
Quantum Circuit Based Longest Common Substring
Domenico Cantone

1,†
, Simone Faro

1,†
, Arianna Pavone

2,‡
and Caterina Viola

1,*,†

1Università di Catania, viale A. Doria n.6, 95125, Catania, Italy
3Università di Palermo, via Archirafi n.34, 90123, Palermo, Italy

Abstract
The Longest Common Substring (LCS) poses classical challenges in computer science, pivotal for string

processing. Classically, the problem is tackled with linear time algorithms leveraging suffix trees. Recent

breakthroughs in the quantum domain have unveiled sublinear solutions for LCS, demanding 𝒪̃(𝑛2/3) quantum

queries. Yet, these strides are tailored for the quantum query model, which treats input as a black box accessible

via an oracle. In contrast, in this paper we delve into these challenges within the circuit model of computation.

Here, circuit size gauges structural complexity, while depth identifies execution time on a quantum platform.

As the query model complexity sets a baseline, any direct quantum circuit implementation yields a depth and

size of at least Ω̃(𝑛2/3) for LCS. The main result of this paper is the introduction of a quantum algorithm

for LCS in the circuit model, which, despite its 𝒪̃(𝑛3/2) size, achieves a groundbreaking 𝒪̃(
√
𝑛) depth,

surpassing prior solutions. Notably, our algorithm is streamlined and readily translatable into quantum

protocols. Furthermore, we demonstrate its practicality through a quantum circuit implementation operating

in 𝒪(
√
𝑛 log5(𝑛)) time-steps.

Keywords
Quantum Computing, Text Processing, Sequence Analysis

1. Introduction

Quantum computing is a rapidly developing field within computer science that utilizes the principles

of quantum mechanics to create more powerful computing systems operating in a markedly different

way from classical computers. Unlike classical computers, which rely on bits (either 0 or 1) to process

information, quantum computing leverages qubits, which can exist in multiple states simultaneously.

Additionally, quantum entanglement, a physical phenomenon that allows two or more qubits to

perform operations simultaneously, can be used to combine multiple qubits to perform faster and

more efficient operations than classical bits. These unique features give quantum computers an

advantage over classical ones, particularly in areas such as code-breaking and optimization, allowing

them to perform certain calculations at an exceptional speed.

Quantum computing has had a significant impact on the development of algorithms, with some of

the most notable advancements being Shor’s algorithm [1] for factoring large numbers and Grover’s

algorithm [2] for unstructured search. These algorithms provide exponential and quadratic speed-ups

over classical algorithms, respectively, serving as impressive demonstrations of the power of quantum

ICTCS’24: Italian Conference on Theoretical Computer Science, September 11–13, 2024, Torino, Italy
*
Corresponding author.

†
Supported by National Centre for HPC, Big Data and Quantum Computing, Project CN00000013, affiliated to Spoke 10,

co-founded by the European Union - NextGenerationEU.

‡
Supported by PNRR project ITSERR - Italian Strengthening of the ESFRI RI RESILIENCE

$ domenico.cantone@unict.it (D. Cantone); faro@dmi.unict.it (S. Faro); ariannamaria.pavone@unipa.it (A. Pavone);

caterina.viola@unict.it (C. Viola)

� 0000-0002-1306-1166 (D. Cantone); 0000-0001-5937-5796 (S. Faro); 0000-0002-8840-6157 (A. Pavone);

0000-0001-7042-3912 (C. Viola)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:domenico.cantone@unict.it
mailto:faro@dmi.unict.it
mailto:ariannamaria.pavone@unipa.it
mailto:caterina.viola@unict.it
https://orcid.org/0000-0002-1306-1166
https://orcid.org/0000-0001-5937-5796
https://orcid.org/0000-0002-8840-6157
https://orcid.org/0000-0001-7042-3912
https://creativecommons.org/licenses/by/4.0

computing and sparking a surge of interest in further research and development in the field. However,

it is the recent demonstration of quantum supremacy that has unleashed a wave of interest in quantum

computing, leading to the integration of these new technologies in various areas of computer science.

Only recently, text processing and string problems have become a topic of interest within the realm

of quantum computation (see for instance [3, 4, 5]). This paper focuses on the fundamental Longest

Common Substring (LCS) problem, which holds a crucial position in the field of string processing.

The LCS problem asks for the longest substring that appears in two given input strings 𝑥 and 𝑦 of

the same length 𝑛.

In the realm of classical computation, the LCS problem admits a linear time solution [6]. The

solution to this problem involves the construction of the generalized suffix trees [7] for the input

strings and the identification of the lowest common ancestors among the tree nodes.
1

It is reasonable to

wonder about harnessing quantum technology to solve LCS more efficiently. In a recent paper [9], Le

Gall and Seddighin proposed quantum solutions for the LCS problem based on a composition of other

known quantum algorithms, such as Grover’search [2], string matching [3], element distinctness [10],

and amplitude amplification and estimation [11]. Specifically, for the LCS they proposed a solution

requiring 𝒪̃(𝑛5/6) queries.

More interestingly, in [9], the authors proved that any quantum algorithm for LCS must take at

least Ω̃(𝑛2/3) time, even when binary strings are considered. After a while, Akmal and Jin reached in

[12] the lower bound stated by Le Gall and Seddighin with a quantum algorithm in 𝒪̃(𝑛2/3) time,

improving the previous result, using the MNRS quantum walk framework [13], together with a

careful combination of string synchronizing sets [14] and generalized difference covers [15].

The efficiency of previous solutions [9, 12] is measured in the query complexity model [3, 16], also

known as the quantum oracle model (see [17]), where the input is presented as a black box that can

be accessed by an oracle that, given a function 𝑓 , returns the image of the input (or other variables

depending on it) via 𝑓 . The query complexity of an algorithm expressed in this model is defined as

the number of queries that the algorithm makes to the oracle(s). However, while the query model

presents an intriguing and abstract framework valuable for purely theoretical exploration, its practical

relevance may be limited in the context of algorithm design for real hardware implementation. This

limitation arises from the challenge of efficiently implementing an oracle, as the methodology for

doing so is frequently unclear. Alternatively, there are different models of quantum computation that

easily and almost directly translate to concrete implementations on quantum computers.
2

The complexity of a quantum algorithm is de facto best expressed in the computational complexity

model [18], where the input is encoded as a binary string and supplied to the algorithm, which

computes an output string. In such a model, an algorithm is expressed using the quantum Turing

machine model [19] or the quantum circuit model [20]. Perhaps, this latter is one of the most

widespread among such models, considering that there are several programming languages featuring

the circuit formalism, such as IBM’s Qiskit, Microsoft’s Q#, and Google’s Cirq, just to cite a few.

The computational complexity of a quantum circuit can be measured by its size (the number of gates)

or by its depth (the number of layers). We refer to Section 2.1 for details on the computational model

based on quantum circuits and a discussion about the measures used to calculate its complexity.

Thus, given that any quantum oracle comprises at least one gate, and gates are applied sequentially

in an algorithm adhering to the query complexity model, the query complexity of solutions given

1

We also mention an algorithm [8] working in the word RAM model of computation when the size 𝜎 of the input alphabet

is in 2𝑜(
√

log(𝑛+𝑚))
. Such solution runs in𝒪

(︀
(𝑛+𝑚) log 𝜎/

√︀
log(𝑛+𝑚)

)︀
time using𝒪

(︀
(𝑛+𝑚) log 𝜎/ log(𝑛+𝑚)

)︀
space.

2

We observe that contemporary quantum computers do not have yet the memory capabilities to deal with the large number

of qubits involved in our algorithm.

Problem Paper Query Compl. Circuit Size Circuit Depth

exact LCS [9] 𝒪̃(𝑛5/6) Ω̃(𝑛5/6) Ω̃(𝑛5/6)

exact LCS [12] 𝒪̃(𝑛2/3) Ω̃(𝑛2/3) Ω̃(𝑛2/3)

exact LCS This paper - 𝒪̃(𝑛3/2) 𝒪̃(
√
𝑛)

Table 1
A comparison of quantum solutions on LCS. The time complexities for [9] are unknown due to their reliance

on random-access oracles, which lack a circuit-level construction in the referenced paper.

in [9] and [12] establishes a lower bound for both the size and the depth of any quantum circuit

implementing the same algorithms. Consequently, the optimal hypothetical circuit-based solution

would necessitate a depth (and a size) of Ω̃(𝑛2/3) (see Table 1).

In this paper we present the first quantum algorithm for the LCS problem in the circuit model of

computation, providing an actual implementation of a quantum circuit that works in 𝒪̃(
√
𝑛) depth,

despite its 𝒪̃(𝑛3/2) size. Specifically, our proposed approach leads to the definition of an effective

circuit that requires 𝒪(
√
𝑛 log4(𝑛)) depth in the case of binary strings, and 𝒪(

√
𝑛 log5(𝑛)) depth in

the general case.

At first glance, our result might seem contradictory to that of Le Gall and Seddighin; however, in

fact, the comparison of the two results shows how in quantum computation space efficiency can be

traded off for time efficiency. While Le Gall and Seddighin access the input by querying a quantum

oracle, we have direct access to the input, which is encoded on a circuit register. Instead of claiming

the preferability of one model over the other, we aim to draw the reader’s attention to the differences

between them. The query model allows one to study and analyse quantum algorithms without

worrying about the technicalities around the construction of any specific oracle, and has been the

framework of the first outstanding attempts to design algorithms that exhibit a theoretical advantage

against classical ones.

Another significant difference lies in the ways in which the two algorithms access any input string

𝑠. In [9], the authors assume a QRAM (Quantum Random Access Memory) model [21]. Specifically, it

is assumed that the string 𝑠 can be accessed directly by a random access oracle that performs, at unit

cost, unitary mappings of the kind |𝑖⟩|𝑎⟩|𝑧⟩ → |𝑖⟩|𝑎⊗ 𝑠[𝑖]⟩|𝑧⟩, where 𝑖 is a string position such that

0 ⩽ 𝑖 < 𝑛, 𝑎 ∈ Σ is a character, 𝑧 ∈ {0, 1}*, and ⊗ denotes an appropriate binary operation defined

on Σ. However, we point out that the most efficient QRAM designs [22, 23] exhibit a polylogarithmic

time complexity for accessing the memory with respect to its size. In our scenario, the memory size

is 𝒪(𝑛), which implies that QRAM queries will incur an additional multiplicative cost of at least

𝒪(log2(𝑛)). Moreover, we must consider the overhead of initializing the quantum memory, which

requires 𝒪(𝑛) operations [24].

In contrast, our algorithm does not rely on a random access oracle, but we assume, as in [4, 25],

that the input registers are already stored in a quantum memory and do not need initialization.

Ultimately, our approach stands apart from the previous results due to its inherent simplicity, which

enables us not only to provide a circuit-level blueprint, but also to assess the quantum resources

required for its implementation.

The paper is organized as follows. In Section 2, we review some useful preliminaries. Next, in

Section 3, we provide an abstract view of the algorithm for solving the LCS problem. Then, in Section

4, we describe an actual implementation of the same algorithm within the circuit-based model. Finally,

in Section 5, we briefly draw our conclusions.

2. Preliminaries

We represent a string 𝑥 of length 𝑛 ⩾ 1, over a finite alphabet Σ of size 𝜎, as a finite array 𝑥[0 .. 𝑛−1],
and denote the empty string by 𝜀. We also denote by 𝑥[𝑖] the (𝑖+ 1)-st character of 𝑥, for 0 ⩽ 𝑖 < 𝑛,

and by 𝑥[𝑖 .. 𝑗] the substring of 𝑥 contained between the (𝑖 + 1)-st and the (𝑗 + 1)-st characters

of 𝑥, for 0 ⩽ 𝑖 ⩽ 𝑗 < 𝑛. A 𝑘-substring of a string 𝑥 is any substring of 𝑥 of length 𝑘. For ease

of notation, the (𝑖 + 1)-st character of the string 𝑥 will also be denoted by the symbol 𝑥𝑖, so that

𝑥 = 𝑥0𝑥1 . . . 𝑥𝑛−1. A substring of 𝑥 beginning at position 0 is a prefix of 𝑥. We use the notation 𝑥:𝑖
to indicate the prefix of 𝑥 of length 𝑖.

For any two strings 𝑥 and 𝑦 of length 𝑛, we say that 𝑥 and 𝑦 have a common 𝑘-substring if there

exist two indices 0 ⩽ 𝑖, 𝑗 < 𝑛− 𝑘 such that 𝑥[𝑖 .. 𝑖+ 𝑘 − 1] = 𝑦[𝑗 .. 𝑗 + 𝑘 − 1]. In particular, when

the indices 𝑖 and 𝑗 coincide, we say that 𝑥 and 𝑦 share a 𝑘-substring at position 𝑖. The expression

𝑥 · 𝑦 denotes the concatenation of 𝑥 and 𝑦. Furthermore, given a string 𝑥 of length 𝑛 and a shift

0 ⩽ 𝑗 < 𝑛, we denote by
#»𝑥 𝑗 the cyclic rightward rotation of the characters of 𝑥 by 𝑗 positions. More

formally, we have
#»𝑥 𝑗 := 𝑥[𝑛− 𝑗 .. 𝑛− 1] · 𝑥[0 .. 𝑛− 𝑗 − 1].

Due to space limitations, we assume the reader is familiar with essential concepts in quantum

computation, including qubits, bra-ket notation, amplitudes, quantum entanglement, and measure-

ment. Multiple qubits taken together are referred to as quantum registers. Specifically, a quantum

register |𝜓⟩ = |𝑞0, 𝑞1, . . . , 𝑞𝑛−1⟩ of 𝑛 qubits is the tensor product

⨂︀𝑛−1
𝑖=0 |𝑞𝑖⟩ of its constituent qubits.

If 𝑘 is an integer value that can be represented as a binary string of length 𝑛, we use the symbol |𝑘⟩
to denote the register

⨂︀𝑛−1
𝑖=0 |𝑘𝑖⟩ of 𝑛 qubits, where |𝑘𝑖⟩ takes the value of the 𝑖-th most significant

binary digit of 𝑘. Thus, the quantum register |8⟩ with 4 qubits is given by |8⟩ = |1000⟩.
Operators in quantum computing are mathematical entities used to represent functional processes

that result in the change of the state of a quantum register. Although there is no problem in realizing

any quantum operator capable of working in constant time on a quantum register of fixed size,

operators of variable size can only be implemented through the composition of elementary gates.

Given a function 𝑓 : {0, 1}𝑛 → {0, 1}, any quantum operator that maps a register containing the

value of a given input 𝑥 ∈ {0, 1}𝑛 into a register whose value depends on 𝑓(𝑥) is called a quantum
oracle. A Boolean oracle 𝑈𝑓 maps a register |𝑥⟩ ⊗ |0⟩, of size 𝑛+ 1, to the register |𝑥⟩ ⊗ |𝑓(𝑥)⟩. More

formally, 𝑈𝑓 |𝑥, 0⟩ = |𝑥, 𝑓(𝑥)⟩. A phase oracle 𝑃𝑓 for a function 𝑓 : {0, 1}𝑛 → {0, 1} takes as input

a quantum register |𝑥⟩, where 𝑥 ∈ {0, 1}𝑛, and leaves its value unchanged, while applying to it a

negative global phase only when 𝑓(𝑥) = 1, that is, only if 𝑥 is a solution for the function. More

formally, 𝑃𝑓 |𝑥⟩ = (−1)𝑓(𝑥)|𝑥⟩. Intuitively, a Boolean oracle is a black-box function that outputs a

binary result (0 or 1) based on the input. A phase oracle, instead of giving a classical output, alters

the phase of the quantum state if a certain condition is met, flipping its sign. Thus, while the Boolean

oracle returns a bit, the phase oracle encodes the result directly into the quantum state’s phase,

important for algorithms like Grover’s search.

2.1. The Quantum Circuit Model and Its Complexity Measures

In this paper we adopt the circuit model of computation [18]. David Deutsch was the first to formulate

the idea of the quantum circuit model [26] to encapsulate quantum computations, although, in his

original formalization, Deutsch uses the term quantum network.

In fact, quantum circuits are networks composed of wires that carry qubit values to gates that

perform elementary operations on qubits. The qubits move through the circuit in a linear fashion,

where the input values are written onto the wires entering the circuit from the left side, while the

output values are read off the wires leaving the circuit on the right side. At every time step, each

wire can enter at most one gate.

Formally, the quantum circuit model constitutes a broader framework than the classical circuit

model. As in a classical circuit, the size, or number of gates involved in a quantum circuit, is a measure

of its computational complexity, since it represents the number of elementary operations required to

execute a given quantum algorithm: the more gates or operators are applied in a circuit, the more

complex the operation the circuit is performing. This measure becomes even more meaningful within

the quantum framework due to the inherent susceptibility of modern quantum computers to gate

errors. As the number of gates increases, the reliability of the final outcome diminishes, necessitating

the implementation of error correction methods.

On the other hand, it is imperative to acknowledge that, unlike classical computation, where only

one gate can be executed at a time regardless of circuit structure, a quantum computer enjoys the

remarkable advantage of concurrently executing two (or more) gates, provided they do not involve the

same set of qubits [27, 28]. This characteristic of quantum computation, coupled with superposition

and entanglement, underpins quantum supremacy.
3

Hence, size does not consistently represent the most precise measure of complexity in quantum

computation, often providing only a rough approximation of an algorithm’s intricacy. The com-

plexity of a quantum algorithm depends on various factors, including the types of gates used, qubit

connectivity within the quantum processor, and especially the circuit depth — defined as the number

of layers required for parallel execution, where a qubit participates in at most one interaction per

layer [29]. It is important to note that the depth of a circuit does not necessarily correspond to its

size, as gates acting on disjoint sets of qubits can often be applied in parallel.

As quantum gates necessitate implementation time, the depth of a circuit in modern quantum

computers approximately correlates with the duration required for the quantum computer to execute

the circuit. Consequently, circuit depth serves as a crucial metric to assess the feasibility of running a

quantum circuit on a device.
4

In addition, enabling the realization of quantum algorithms in the near future with existing

technology appears contingent upon the development of shallow-depth quantum circuits [29]. Qubits

are susceptible to decoherence, rendering them prone to spontaneous state fluctuations, thereby

limiting the duration of feasible operations. Maximizing the utilization of these delicate qubits

necessitates the circuit depth reduction [27] and, therefore, the parallelization of circuits.
5

In recent years, the complexity of quantum states has emerged as a pivotal quantity of interest

spanning various domains, ranging from quantum computing [30] to black hole theory [31]. Reflecting

this burgeoning interest, Haferkamp et al. [32] recently validated the Brown and Susskind conjecture

[33], asserting that the complexity of quantum circuits typically experiences linear growth with circuit

depth over an exponentially protracted period, ultimately reaching saturation when the number of

applied gates surpasses a threshold that scales exponentially with the number of qubits.

For the reasons stated above, in this paper, our objective is to provide a solution to the LCS problem,

where the measure of complexity is more directed towards circuit depth rather than size.

3

We observe that even in the absence of quantum entanglement, simultaneous operations on all qubits remain feasible.

Utilizing 𝑛 qubits permits 𝑛 concurrent operations per time step. Nevertheless, in theory, a quantum computer comprising

𝑛 qubits could emulate the functionality of a classical computer outfitted with 𝑛 processors.

4

The depth of a circuit is considered the measure of complexity in many quantum languages. See for example https:

//docs.quantum.ibm.com/api/qiskit/0.43/circuit

5

It is noteworthy that achieving parallelism within the quantum circuit model mandates the capability to interact with

spatially distant qubits. Various implementations may impose physical constraints on the extent of such interaction.

Nonetheless, recent advancements in quantum computing [1–7] have demonstrated successful realization of long-range

qubit interactions in several proposed schemes.

https://docs.quantum.ibm.com/api/qiskit/0.43/circuit
https://docs.quantum.ibm.com/api/qiskit/0.43/circuit

Quantum-LCS(𝑥, 𝑦, 𝑛):
1. ℓ← 0; 𝑟 ← 𝑛
2. while ℓ < 𝑟 do

3. 𝑑← ⌊(ℓ+ 𝑟)/2⌋
4. if ∃ 𝑖, 𝑗 ∈ {0, . . . , 𝑛− 1} : #»𝑥 𝑗 [𝑖 .. 𝑖+ 𝑑− 1] = 𝑦[𝑗 .. 𝑗 + 𝑑− 1] ← Quantum test

5. then ℓ← 𝑑
6. else 𝑟 ← 𝑑− 1
7. return ℓ

Figure 1: The pseudocode of the algorithm for computing the LCS between two strings, 𝑥 and 𝑦, of length 𝑛.

The quantum part of the algorithm reduces to the iterative test of line 4.

3. Quantum Longest Common Substring in the Circuit Model

In this section, we first describe our quantum algorithm for computing the LCS within an abstract

model, in order to better understand its design, by defining the quantum oracles involved in the

computation, but without giving their actual implementation. Later, we will show that our abstract

algorithm requires 𝒪̃(
√
𝑛) queries to oracles.

6
Subsequently, we will present an actual implementation

of our algorithm in the circuit-based computational model. Our algorithm, named Quantum-LCS,

comprises a quantum computation-based and a classical computation-based components. Its simple

underlying structure is summarized in the pseudocode shown in Figure 1.

The classical part of the computation involves a binary search to determine the length 𝑑 of the

longest common substring of 𝑥 and 𝑦 (line 2). During each iteration, the algorithm checks for a

common substring of length 𝑑 between 𝑥 and 𝑦. Let [ℓ .. 𝑟] be the interval over which the binary

search is restricted during an iteration of the algorithm, and let 𝑑 = ⌊(ℓ+ 𝑟)/2⌋ be its median. The

values of ℓ and 𝑟 are initialized to 0 and 𝑛, respectively. If the iterative test returns a positive answer,

then the interval is narrowed to [𝑑 .. 𝑟], otherwise it is narrowed to [ℓ .. 𝑑− 1]. The search identifies

the length 𝑑 of the longest common substring in 𝒪(log(𝑛)) steps.

The quantum part of the algorithm implements the test of line 4. In what follows, we will focus

exclusively on the implementation of such iterative test. Before describing the details of the quantum

procedure for the iterative test, we formalize some assumptions we make along the description.

Since a quantum register of dimension log(𝑛) can take on all values between 0 and 𝑛 − 1, like

any binary sequence of the same dimension, for simplicity we will assume that both input strings

𝑥 and 𝑦 have length 𝑛 = 2𝑝, for some 𝑝 > 0. We also assume that 𝑥 and 𝑦 end with two different

special characters, $ and %, respectively, not belonging to the alphabet Σ. These assumptions can be

made without any loss of generality, since it would suffice to take the smallest value 𝑝 for which we

have 𝑛 < 2𝑝 and concatenate the text with 2𝑝 − 𝑛 copies of the special character. For instance, if

𝑥 = abaacbcbbca is a text of length 11, we silently concatenate it with 5 copies of the character $,

i.e., we assume that 𝑥 = abaacbcbbca$$$$$. This assumption does not affect on the asymptotic

complexity, as the resulting string is at most twice as long as the original.

Despite any substring of length 𝑑 can begin at any position 𝑗 of the text, for 0 ⩽ 𝑗 ⩽ 𝑛 − 𝑑, in

this paper we also admit values of 𝑗 between 0 and 𝑛− 1, thus assuming that a substring of the text

can be obtained in a circular way. Even such an assumption can be made without loss of generality,

since the last character of 𝑥 and 𝑦 are the special character $ and %, respectively, and therefore no

substring obtained circularly can ever be returned as LCS.

6

We would like to point out that in counting the number of queries requested by our algorithm, we do not intend to

compute its query complexity, since we work within the circuit-based computational approach that does not conform to

the constraints of the query-based model.

For the sake of simplicity and due to space constraints, we restrict to circuits algorithms designed

for processing binary strings. This further simplification, however, does not lead to any substantial

change in our results since, assuming that each character can be represented with (at most) log(𝑛)
bits, it is easy to show that the quantum operators used in the construction of the algorithm would

undergo an increase in their complexity at most equal to a factor of log(𝑛).

3.1. The Quantum Iterative Test

Given two strings 𝑥 and 𝑦, both of length 𝑛, and a bound 𝑑 ⩽ 𝑛, the quantum test checks for the

presence of a common substring of length 𝑑 between 𝑥 and 𝑦.

The abstract procedure for the iterative test is outlined in Figure 2. It consists of three phases, each

implemented by a quantum sub-procedure: (1) a search phase, (2) a verification phase, and (3) a final

check. The output of the iterative test is the output of the final check. In this section we describe in

detail the role, structure, and complexity of each of the phases and then discuss the overall complexity

of the iterative test.

The search phase makes use of the Grover’s search algorithm [2] for finding (with high probability)

a solution (if any) to a black box function, making just 𝒪(
√
𝑛) queries to the function. Specifically,

the input black box to the algorithm is accessed by a phase oracle 𝑃𝜓 implementing the function

𝜓(𝑥,𝑦) : {0, . . . , 𝑛− 1}×{0, . . . , 𝑛− 1} −→ {0, 1}, which depends on the strings 𝑥 and 𝑦. Given the

two input parameters 𝑗 and 𝑑, with 0 ⩽ 𝑗, 𝑑 < 𝑛, the phase oracle 𝑃𝜓 tests whether the two strings

#»𝑥 𝑗 and 𝑦 share a 𝑑-substring. The function 𝜓(𝑥,𝑦) is defined, for all 0 ⩽ 𝑗, 𝑑 < 𝑛, as

𝜓(𝑥,𝑦)(𝑗, 𝑑) =

{︂
1 if ∃ 𝑖 ∈ {0, . . . , 𝑛− 1} : #»𝑥 𝑗 [𝑖 .. 𝑖+ 𝑑− 1] = 𝑦[𝑖 .. 𝑖+ 𝑑− 1]
0 otherwise.

(1)

When the values of𝑥 and 𝑦 are clear from the context, for simplicity we will use the symbol𝜓 instead

of 𝜓(𝑥,𝑦). Using this convention, the phase oracle 𝑃𝜓 operates so as to achieve the transformation

𝑃𝜓|𝑗⟩ = (−1)𝜓(𝑗)|𝑗⟩, for all 𝑗 ∈ {0, 1}log(𝑛). In Section 4.1, we show how the phase oracle 𝑃𝜓 can

be effectively implemented by means of a circuit having depth 𝒪(log3(𝑛)).
After 𝒪(

√
𝑛) iterations of Grover’s algorithm, the procedure returns a potential solution 𝑗 to the

problem, such that
#»𝑥 𝑗 and 𝑦 share a 𝑑-substring. However, since such a solution may not exist (a case

in which the search would return a random state 0 ⩽ 𝑗 < 𝑛), it is necessary to run the subsequent

verification procedures to check whether the returned state is an actual solution of the function.

Assuming
#»𝑥 𝑗 and 𝑦 share a 𝑑-substring, the verification phase again makes use of Grover’s search

algorithm in order to identify a position 𝑖within the strings such that
#»𝑥 𝑗 [𝑖 .. 𝑖+𝑑−1] = 𝑦[𝑖 .. 𝑖+𝑑−1].

In this case, the input black box to the algorithm is a phase oracle 𝑃𝜙 implementing the function

𝜙(𝑥,𝑦) : {0, . . . , 𝑛− 1} × {0, . . . , 𝑛− 1} × {0, . . . , 𝑛− 1} −→ {0, 1}, where, for all strings 𝑥 and 𝑦,

and for all 0 ⩽ 𝑖, 𝑗, 𝑑 < 𝑛, we have:

𝜙(𝑥,𝑦)(𝑖, 𝑗, 𝑑) =

{︂
1 if

#»𝑥 𝑗 [𝑖 .. 𝑖+ 𝑑− 1] = 𝑦[𝑖 .. 𝑖+ 𝑑− 1]
0 otherwise.

(2)

Therefore, the oracle𝑃𝜙 operates so as to achieve the phase transformation𝑃𝜙|𝑖⟩|𝑗⟩|𝑑⟩ = (−1)𝜙(𝑖,𝑗,𝑑)|𝑖⟩|𝑗⟩,
for all 𝑖, 𝑗, 𝑑 ∈ {0, 1}log(𝑛). In Section 4.1, we provide an implementation of the phase oracle 𝑃𝜙 that

operates in 𝒪(log3(𝑛)) time.

Even in this case, after 𝒪(
√
𝑛) iterations of Grover’s algorithm, the procedure returns a potential

position 𝑖, such that
#»𝑥 𝑗 [𝑖 .. 𝑖+ 𝑑− 1] = 𝑦[𝑖 .. 𝑖+ 𝑑− 1].

Quantum test:

1. 𝑗 ← get a random 𝑘 such that
#»𝑥 𝑘

and 𝑦 (possibly) share a 𝑑-substring (Search phase)

2. 𝑖← get a random 𝑘 such that
#»𝑥 𝑗 [𝑘 .. 𝑘 + 𝑑− 1] is (possibly) equal to 𝑦[𝑘 .. 𝑘 + 𝑑− 1] (Verification)

3. check if
#»𝑥 𝑗 [𝑖 .. 𝑖+ 𝑑− 1] is equal to 𝑦[𝑖 .. 𝑖+ 𝑑− 1] (Final check)

Figure 2: The structure of the quantum test used in the algorithm in Figure 1. The test comprises three

phases, each of which is implemented as a quantum procedure.

Ultimately, the quantum test ends by checking whether the two substrings of length 𝑑 beginning

at position 𝑖 of the strings
#»𝑥 𝑗 and 𝑦 are indeed equal. Such a final check can be exactly computed

through a single execution of the quantum oracle 𝑈𝜙 implementing the function 𝜙 defined in (2).

The whole structure of the quantum test is depicted in Figure 2. The first two phases require both

𝒪(
√
𝑛) queries to the oracles 𝑃𝜓 and 𝑃𝜙, respectively, while the last check requires a single query to

the Boolean oracle 𝑈𝜙. Therefore, the quantum iterative test requires 𝒪(
√
𝑛) queries.

We point out that, when a solution exists, both the search and verification phases may fail with a

probability 𝒪(1/𝑛), due to the internal randomness of Grover’s algorithm. When the search phase

or the verification phase returns a value that is not a solution of the respective function, the final

check fails by returning the value 0. In such a case, we can simply repeat the whole test an arbitrary

constant number of times in order to suppress the probability of failure. The test terminates when a

common substring is found, or when such an attempt fails an arbitrary number of times.

The overall number of queries needed to solve the problem is 𝒪(
√
𝑛 log(𝑛)), since the execution

of the quantum iterative test requires 𝒪(
√
𝑛) queries and the binary search for the length of the LCS

requires 𝒪(log(𝑛)) iterations.

4. A Circuit-Model Based Implementation

In this section we provide an actual implementation of the iterative test shown in Figure 2 within the

circuit-based computational model. The purpose of this translation is to provide a direct implementa-

tion of the algorithm in a quantum computer and evaluate the actual resources required.

The three steps of the iterative test are implemented by the three circuits reported in Figure 5. Only

three operators are used as building-blocks in the three circuits: the circular shift (ROT) operator,

the shared fixed substring checking (SFC) operator, and the fixed prefix matching (FPM) operator

(see Table 2). We observe that the oracles used in the actual circuits of Fig.5 are implemented as

Boolean oracles rather than as phase oracles. These are denoted as 𝑈𝜓 and 𝑈𝜙 instead of 𝑃𝜓 and 𝑃𝜙,

respectively. However, we recall that initializing the output register of a Boolean oracle to the value

|−⟩ allows it to behave like a phase oracle.

For lack of space, in this section we only provide a brief overview of how these operators are

structured, referring the reader to the appropriate references.

A circular shift operator (or rotation operator) ROT applies a rightward shift of 𝑠 positions to a

register of 𝑛 qubits for a fixed parameter 0 ⩽ 𝑠 < 𝑛. Thus, the element at position 𝑖 is moved to

position (𝑖+ 𝑠) mod 𝑛. Such an operator has been effectively used in other quantum text searching

algorithms [4, 5]. The details of its construction have been detailed by Pavone and Viola in [34],

where it is shown that the resulting operator can be executed in 𝒪(𝑛 log(𝑛)) size and 𝒪(log(𝑛))
depth.

In our implementation we make use of the controlled version of the circular shift operator, which

applies a circular rotation of a number of positions, depending on an input value 𝑗 such that 0 ⩽ 𝑗 < 𝑛.

Operator Symbol Size Depth B.S. Depth G.C. Ref.

Controlled Circular Shift ROT 𝒪(𝑛 log(𝑛)) 𝒪(log2(𝑛)) 𝒪(log2(𝑛)) [34]

Shared Fixed Substring Check SFC 𝒪(𝑛 log(𝑛)) 𝒪(log3(𝑛)) 𝒪(log4(𝑛)) [35, 25]

Fixed Prefix Matching FPM 𝒪(𝑛 log(𝑛)) 𝒪(log3(𝑛)) 𝒪(log4(𝑛)) [35, 25]

Table 2
The three operators used in the implementation of our circuits, with an indication of their size and their depth

in the case of binary strings (B.S.) and in the general case (G.C.).

More formally, for all 𝑥 ∈ {0, 1}𝑛 and all 𝑗 ∈ {0, 1}log(𝑛), the controlled circular shift operator

performs the mapping ROT|𝑗⟩|𝑥⟩ = |𝑗⟩| #»𝑥 𝑗⟩.
The controlled variant of the circular shift operator can be implemented by means of a well-known

technique [5] that involves the use of log(𝑛) ancillæ qubits for the application of all parallel operators

controlled by the same qubit, with an overhead of 𝒪(log(𝑛)) in both size the depth. Thus, the operator

achieves 𝒪(𝑛 log2(𝑛)) size and 𝒪(log2(𝑛)) depth.

The shared fixed substring checking (SFC) operator addresses the following simple string matching

problem, in which, given two strings 𝑥 and 𝑦, both of length 𝑛, and a bound 𝑑 ⩾ 0, one wants to check

whether 𝑥 and 𝑦 share a common 𝑑-substring, i.e., if there exists a position 𝑖, with 0 ⩽ 𝑖 < 𝑛− 𝑑,

such that 𝑥[𝑖 .. 𝑖+ 𝑑− 1] = 𝑦[𝑖 .. 𝑖+ 𝑑− 1]. In other words, the SFC operator computes the function

𝜓(𝑥,𝑦)(𝑗, 𝑑) for the special case where 𝑗 = 0, that is, 𝑥 does not undergo any cyclic rotation. More

formally, given a bound 𝑑 ⩽ 𝑛, the SFC operator, for all 𝑥, 𝑦 ∈ {0, 1}𝑛 and 𝑑 ∈ {0, 1}log(𝑛), is defined

by SFC|𝑥⟩|𝑦⟩|𝑑⟩|0⟩ = |𝑥⟩|𝑦⟩|𝑑⟩|𝜓(𝑥,𝑦)(0, 𝑑)⟩.
The construction of a quantum circuit implementing the SFC operator has been recently proposed

in [35], where the authors provide a circuit with a 𝒪(log3(𝑛)) depth in the case of binary input

strings and a circuit with a 𝒪(log4(𝑛)) depth in the general case. The size of the circuit is𝑂(𝑛 log(𝑛))
in both cases. We do not provide here further details on the construction of the operator but refer to

[35] for any structural aspects of the corresponding circuit.

Given two strings 𝑥 and 𝑦, both of length 𝑛, and a bound 𝑑 ⩽ 𝑛, the fixed prefix matching (FPM)

operator performs a simple check to determine whether the first 𝑑 characters of the string 𝑥 match

their counterparts in the string 𝑦. Roughly speaking, the FPM operator checks if 𝑥:𝑑 = 𝑦:𝑑. More

formally, for all 𝑥, 𝑦 ∈ {0, 1}𝑛, and all 𝑑 ∈ {0, 1}log(𝑛), the FPM operator is defined by

FPM|𝑥⟩|𝑦⟩|𝑑⟩|0⟩ = |𝑥⟩|𝑦⟩|𝑑⟩|𝜙(𝑥,𝑦)(0, 0, 𝑑)⟩.

The construction of a quantum circuit implementing the FPM operator has also been recently pro-

posed in [35], where the authors give a circuit with a depth of 𝒪(log3(𝑛)) for the case of binary input

strings and a circuit with a depth of 𝒪(log4(𝑛)) for the general case. The size of the corresponding

circuit is 𝑂(𝑛 log(𝑛)) in both cases.

We are now ready to describe the quantum circuits that implement the three phases of the quantum

iterative test. All circuits make use of two registers |𝑥⟩ and |𝑦⟩, both of size 𝑛, which we assume

to contain the characters of the two input strings 𝑥 and 𝑦, respectively. We also assume that these

registers are already stored in a quantum memory and do not need initialization. All circuits involve

the presence of an input register |𝑑⟩, of size ⌈log(𝑑)⌉ ⩽ log(𝑛), containing the binary representation

of the bound 𝑑 ⩽ 𝑛. The initialization of such input register requires 𝒪(log(𝑛)) time. The output of

the computation, for all circuits, is stored in the |𝑜𝑢𝑡⟩ register consisting of a single qubit.

|𝑗⟩ |𝑥⟩ |𝑦⟩ |𝑑⟩ |𝑟⟩ |𝑜𝑢𝑡⟩

|𝑗⟩ |𝑥⟩ |𝑦⟩ |𝑑⟩ |0⟩ |0⟩ ← initialization

|𝑗⟩ | #»𝑥 𝑗⟩ |𝑦⟩ |𝑑⟩ |0⟩ |0⟩ ← application of ROT|𝑗⟩|𝑥⟩
|𝑗⟩ | #»𝑥 𝑗⟩ |𝑦⟩ |𝑑⟩ |𝜓(#»𝑥 𝑗 ,𝑦)(0, 𝑑)⟩ |0⟩ ← application of SFC|𝑥⟩|𝑦⟩|𝑑⟩|𝑟⟩
|𝑗⟩ | #»𝑥 𝑗⟩ |𝑦⟩ |𝑑⟩ |𝜓(#»𝑥 𝑗 ,𝑦)(0, 𝑑)⟩ |𝜓(#»𝑥 𝑗 ,𝑦)(0, 𝑑)⟩ ← application of CX|𝑟⟩|𝑜𝑢𝑡⟩
|𝑗⟩ | #»𝑥 𝑗⟩ |𝑦⟩ |𝑑⟩ |0⟩ |𝜓(#»𝑥 𝑗 ,𝑦)(0, 𝑑)⟩ ← application of SFC

†|𝑥⟩|𝑦⟩|𝑑⟩|𝑟⟩
|𝑗⟩ |𝑥⟩ |𝑦⟩ |𝑑⟩ |0⟩ |𝜓(#»𝑥 𝑗 ,𝑦)(0, 𝑑)⟩ ← application of ROT

†|𝑗⟩|𝑥⟩

Figure 3: The evolution of the six registers (|𝑗⟩, |𝑥⟩, |𝑦⟩, |𝑑⟩, |𝑟⟩, and |𝑜𝑢𝑡⟩) involved in the computation of

the Boolean oracle 𝑈𝜓 , whose circuit is depicted in Figure 5

.

|𝑖⟩ |𝑗⟩ |𝑥⟩ |𝑦⟩ |𝑑⟩ |𝑟⟩ |𝑜𝑢𝑡⟩

|𝑖⟩ |𝑗⟩ |𝑥⟩ |𝑦⟩ |𝑑⟩ |0⟩ |0⟩ initialization

|𝑖⟩ |𝑗⟩ | #»𝑥 𝑗⟩ |𝑦⟩ |𝑑⟩ |0⟩ |0⟩ application of ROT|𝑗⟩|𝑥⟩
|𝑖⟩ |𝑗⟩ | #»𝑥 𝑗+𝑖⟩ |𝑦⟩ |𝑑⟩ |0⟩ |0⟩ application of ROT|𝑖⟩|𝑥⟩
|𝑖⟩ |𝑗⟩ | #»𝑥 𝑗+𝑖⟩ | #»𝑦 𝑖⟩ |𝑑⟩ |0⟩ |0⟩ application of ROT|𝑖⟩|𝑦⟩
|𝑖⟩ |𝑗⟩ | #»𝑥 𝑗+𝑖⟩ | #»𝑦 𝑖⟩ |𝑑⟩ |𝜙(#»𝑥 𝑗+𝑖, #»𝑦 𝑖)(0, 0, 𝑑)⟩ |0⟩ application of FPM|𝑥⟩|𝑦⟩|𝑑⟩|𝑟⟩
|𝑖⟩ |𝑗⟩ | #»𝑥 𝑗+𝑖⟩ | #»𝑦 𝑖⟩ |𝑑⟩ |𝜙(#»𝑥 𝑗+𝑖, #»𝑦 𝑖)(0, 0, 𝑑)⟩ |𝜙(#»𝑥 𝑗+𝑖, #»𝑦 𝑖)(0, 0, 𝑑)⟩ application of CX|𝑟⟩|𝑜𝑢𝑡⟩
|𝑖⟩ |𝑗⟩ | #»𝑥 𝑗+𝑖⟩ | #»𝑦 𝑖⟩ |𝑑⟩ |0⟩ |𝜙(#»𝑥 𝑗+𝑖, #»𝑦 𝑖)(0, 0, 𝑑)⟩ application of FPM

†|𝑥⟩|𝑦⟩|𝑑⟩|𝑟⟩
|𝑖⟩ |𝑗⟩ | #»𝑥 𝑗+𝑖⟩ |𝑦⟩ |𝑑⟩ |0⟩ |𝜙(#»𝑥 𝑗+𝑖, #»𝑦 𝑖)(0, 0, 𝑑)⟩ application of ROT

†|𝑖⟩|𝑦⟩
|𝑖⟩ |𝑗⟩ | #»𝑥 𝑗⟩ |𝑦⟩ |𝑑⟩ |0⟩ |𝜙(#»𝑥 𝑗+𝑖, #»𝑦 𝑖)(0, 0, 𝑑)⟩ application of ROT

†|𝑖⟩|𝑥⟩
|𝑖⟩ |𝑗⟩ |𝑥⟩ |𝑦⟩ |𝑑⟩ |0⟩ |𝜙(#»𝑥 𝑗+𝑖, #»𝑦 𝑖)(0, 0, 𝑑)⟩ application of ROT

†|𝑗⟩|𝑥⟩

Figure 4: The evolution of the seven registers (|𝑖⟩, |𝑗⟩, |𝑥⟩, |𝑦⟩, |𝑑⟩, |𝑟⟩, and |𝑜𝑢𝑡⟩) involved in the computa-

tion of the Boolean oracle 𝑈𝜙, as shown in Figure 5.

4.1. Implementing the Circuits for the Three Phases

The circuit for the search phase is depicted on the top of Figure 5. It makes use of the additional |𝑗⟩
register, of size log(𝑛), which holds the rotation values of the string 𝑥. It is initialized to |+⟩log(𝑛), in

order to maintain, at the initial stage, the superposition of all possible rotation values between 0 and

𝑛− 1. The |𝑟⟩ register, of a single qubit initialized to |0⟩, stores the output of the SFC operator.

The core of the quantum procedure involves applying Grover’s search algorithm on the phase

oracle, 𝑈𝜓 , of the 𝜓(𝑥,𝑦) function, as defined in (1). The Boolean oracle 𝑈𝜓 takes the two registers |𝑗⟩
and |𝑑⟩ as input, and is implemented through the ROT and SFC operators. The output of the SFC

operator is stored in the qubit |𝑟⟩, while the output of 𝑈𝜓 is stored on the |𝑜𝑢𝑡⟩ register, which is

initialized to |−⟩ to make 𝑈𝜓 to behave as a phase oracle.

In Figure 3, we show the evolution of the 6 registers involved in the computation of the Boolean

oracle 𝑈𝜓 , namely |𝑗⟩|𝑥⟩|𝑦⟩|𝑑⟩|𝑟⟩ and |𝑜𝑢𝑡⟩ (see also Figure 5).

Specifically, the application on the register |𝑥⟩ of the ROT operator, controlled by the register |𝑗⟩,
allows |𝑥⟩ to be modified so that it contains the superposition of all its possible cyclic rotations. Next,

the application of the SFC operator on the registers |𝑑⟩, |𝑥⟩, and |𝑦⟩ allows the procedure to identify a

possible position 𝑖 (if any) for which
#»𝑥 𝑗 [𝑖 .. 𝑖+ 𝑑− 1] = 𝑦[𝑖 .. 𝑖+ 𝑑− 1]. Note that the application of

the SFC operator is done in parallel, for all possible rotations of the register |𝑥⟩. The oracle completes

its computation by saving the output of the SFC operator into the |𝑜𝑢𝑡⟩ register and uncomputing

the entire process by applying the inverse operators in their reverse order.

Regarding the depth of the circuit for the search phase, we can observe that the ROT and the

Repeat≈𝜋/4
√
𝑛 times⏞ ⏟

S
e
a
r
c
h
P
h
a
s
e

log(𝑛)

𝑛

𝑛

log(𝑛)

|𝑗⟩ 𝐻 Diff

|𝑥⟩ rot𝑗

S

F

C

S

F

C

rot𝑗

|𝑦⟩
|𝑑⟩
|𝑟⟩

|𝑜𝑢𝑡⟩ 𝐻

𝑈𝜓

.

Repeat≈𝜋/4
√
𝑛 times⏞ ⏟

V
e
r
i
f
i
c
a
t
i
o
n
P
h
a
s
e

log(𝑛)

log(𝑛)

𝑛

𝑛

|𝑖⟩ 𝐻 Diff

|𝑗⟩
|𝑥⟩ rot𝑗 rot𝑖

F

P

M

F

P

M

rot𝑖 rot𝑗

|𝑦⟩ rot𝑖 rot𝑖

|𝑑⟩
|𝑟⟩

|𝑜𝑢𝑡⟩ 𝐻

𝑈𝜙

F
i
n
a
l
C
h
e
c
k

log(𝑛)

log(𝑛)

𝑛

𝑛

|𝑖⟩
|𝑗⟩
|𝑥⟩ rot𝑗 rot𝑖

F

P

M

F

P

M

rot𝑖 rot𝑗

|𝑦⟩ rot𝑖 rot𝑖

|𝑑⟩
|𝑟⟩

|𝑜𝑢𝑡⟩

𝑈𝜙

Figure 5: The quantum circuits implementing the three phases of the iterative test of the Quantum-LCS

algorithm. For simplicity, the circuits do not contain all the ancillæ qubits. The operators in gray color

represent the inverse operators.

SFC operators have a depth equal to 𝒪(log2(𝑛)) and 𝒪(log3(𝑛)), respectively. The same is true for

their inverse, while the Grover’s diffuser is executed in 𝒪(log(log(𝑛))) time. Since Grover’s search

requires iterating the phase oracle and diffuser a number of times equal to 𝒪(
√
𝑛), we state that the

depth of circuit implementing the search phase is 𝒪(
√
𝑛 log3(𝑛)).

Once the value 𝑗 has been returned by the search phase, the circuit for the verification phase again

uses Grover’s search algorithm to identify the position 𝑖, with 0 ⩽ 𝑖 < 𝑛, for which
#»𝑥 𝑗 [𝑖 .. 𝑖+𝑑−1] =

𝑦[𝑖 .. 𝑖+ 𝑑− 1] holds. The circuit, depicted in the middle of Figure 5, uses the |𝑗⟩ register containing

the output of the search phase, and the |𝑖⟩ register, holding the position values of the two strings,

initialized to |+⟩log(𝑛), in order to maintain, at the initial stage, the superposition of all possible

position values between 0 and 𝑛− 1. The qubit |𝑟⟩, initialized to |0⟩, stores the output of the operator.

At the heart of the quantum circuit lies the application of Grover’s search algorithm to the function

𝜙(𝑥,𝑦,𝑑), as outlined in equation (2). The quantum phase oracle, 𝑈𝜙, for the function 𝜙(𝑥,𝑦,𝑑) operates

on the input register |𝑖⟩, and is executed using the ROT and the FPM operators. The output from

the FPM operator is stored in the register |𝑟⟩, while the output from the oracle 𝑈𝜙 gets stored in the

|𝑜𝑢𝑡⟩ register, a single qubit that is initially set to |−⟩ in order to make 𝑈𝜙 to behave as a phase oracle

within the Grover’s search procedure.

In Figure 4, we outline the evolution of the seven registers (|𝑖⟩, |𝑗⟩, |𝑥⟩, |𝑦⟩, |𝑑⟩, |𝑟⟩, and |𝑜𝑢𝑡⟩)
involved in the computation of the Boolean oracle 𝑈𝜙, as depicted in Figure 5.

Specifically, we apply the ROT operator on the register |𝑥⟩, controlled by the register |𝑗⟩, allowing

|𝑥⟩ to be modified in order to contain the cyclic rotation of 𝑗 positions. Next, an application of the

rotation operator controlled by register |𝑖⟩ to both registers |𝑥⟩ and |𝑦⟩ allows the two strings to be

rotated by a shift of the same value. Note that, after the application of these operators, the register

|𝑥⟩ contains the superposition of all possible rotations of
#»𝑥 𝑗 , while |𝑦⟩ contains the superposition of

all its possible rotations. Formally, the application of the FPM operator on the registers |𝑥⟩ and |𝑦⟩
allows the procedure to check if

#»𝑥 𝑗 [0 .. 𝑑− 1] = 𝑦[0 .. 𝑑− 1], for all possible rotations of
#»𝑥 𝑗 and 𝑦.

The oracle completes its computation by saving the output into the |𝑜𝑢𝑡⟩ register and uncomputing

the entire process by applying the inverse operators in reverse order.

Regarding the depth of the circuit for the verification phase, we observe that three ROT operators

have a depth equal to𝒪(log2(𝑛)), as well as their inverse. The FPM operator is executed in𝒪(log3(𝑛))
time-steps, while the Grover’s diffuser on the register |𝑖⟩ requires 𝒪(log(log(𝑛))) time-steps. Since

Grover’s search requires 𝒪(
√
𝑛) iteration, we can conclude that the depth of the circuit implementing

the verification phase is equal to 𝒪(
√
𝑛 log3(𝑛)).

The circuit for the final check takes as input two registers, |𝑖⟩ and |𝑗⟩, containing the output of

the search phase and the verification phase, respectively, and checks whether
#»𝑥 𝑗 [𝑖 .. 𝑖+ 𝑑− 1] =

𝑦[𝑖 .. 𝑖+ 𝑑− 1]. Such a circuit is obtained by means of the Boolean oracle 𝑈𝜙. Thus, the resulting

circuit implementing the final check has a depth equal to 𝒪(log3(𝑛)).
Ultimately, the three phases achieve 𝒪(

√
𝑛 log3(𝑛)), 𝒪(

√
𝑛 log3(𝑛)), and 𝒪(log3(𝑛)) time-steps,

respectively. This allows us to state that the quantum iterative test has a 𝒪(
√
𝑛 log3(𝑛)) overall depth

and that, therefore, the Quantum-LCS algorithm admits an effective implementation that achieves a

𝒪(
√
𝑛 log4(𝑛)) depth in the case of binary strings. This complexity grows by a logarithmic factor,

reaching 𝒪(
√
𝑛 log5(𝑛)) in the general case.

5. Conclusions

In this paper we provided a concrete implementation of the first quantum algorithm for the LCS

problem within the circuit model, achieving a significant milestone in the development of practical

quantum algorithms. While previous works in the query model offer valuable theoretical insights, our

approach emphasizes the importance of circuit-based implementations for real-world applications,

where practical considerations such as quantum resource requirements and hardware constraints

play a crucial role. By directly encoding the input into the circuit register, we achieve a time

complexity of 𝒪(
√
𝑛 log4(𝑛)), highlighting the trade-offs between time and space efficiency in

quantum computation. Our results not only advance the state of quantum algorithms for LCS but also

highlight the broader implications for circuit-based quantum computing, where optimizing resources

is essential. Future work will continue to explore these trade-offs further and aim to refine quantum

algorithms for practical deployment on quantum hardware.

We are confident that a similar approach could be used to develop a quantum solution for the

Longest Palindromic Substring (LPS) problem with comparable computational complexity. In future

work, we will focus on this goal, aiming to extend our findings to address the LPS problem with

equivalent efficiency.

References

[1] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer, SIAM J. Comp. 26 (1997) 1484–1509. doi:10.1137/s0097539795293172.

[2] L. K. Grover, A fast quantum mechanical algorithm for database search, in: Proceedings of the

Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, ACM, New York,

NY, USA, 1996, pp. 212–219. URL: https://doi.org/10.1145/237814.237866. doi:10.1145/237814.
237866.

[3] H. Ramesh, V. Vinay, String matching in 𝑜̃(
√
𝑛 +

√
𝑚) quantum time, Journal of Dis-

crete Algorithms 1 (2003) 103–110. URL: https://www.sciencedirect.com/science/article/pii/

S1570866703000108. doi:https://doi.org/10.1016/S1570-8667(03)00010-8.

[4] P. Niroula, Y. Nam, A quantum algorithm for string matching, npj Quantum Information 7

(2021). doi:10.1038/s41534-021-00369-3.

[5] D. Cantone, S. Faro, A. Pavone, Quantum string matching unfolded and extended, in: M. Kutrib,

U. Meyer (Eds.), Reversible Computation - 15th International Conference, RC 2023, Giessen,

Germany, July 18-19, 2023, Proceedings, volume 13960 of Lecture Notes in Computer Science,

Springer, 2023, pp. 117–133. URL: https://doi.org/10.1007/978-3-031-38100-3_9. doi:10.1007/
978-3-031-38100-3_9.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd ed., The

MIT Press, 2001.

[7] Bieganski, Riedl, Cartis, Retzel, Generalized suffix trees for biological sequence data: applications

and implementation, in: 1994 Proceedings of the Twenty-Seventh Hawaii International Confer-

ence on System Sciences, volume 5, 1994, pp. 35–44. doi:10.1109/HICSS.1994.323593.

[8] P. Charalampopoulos, T. Kociumaka, S. Pissis, J. Radoszewski, Faster algorithms for longest

common substring, in: P. Mutzel, R. Pagh, G. Herman (Eds.), 29th Annual European Symposium

on Algorithms (ESA 2021), Leibniz International Proceedings in Informatics (LIPIcs), Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik GmbH, Dagstuhl Publishing, 2021, pp. 1–17. doi:10.
4230/LIPIcs.ESA.2021.30.

[9] F. L. Gall, S. Seddighin, Quantum meets fine-grained complexity: Sublinear time quantum

algorithms for string problems, Algorithmica 85 (2023) 1251–1286. URL: https://doi.org/10.1007/

s00453-022-01066-z. doi:10.1007/s00453-022-01066-z.

[10] A. Ambainis, Quantum walk algorithm for element distinctness, SIAM J. Comput. 37 (2007) 210–

239. URL: https://doi.org/10.1137/S0097539705447311. doi:10.1137/S0097539705447311.

[11] G. Brassard, P. Høyer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation,

in: S. G. Lo Monaco, H. E. Brandt (Eds.), Quantum Computation and Information, volume

305 of Contemporary Mathematics, American Mathematical Society, 2002, pp. 53–74. URL:

https://doi.org/10.1090%2Fconm%2F305%2F05215. doi:10.1090/conm/305/05215.

[12] S. Akmal, C. Jin, Near-optimal quantum algorithms for string problems, Algorith-

mica 85 (2023) 2260–2317. URL: https://doi.org/10.1007/s00453-022-01092-x. doi:10.1007/
S00453-022-01092-X.

[13] F. Magniez, A. Nayak, J. Roland, M. Santha, Search via quantum walk, SIAM J. Comput. 40

(2011) 142–164. URL: https://doi.org/10.1137/090745854. doi:10.1137/090745854.

[14] D. Kempa, T. Kociumaka, String synchronizing sets: sublinear-time BWT construction and

optimal LCE data structure, in: M. Charikar, E. Cohen (Eds.), Proceedings of the 51st Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,

2019, ACM, 2019, pp. 756–767. URL: https://doi.org/10.1145/3313276.3316368. doi:10.1145/
3313276.3316368.

http://dx.doi.org/10.1137/s0097539795293172
https://doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/237814.237866
https://www.sciencedirect.com/science/article/pii/S1570866703000108
https://www.sciencedirect.com/science/article/pii/S1570866703000108
http://dx.doi.org/https://doi.org/10.1016/S1570-8667(03)00010-8
http://dx.doi.org/10.1038/s41534-021-00369-3
https://doi.org/10.1007/978-3-031-38100-3_9
http://dx.doi.org/10.1007/978-3-031-38100-3_9
http://dx.doi.org/10.1007/978-3-031-38100-3_9
http://dx.doi.org/10.1109/HICSS.1994.323593
http://dx.doi.org/10.4230/LIPIcs.ESA.2021.30
http://dx.doi.org/10.4230/LIPIcs.ESA.2021.30
https://doi.org/10.1007/s00453-022-01066-z
https://doi.org/10.1007/s00453-022-01066-z
http://dx.doi.org/10.1007/s00453-022-01066-z
https://doi.org/10.1137/S0097539705447311
http://dx.doi.org/10.1137/S0097539705447311
https://doi.org/10.1090%2Fconm%2F305%2F05215
http://dx.doi.org/10.1090/conm/305/05215
https://doi.org/10.1007/s00453-022-01092-x
http://dx.doi.org/10.1007/S00453-022-01092-X
http://dx.doi.org/10.1007/S00453-022-01092-X
https://doi.org/10.1137/090745854
http://dx.doi.org/10.1137/090745854
https://doi.org/10.1145/3313276.3316368
http://dx.doi.org/10.1145/3313276.3316368
http://dx.doi.org/10.1145/3313276.3316368

[15] S. Burkhardt, J. Kärkkäinen, Fast lightweight suffix array construction and checking, in: R. A.

Baeza-Yates, E. Chávez, M. Crochemore (Eds.), Combinatorial Pattern Matching, 14th Annual

Symposium, CPM 2003, Morelia, Michocán, Mexico, June 25-27, 2003, Proceedings, volume 2676

of Lecture Notes in Computer Science, Springer, 2003, pp. 55–69. URL: https://doi.org/10.1007/

3-540-44888-8_5. doi:10.1007/3-540-44888-8_5.

[16] A. Montanaro, Quantum pattern matching fast on average, Algorithmica 77 (2017) 16–39. URL:

https://doi.org/10.1007/s00453-015-0060-4. doi:10.1007/s00453-015-0060-4.

[17] A. S. Arora, A. Coladangelo, M. Coudron, A. Gheorghiu, U. Singh, H. Waldner, Quantum

depth in the random oracle model, in: Proceedings of the 55th Annual ACM Symposium on

Theory of Computing, ACM, 2023. URL: https://doi.org/10.1145%2F3564246.3585153. doi:10.
1145/3564246.3585153.

[18] R. Cleve, An introduction to quantum complexity theory, in: Quantum Computation and

Quantum Information Theory, WORLD SCIENTIFIC, 2001, pp. 103–127. URL: https://doi.org/10.

1142%2F9789810248185_0004. doi:10.1142/9789810248185_0004.

[19] E. Bernstein, U. V. Vazirani, Quantum complexity theory, SIAM J. Comput. 26 (1997) 1411–1473.

URL: https://doi.org/10.1137/S0097539796300921. doi:10.1137/S0097539796300921.

[20] A. C. Yao, Quantum circuit complexity, in: 34th Annual Symposium on Foundations of Computer

Science, Palo Alto, California, USA, 3-5 November 1993, IEEE Computer Society, 1993, pp. 352–

361. URL: https://doi.org/10.1109/SFCS.1993.366852. doi:10.1109/SFCS.1993.366852.

[21] K. Phalak, A. Chatterjee, S. Ghosh, Quantum random access memory for dummies, 2023.

arXiv:2305.01178.

[22] V. Giovannetti, S. Lloyd, L. Maccone, Quantum random access memory, Physical Re-

view Letters 100 (2008). URL: https://doi.org/10.1103%2Fphysrevlett.100.160501. doi:10.1103/
physrevlett.100.160501.

[23] V. Giovannetti, S. Lloyd, L. Maccone, Architectures for a quantum random access memory,

Physical Review A 78 (2008). URL: https://doi.org/10.1103%2Fphysreva.78.052310. doi:10.1103/
physreva.78.052310.

[24] D. K. Park, F. Petruccione, J.-K. K. Rhee, Circuit-based quantum random access memory for

classical data, Scientific Reports 9 (2019). URL: https://doi.org/10.1038%2Fs41598-019-40439-3.

doi:10.1038/s41598-019-40439-3.

[25] D. Cantone, S. Faro, A. Pavone, C. Viola, Quantum circuits for fixed substring matching problems,

in: To appear in Proceedings of the 12th Computing Conference, London, United Kingdom,

11-12 July 2024, 2024. To appear.

[26] D. Deutsch, Quantum computational networks, Proceedings of the Royal Society of London. A.

Mathematical and Physical Sciences 425 (1989) 73 – 90. URL: https://api.semanticscholar.org/

CorpusID:123073680.

[27] C. Moore, M. Nilsson, Parallel quantum computation and quantum codes, SIAM J.

Comput. 31 (2001) 799–815. URL: https://doi.org/10.1137/S0097539799355053. doi:10.1137/
S0097539799355053.

[28] F. Green, S. Homer, C. Moore, C. Pollett, Counting, fanout and the complexity of quantum ACC,

Quantum Inf. Comput. 2 (2002) 35–65. URL: https://doi.org/10.26421/QIC2.1-3. doi:10.26421/
QIC2.1-3.

[29] A. Broadbent, E. Kashefi, Parallelizing quantum circuits, Theor. Comput. Sci. 410 (2009) 2489–

2510. URL: https://doi.org/10.1016/j.tcs.2008.12.046. doi:10.1016/J.TCS.2008.12.046.

[30] F. G. Brandão, W. Chemissany, N. Hunter-Jones, R. Kueng, J. Preskill, Models of quantum

complexity growth, PRX Quantum 2 (2021) 030316. URL: https://link.aps.org/doi/10.1103/

PRXQuantum.2.030316. doi:10.1103/PRXQuantum.2.030316.

https://doi.org/10.1007/3-540-44888-8_5
https://doi.org/10.1007/3-540-44888-8_5
http://dx.doi.org/10.1007/3-540-44888-8_5
https://doi.org/10.1007/s00453-015-0060-4
http://dx.doi.org/10.1007/s00453-015-0060-4
https://doi.org/10.1145%2F3564246.3585153
http://dx.doi.org/10.1145/3564246.3585153
http://dx.doi.org/10.1145/3564246.3585153
https://doi.org/10.1142%2F9789810248185_0004
https://doi.org/10.1142%2F9789810248185_0004
http://dx.doi.org/10.1142/9789810248185_0004
https://doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1137/S0097539796300921
https://doi.org/10.1109/SFCS.1993.366852
http://dx.doi.org/10.1109/SFCS.1993.366852
http://arxiv.org/abs/2305.01178
https://doi.org/10.1103%2Fphysrevlett.100.160501
http://dx.doi.org/10.1103/physrevlett.100.160501
http://dx.doi.org/10.1103/physrevlett.100.160501
https://doi.org/10.1103%2Fphysreva.78.052310
http://dx.doi.org/10.1103/physreva.78.052310
http://dx.doi.org/10.1103/physreva.78.052310
https://doi.org/10.1038%2Fs41598-019-40439-3
http://dx.doi.org/10.1038/s41598-019-40439-3
https://api.semanticscholar.org/CorpusID:123073680
https://api.semanticscholar.org/CorpusID:123073680
https://doi.org/10.1137/S0097539799355053
http://dx.doi.org/10.1137/S0097539799355053
http://dx.doi.org/10.1137/S0097539799355053
https://doi.org/10.26421/QIC2.1-3
http://dx.doi.org/10.26421/QIC2.1-3
http://dx.doi.org/10.26421/QIC2.1-3
https://doi.org/10.1016/j.tcs.2008.12.046
http://dx.doi.org/10.1016/J.TCS.2008.12.046
https://link.aps.org/doi/10.1103/PRXQuantum.2.030316
https://link.aps.org/doi/10.1103/PRXQuantum.2.030316
http://dx.doi.org/10.1103/PRXQuantum.2.030316

[31] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016)

24–43. doi:10.1002/prop.201500092. arXiv:1403.5695, [Addendum: Fortsch.Phys. 64,

44–48 (2016)].

[32] J. Haferkamp, P. Faist, N. B. T. Kothakonda, J. Eisert, N. Yunger Halpern, Linear

growth of quantum circuit complexity, Nature Physics 18 (2022) 528–532. doi:10.1038/
s41567-022-01539-6. arXiv:2106.05305.

[33] A. R. Brown, L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018) 086015. URL:

https://link.aps.org/doi/10.1103/PhysRevD.97.086015. doi:10.1103/PhysRevD.97.086015.

[34] A. Pavone, C. Viola, The quantum cyclic rotation gate, in: G. Castiglione, M. Sciortino (Eds.),

Proceedings of the 24th Italian Conference on Theoretical Computer Science, Palermo, Italy,

September 13-15, 2023, volume 3587 of CEUR Workshop Proceedings, CEUR-WS.org, 2023, pp.

206–218. URL: https://ceur-ws.org/Vol-3587/4071.pdf.

[35] D. Cantone, S. Faro, A. Pavone, C. Viola, Quantum circuits for fixed substring matching problems,

2023. arXiv:2308.11758, arXiv: 2308.11758.

http://dx.doi.org/10.1002/prop.201500092
http://arxiv.org/abs/1403.5695
http://dx.doi.org/10.1038/s41567-022-01539-6
http://dx.doi.org/10.1038/s41567-022-01539-6
http://arxiv.org/abs/2106.05305
https://link.aps.org/doi/10.1103/PhysRevD.97.086015
http://dx.doi.org/10.1103/PhysRevD.97.086015
https://ceur-ws.org/Vol-3587/4071.pdf
http://arxiv.org/abs/2308.11758

	1 Introduction
	2 Preliminaries
	2.1 The Quantum Circuit Model and Its Complexity Measures

	3 Quantum Longest Common Substring in the Circuit Model
	3.1 The Quantum Iterative Test

	4 A Circuit-Model Based Implementation
	4.1 Implementing the Circuits for the Three Phases

	5 Conclusions

