Principles
ML, X nd other standards
conformsTo (" Motametamodel
Class
conformsTo conformsTo
— UML) editor
Metamodel a Transformation Metamodel b
a 4 | Metamodel
ass ass | [} Cl
conformsTo
Transformation
~Model
conformsTo { ::_IQB:' :uzley; conformsTo
Ma @ L = ] “Mb ®
—————————————————————— ot
o o [ 1 e °©
Skeleton of XML ~ Visual representation of UML diagram
W’ NRIA 10 © 2008 INRIA

Figure 2: Classical “Model to Model transformation” scheme with description of key
elements necessary for transformation. Figure is taken from [10].

Research area is concentrated on the generating “Model a” (Ma on the figure 2). “Model a” is a
concrete type of software model (UML diagram) for concrete project. The description of this model



must be generated by artificial intelligence tools. The research task is to prove that Al may generate
correct model interpreting metamodel a correctly. “Metamodel a” in this scheme is a description of
possible elements of UML diagram. For example, to describe class diagram Metamodel a support
description of class diagram elements (classes and interfaces) and all possible relationships between
them (inheritance, aggregation, composition, and association).

The Text-to-Model transformation (elements “Transformation Metamodel”, "Transformation
Model”, and “MetaModelb”) is done by modelling environment.
The next modelling environments were considered:

Visual studio plug-in for class diagram generating;
DrawlO;
Luquidchart;
PlantUML;
ASTAH UML.
Consider the results of the analysis of the effectiveness of modeling environments for generating
UML diagram text descriptions.

DrawlQO's requirement is to set coordinates for UML diagram elements complicates the creation
of complex formal requests for Al tools.

Figure 3 illustrates a portion of the description for a simple class diagram. Note the pointer on
the right side of the figure.

<mxfile host="Electron" modified="2023-09-18T08:11:36.859Z" agent="5.0 (Windows NT 10.0; Winéd; x64) AppleWebKit/537.36 (KHTML m——
<diagram name="Pagina-1" id="hvcnoKE@sfu6t7ihDg2Q"> =
<mxGraphModel dx="1658" dy="828" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" p
<root>
<mxCell id="@" />
<mxCell id="1" parent="@" />
<mxCell id="2" value="Classname" style="swimlane;fontStyle=1;align=center;verticalAlign=top;childLayout=stackLayout;ho:
<mxGeometry x="340" y="380" width="160" height="86" as="geometry" />
</mxCell>
<mxCell id="3" value="+ field: type" style="text;strokeColor=none;fillColor=none;align=1left;verticalAlign=top;spacinglL
<mxGeometry y="26" width="160" height="26" as="geometry" />
</mxCell>
<mxCell id="4" value="" style="line;strokeWidth=1;fillColor=none;align=1left;verticalAlign=middle;spacingTop=-1;spacing
<mxGeometry y="52" width="160" height="8" as="geometry" />
</mxCell>
<mxCell id="5" value="+ method(type): type" style="text;strokeColor=none;fillColor=none;align=1left;verticalAlign=top;s
<mxGeometry y="60" width="160" height="26" as="geometry" />
</mxCell>
<mxCell id="6" value="Classname" style="swimlane;fontStyle=1;align=center;verticalAlign=top;childLayout=stackLayout;ho
<mxGeometry x="340" y="380" width="160" height="86" as="geometry" /> z
</mxCell>
<mxCell id="7" value="+ field: type" style="text;strokeColor=none;fillColor=none;align=left;verticalAlign=top;spacingL
<mxGeometry y="26" width="160" height="26" as="geometry" />
</mxCell>
<mxCell id="8" value="" style="line;strokeWidth=1;fillColor=none;align=1left;verticalAlign=middle;spacingTop=-1;spacing
<mxGeometry y="52" width="160" height="8" as="geometry" />
</mxCell>

@ No issues found

Figure 3: Example of DrawlO description of UML diagram

RS T et C e T S PR

The next visualization environment considered is Visual Studio. The analysis reveals that the
generated descriptions do not encompass all relationships between elements. Figure 4 exemplifies a
description of two classes that are linked by inheritance. This description shows that inheritance
relationship is missed. It is represented only in file with source code. Additionally, the complexity of
the XML file structure hinders the creation of effective requests for Al technologies.



<?xml version="1.0" encoding="utf-8"7>
<ClassDiagram MajorVersion="1" MinorVersion="1">
<Class Name="ConsoleAppl.Classl">
<Position X="7.5" Y="3.5" Width="1.5" />
<TypeIdentifier>
<HashCode>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=</HashCode>
<FileName>Classl.cs</FileName>
</Typeldentifier>
</Class>
<Class Name="ConsoleAppl.Class2">
<Position X="7.5" Y="2" Width="1.5" />
<TypeIdentifier>
<HashCode>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=</HashCode>
<FileName>Class2.cs</FileName>
</TypeIldentifier>
</Class>
<Font Name="Segoe UI" Size="9" />
</ClassDiagram>

Figure 4: Example of Visual Studio description of UML diagram.

Previous versions of Visual Studio utilized supplementary files, such as those with the .layout
extension, to store information about element placement, color, and other visualization attributes.

A similar analysis was conducted for Gleek and PlantUML. Ultimately, PlantUML was selected
due to its simpler, more accurate text notation for representing UML diagrams. This environment
facilitates the formalization of instructions for Al tools in natural language across various types of
natural languages [11].

5. Description of Technologies Stacks Allowing to Integrate ChatGTP to
Software System for Requirement Analysis

To begin, an API key from OpenAl must be obtained through your account on the OpenAl
website (in the API keys section). Then, a new project should be created using a code editor or an
Integrated Development Environment (IDE) [12].

For ASP.NET Core applications, the OpenAl API client package can be utilized to streamline
communication with the ChatGPT APIs (use the command Install-Package OpenAl from NuGet
packages [13]). This package offers a collection of classes and methods that simplify interaction
with the APIs.

The OpenAlIClient class can be wrapped in a service class that implements an interface. It needs
to be configured with your API key, and methods to transmit text prompts to the ChatGPT API and
receive human-like responses. The Completions method of the OpenAIClient class can be used to
send a completion request to the ChatGPT API This method takes a CompletionRequest object as a
parameter, which should contain the text prompt to be sent to the API. The CompletionRequest
object can be customized with various parameters such as the maximum length of the generated
text, the number of responses to generate, and the value to control the randomness of the generated
text. The Completions method returns a CompletionResponse object, which contains the generated
text as well as other metadata such as the usage statistics and the model used for generation. The
generated text can be extracted from the CompletionResponse object and returned to the user as a
natural language response [14,15].

This service class can be injected into the controller using dependency injection. The controller
should expose endpoints that take user queries or context as input and return natural language
responses generated by the ChatGPT APL

For Node.js applications, an HTTP client library like Axios can be used to communicate with the
ChatGPT APIs. The API key should be incorporated in the request headers, and the request body
should hold the text prompt to be sent to the API. After receiving the API response, it can be parsed



and processed to extract the generated text. The parsed response can then be returned to the user as
a natural language response [13].

Then the endpoints need to be tested to confirm that they are functioning correctly. This can be
done using a tool such as Postman. User queries or context can be passed to the API, and natural
language responses can be returned for testing purposes [14].

Finally, the application can be deployed to a web server or a cloud platform such as Azure or
AWS. When deploying the application, it is important to ensure that the API key is securely stored
and not exposed in the application code or configuration files. The API key should be securely
stored in a configuration file or an environment variable and not hardcoded in the application code.
When deploying the application, it is important to ensure that the API key is not exposed in the
deployment configuration or the application logs. The application can be further enhanced by
implementing features such as user authentication, input validation, and error handling [15].

6. Description of the Proposed Approach

The proposed approach modifies the classical domain engineering methodology by
incorporating the following steps:

6.1. Domain Analysis Stage

During domain analysis, the semantic content of source code is extracted and represented as a
set of epics with corresponding user stories. Al techniques are employed to derive these user stories
from the codebase. To facilitate reuse, these extracted user stories are compared semantically with
those generated during requirement analysis. Subsequently, an Al tool produces behavioral UML
diagrams in PlantUML format. Traceability links are established between the user stories and these
UML diagrams.

This stage leverages Model-Driven Engineering (MDE) principles, specifically Text-to-Text
transformations (source code to user stories) and Text-to-Model transformations (PlantUML
descriptions of UML diagrams).

6.2. Application Engineering Stage

In the application engineering phase, user stories are generated from requirement specifications
or product vision documents using Al tools. A semantic comparison is then conducted between the
project user stories and those derived from the source code. The resulting analysis identifies
potential reusable software components, along with their associated UML diagrams, which are
presented to developers as candidates for reuse.

Figure 5 presents a UML sequence diagram illustrating the proposed approach. The
"Transformation Fundamentals" actor highlights the MDD aspects utilized at each step of the
process.



Requirement_Engineer Developer Al_Tool Transformation_Fundamentals
Provide Source Code

Provide Source Code

Extract Semantics (Text to Text)

Return Epics and User Stories

Provide Epics and User Stories

Provide Requirement Specification

Extract User Stories (Text to Text)

Return User Stories

Provide User Stories

Perform Semantic Comparison

Compare User Stories (Text to Text)

Return Comparison Results

Provide Comparison Results

Generate UML Diagrams

Generate Behavioral UML Diagrams (Model to Text)

Return UML Diagrams

Provide UML Diagrams

Trace User Stories with, UML Diagrams

Trace User Stories (Text to Model)

Return Traced UML Diagrams

Provide Traced UML Diagrams

Perform Semantic Comparison of Project and Source Code User Stories

Compare User Stories (Text to Text)

Return Comparison Results

Provide Comparison Results

Represent Software Components for Reuse

Generate UML Diagrams (Model to Text)

Return UML Diagrams

Provide UML Diagrams

Requirement_Engineer Developer Al_Tool Transformation_Fundamentals

Figure 5: UML sequence diagram, illustrating the proposed approach.

7. Experiment

The experiment aim is to demonstrate the feasibility of addressing research questions using
simple source code modules. ChatGPT Copilot is selected as Al technologies for this purpose. To
investigate language influences, Bulgarian (Cyrillic), Catalan (Romance), and English (Germanic)
are chosen as representative languages.

7.1. Domain Analysis Phase

The experiment employs two Python scripts performing speech-to-text conversion as the source
code. Table 1 outlines the prompts used for domain analysis in the three selected languages.

Table 1
Domain analysis prompts

English

Catalan

Bulgarian

Hello, can you provide a brief

description of what this code
does?
Please generate a list of
corresponding user stories.

Hola, pots donar una breu
descripci6 del que fa aquest
codi?

Si us plau, genera una llista
d’histories d’usuari
corresponents.

3npaseliTe, MOXKeTe JIN A
IaneTe KpaTKO OINCaHIe Ha
TO3M KOQ?
Hsrpapere mcropunte Ha
IIoTpeOuTeN.



Write a PlantUML description
of a sequence diagram
explaining what actions can
be performed by this module.
Write a PlantUML description
of a component diagram as
well.

Construeix una descripci6 del
diagrama de seqiiéncia en
PlantUML de quines accions
es poden realitzar amb aquests
moduls.

I construeix una descripcio del
diagrama de components en
PlantUML de quines accions

es poden realitzar amb aquests

moduls.
Moltes gracies!!!

Then, the Python source code for the class is given:

class Microphone:
def init (self,
# ... code here

file name, voice threshold=15,

[16]

Wsrpapere onmucanne Ha
Jamarpamara Ha
IOCJIEOBATEIHOCTTA B
PlantUML 3a geiicTBusTA,
KOMTO MOTAT Jla C€ U3BBPIIAT
C Te3 MOJYJIN.
Wsrpapere onmucanme Ha
Jamarpamara Ha
komnoHeHuTure B PlantUML 3a
IeVCTBUATA, KOMTO MOTaT Aga
ce M3BBPIIAT C Te3U MOIYJIIN.
Msoro Bu 6marogaps!!!

stop seconds=2):

Result User stories and PlantUML diagrams have been generated. Notably, the generated
UML diagrams are identical regardless of the prompt language.
Furthermore, the number and content of user stories remain consistent across different
prompts. An example of a generated user story is provided below.
want to KaTto paspaboTtumk 3a codryep

As a developer, | Com a desenvolupador, vull

initialize  the microphone inicialitzar el modul del a3 uckam ga uHMuManusMpam

module so that | can capture microfon per capturar moayn 3a MUKpodoH ¢ uen aa

voice commands. comandes de veu. ce 3anuwar rnacosure
KOMaHAaW.

7.2. Application Engineering Phase

The product vision document from a customer is obtained (see figure 6).

>

Figure 6: The project vision document, obtained from a customer

Explanation of product vision document: Please write me “Speech to Text” module on python

Table 2
Prompts of requirement engineer
English Catalan Bulgarian

Hello! I need to write a Hola! Necessito escriure 3npaBeii, ICKaM J1a HAITWIIIA
‘speech to text’ application in una aplicacié de ‘conversa a TPHIOKECHHETO KOETO
Python. text’ en Python. KOHBEPTHUPA «IJ1aC B TEKCT» Ha

Python.

Please, generate me wuser Genera histories d’usuari i Mo, reHeprupaii MU UCTOPHHN
stories and epics for this ¢piques per a [Daplicaci6 3a moTpeOTens w enumu 3a



application

‘conversa a text’, si us plau.

TOBA MMPUITOKECHUC

Result user stories are generated. Their content do not depend upon prompt language.

The number and sense of user stories for all prompts are the same.

Example of one user story is provided below

As a user, I want to be able to
convert my spoken words into
text so that I can save time on

typing.

Com a wusuari, vull poder
convertir les meves paraules
parlades en text per estalviar
temps en escriure.

Karo morpeburen wnckam n1a
Mora na npeoOpa3yBam
HU3TOBOPECHUTEC cu JaymMm B
TEKCT, 3a Jia CIIeCTs] Bpeme 3a
MUCAaHe.

7.3. Semantic comparison of requirement specification and source code

Table 3
Semantic comparison prompts
English Catalan Bulgarian
Hello i have two arrays of Hola, tinc dues llistes 3npaBeiiTe, wWMaM  JBa
user stories. d’histories d’usuari. Habopa OT TOTPEeOHTEICKH
HUCTOpHH.
Please, compare them Si us plau, compara-les Mouns, CpaBHETE s

semantically and give me an
advice which user stories from
the second list may be used to
create software for the first list

array 1 (future project)
As a user, I want to be able
to convert my spoken words
my speech, so
that may be used later.

array 2 (user stories of
existing components)

As a developer, I want

...... I want to hear
playback of audio responses.

Thank you!

semanticament i prepara una
llista d’histories d’usuari de la
segona llista que signifiquin el
mateix que les histories
d’usuari de la primera llista.

llista 1 (futur projecte)

Com a usuari, vull poder
convertir les meves paraules
parlades

......... . el meu discurs
perque més tard.

llista 2 (histories d’usuari
de components existents)

Com a desenvolupador, vull
...... vull escoltar  la
reproducci6  de  respostes
d’audio.

Moltes gracias!!!!

CEMAaHTHYHO U MU aaﬁTe CBbBCT
Kou HOTpe6I/ITCJ'ICKI/I HUCTOpUN
OT BTOpUA CIHHUCHBK MOTaT [a
Obnat W3M0JI3BaHU 3a
ch3maBaHe Ha coTyep 3a
IbPBUA CIMCHK.

Hab6op 1 (0Baem mpoekT):

Karo morpeburen uckam na
Mora ga KOHBEpTUpaM MOMTE
MPOU3HECEHH AYMHL......

OT pedTa MH, Taka d4e Ja
MOXe Ja ce H3M0J3Ba Io-
KBCHO.

HaGop 2 (cpmecTByBamm

KOMIIOHEHTH ):

Karo paspaboTunk
HCKaM...... UCKaM  J1a  4ys
BB3MPOM3BEKIAHE HA ayIuo
OTTOBOPH.

bnaronaps!

The user stories that have the same semantics are defined. For this project the first user story
corresponds to the list of other stories that describe realization of voice commands of software

components

As a user, I want to be able to
convert my spoken words into
text so that I can save time on

typing.

As a developer, I want to

Com a wusuari, vull poder
convertir les meves paraules
parlades en text per estalviar
temps en escriure.

Com a desenvolupador, wvull

Kato moTpeburen, a3 uckam na
npeBLpHa KAa3aHUTC IIYMI/I B
TEKCTA.

Karo pazpaborumk uckam na
MHHIMAIA3IpAM  MOJyJa  3a




initialize ~ the  microphone
module so that I can capture
voice commands.

As a system user, | want to
open an audio stream to
receive voice input.

As a voice command system
user, I want to read audio data
from the microphone module.

As a user interacting with the
voice command system, I want
to start and stop recording
voice commands.

As a system administrator, I
want to save recorded audio
files for analysis or archival
purposes.

inicialitzar el modul del
microfon per poder capturar
comandes de veu.

Com a usuari del sistema, vull
obrir un flux d’audio per rebre
entrada de veu.

Com a usuari del sistema de
comandes de veu, vull llegir
dades d’audio del modul del
microfon.

Com a usuari que interactua
amb el sistema de comandes de
veu, vull comencar i aturar la
gravacio de comandes de veu.

Com a administrador del
sistema, vull guardar els fitxers
d’audio gravats per a I’analisi
o fins arxivistics.

MukpodoH, 3a ma Mora Ja
YJIaBsIM TJIACOBY KOMaH/IH.

Karo cucremen motpeburen
HCKaM J1a OTBOPS ayauo MOTOK,
3a Jia MoJy4yaBaM TJIacoB BXOJ.
Karo morpeburen Ha cucrema
3a TJacOBM KOMAaHIHM UCKaM Ja
Yyera ayiuo JAaHHH OT MOAyJa
3a MEKPO(dOH.

Karo  motpeburen, koiito
B3aUMOJIEHCTBA ChC CUCTEMATA
3a TJIAaCOBU KOMaHJIH, HCKaM Jia

3aroyBam nu cnnpaM
3alIMCBAHETO HAa  IJIAaCOBH
KOMaHIH.

Karo CUCTEMEH
aIMUHUCTPATOp HWCKaM  Jia

3ama3BaM 3alvCaHHuTe ayauo
(daiimoBe 3a aHAM3 WA

apXMBHUpaHE.

8. Conclusion

The paper proposes the approach to estimate the feasibility of reusing software development
artifacts during requirement analysis. This approach is grounded in the semantic analysis of
software modules and a subsequent comparison between the semantics of these modules and user
requirements. User stories are employed as semantic attributes for both software development
artifacts and requirement analysis artifacts.

Artificial intelligence plays a crucial role in automating routine tasks such as recognizing
software component semantics and comparing user stories derived from both source code and
requirement analysis.

The proposed approach offers several advantages through the utilization of artificial intelligence:

It enables the search for software components written in different programming languages.
It eliminates limitations imposed by the natural language used by developers and
requirement engineers.
It facilitates efficient processing of extensive requirement specifications.
It reduces human involvement in discovering the semantics of software development
artifacts.

e [tincreases the likelihood of reducing development time and costs.

9. Acknowledgements

This paper is performed as a part of a research project “Ingenieria de dominio para los
desarrollos de inteligencia artificial” (Domain engineering for artificial intelligence development) de
Instituto de Investigacion en Inteligencia Artificial (IIIA, Catalonia, Spain), Consejo Superior de
Investigaciones Cientificas (CSIC, Spain).

I would like to express my sincere gratitude to Professor Carles Sierra, Research Professor and
Director of the Artificial Intelligence Research Institute (IIIA) at CSIC, for his exceptional leadership
and unwavering support throughout this project, guidance in both technical and organizational
aspects, as well as his encouragement in my Catalan language studies.



Additionally, I would like to extend my heartfelt thanks to Joan Jené, Head of the Technology
Transfer & Development Unit (UDT) at the IIIA, for generously providing the source code modules
essential for experiments [16], as well as his encouragement in my Catalan language studies.

References

[1] “ISO/IEC/IEEE 24765:2017 Systems and software engineering — Vocabulary”

https://www.iso.org/standard/71952.html

[2] A., Linvin, O., Palagin, V., Kaverinsky, K., Malakhov. “Ontology-driven development of
dialogue systems.” South African Computer Journal, vol. 35, no. 1, 2023, pp. 37-62.
https://doi.org/10.18489/sacj.v3511.1233.

[3] Palagin, O., Kaverinsky, V., Petrenko, M., Malakhov, K. “Digital Health Systems: Ontology-
Based Universal Dialog Service for Hybrid E-Rehabilitation Activities Support.” Proceedings
of the 2023 IEEE 12th International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS), Dortmund,
Germany, vol. 1, 2023, pp. 84—89. https://doi.org/10.1109/IDAACS58523.2023.10348639.

[4] Boiarskyi, O., Popereshnyak, S. “Automated System and Domain-Specific Language for
Medical Data Collection and Processing.” In: Babichev, S., Lytvynenko, V. (eds) Lecture
Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on
Data Engineering and Communications Technologies, vol. 77, Springer, Cham, 2022, pp. 25.
https://doi.org/10.1007/978-3-030-82014-5_25.

[5] Palagin, O., Kaverinskiy, V., Petrenko, M. G., Malakhov, K. "Fundamentals of the Integrated
Use of Neural Network and Ontolinguistic Paradigms: A Comprehensive Approach.”
Cybernetics and Systems Analysis, vol. 60, no. 1, 2024, pp. 111-123.
https://doi.org/10.1007/s10559-024-00652-z.

[6] Masol, V., Popereshnyak, S. "Joint Distribution of Some Statistics of Random Bit
Sequences." Cybernetics and Systems Analysis, vol. 57, no. 1, 2021, pp. 139-145.
https://doi.org/10.1007/s10559-021-00337-x.

[7] Tynymbayev, S., Gnatyuk, S., Ibraimov, M., Namazbayev, T., Mukasheva, A. "Cybersecurity
Providing in Information and Telecommunication Systems." CEUR Workshop Proceedings,
vol. 3654, Kyiv, Ukraine, 2024, pp. 513-519.

[8] Popereshnyak, S. "Technique of the Testing of Pseudorandom Sequences." International
Journal of Computing, vol. 19, no. 3, 2020, pp- 387-398.
https://doi.org/10.47839/ijc.19.3.1888.

[9] Baisholan, N., Turdalyuly, M., Gnatyuk, S., Baisholanova, K., Kubayev, K. "Implementation
of Machine Learning Techniques to Detect Fraudulent Credit Card Transactions on a
Designed Dataset." Journal of Theoretical and Applied Information Technology, vol. 101, no.
13, 2023.

[10] Figure model to model transformation is taken from
https://wiki.eclipse.org/images/9/90/OMCW chapterl0 Modelplex-WP6
Training_IntroductionToM2M.pdf

[11] “PlantUML Language Reference Guide (1.2020.22)”
https://pdf.plantuml.net/1.2020.22/PlantUML_Language Reference Guide en.pdf

[12] Ranasinghe, N. "Effortlessly Integrate OpenAl ChatGPT APIs in .NET Core 7
WebAPI with Ease." Medium, 2023. URL.:

https://medium.com/@nirajranasinghe/effortlessly-integrate-openai-chatgpt-apis-in-net-core-
7-web-api-with-ease-7658ab26afc3.

[13] Friedner, J. "Make an API Request to Chat GPT-4 with Next.js Using JavaScript."
Medium, 2023. URL: https://medium.com/@JohanFriedner/make-an-api-request-to-chat-gpt-
4-with-next-js-using-javascript-c238b47bd88a.

[14] Tripathy, J. "ChatGPT Integration in ASP.NET Core Using OpenAl" Jayant
Tripathy, 2023. URL: https://jayanttripathy.com/chatgpt-integration-in-asp-net-core-using-
openai/.



[15] "ChatGPT Completions in ASP.NET Core Web APL" C# Corner, 2023. URL:
https://www.c-sharpcorner.com/article/chatgpt-completions-in-asp-net-core-web-api/.

[16] Jené, J “Source code, taken for experiment”
https://drive.google.com/file/d/1 WxoRGndDxMEMMgdK3tScqA7CcrQVhG7o/view?usp=dr
ive link



