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Abstract
This paper explores the extraction of modal association rules from non-tabular data using a novel algorithm,
ModalFP-Growth. By extending the FP-Growth algorithm to modal logic, ModalFP-Growth processes instances
represented as Kripke models, facilitating efficient rule extraction from temporal, spatial, and spatio-temporal
datasets. Each instance is transformed into a tabular form where worlds correspond to rows and literals to
columns, enabling the application of the original FP-Growth. The algorithm, then, aggregates locally frequent
itemsets from individual instances to identify globally supported itemsets across the dataset. We prove the
soundness and completeness of ModalFP-Growth, ensuring that all and only frequent itemsets are included in the
final output. Additionally, we present an open-source implementation within the Sole learning and reasoning
suite. Experimental evaluations using Halpern and Shoham’s Interval Temporal Logic on a public temporal
dataset demonstrate the algorithm’s practical efficiency and the interpretability of the extracted rules.
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1. Introduction

The distinction between sub-symbolic and symbolic learning is a fundamental separation in machine
learning. Sub-symbolic learning involves learning a function to represent a phenomenon, offering
versatility and statistical accuracy. Conversely, symbolic learning creates a logical description of the
phenomenon, valued for its interpretability and explainability. This interpretability is crucial for both
political reasons, such as compliance with the EU’s General Data Protection Regulation (GDPR) [1],that
highlights the need for interpretable/explainable automatic learning-based decision-making processes [2,
3], and technical reasons, as symbolic models are easier to train, explore, integrate, and implement. In
machine learning, classification and rule extraction are common tasks. While classification can utilize
both learning types, rule extraction is inherently symbolic. Traditional symbolic methods are based on
propositional logic and designed for tabular data, with propositions typically expressed as 𝐴 ◁▷ 𝑎 or
𝑎 ◁▷ 𝐴 ◁▷ 𝑏 (◁▷∈ {<,≤}) and rules formulated as 𝑝1 ∧ . . . ∧ 𝑝𝑘 ⇒ 𝑝𝑘+1, where ⇒ denotes a strong
co-occurrence relationship between the antecedent and the consequent.

For temporal or spatial data, which are non-tabular, a pre-processing step is usually required to
transform the data into a tabular format. However, recent research suggests that native learning methods
may yield better results. Modal symbolic learning [4, 5, 6] uses modal logic to process non-tabular data
directly, resulting in interpretable modal logic formulas.

Modal symbolic learning has primarily focused on classification, but the concept of modal association
rules has been formalized in [7, 8], introducing the ModalApriori algorithm based on the well-known
standard algorithm Apriori. Modal association rules of the type 𝜆1 ∧ . . . ∧ 𝜆𝑘 ⇒ 𝜆𝑘+1 where 𝜆𝑖 are
positive modal literals, generalize propositional rules, and can easily cover the cases of both spatial and
temporal data, among many others. Allowing rules to work in dimensions such as space and time is a
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Figure 1: An example of modal dataset with 4 instances, each described by a Kripke model.

natural extension that has already been proposed in prototypical form, for example for dealing with
images and text (see, e.g. [9, 10]).

FP-Growth [11] is a more efficient alternative to Apriori for generating frequent patterns from tabular
data. This paper extends FP-Growth to the modal case, introducing the ModalFP-Growth algorithm
and proving its soundness and completeness. We provide an open-source implementation of both
ModalApriori and ModalFP-Growth within the Sole learning and reasoning suite [12]. Finally, we
propose a customizable algorithm for probing rules from frequent patterns, and we test our approach
in the particular case of temporal rule extraction from a public dataset, discussing the results regarding
practical efficiency and the meaningfulness of the extracted rules.

2. Modal Logic, Frequent Patterns, and Association Rules

Given a set of propositions 𝒫 , the well-formed formulas of propositional modal logic are constructed
using the following grammar:

𝜙 ::= 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 | ♢𝜙,

where the remaining classic Boolean operators can be derived as shortcuts. In this context, we use □𝜙
to denote ¬♢¬𝜙, and ≡ to indicate logical equivalence. The modality ♢ (resp., □) is typically interpreted
as it is possible that (resp., it is necessary that). Modal logic is considered archetypical of propositional
temporal, spatial, and spatio-temporal logics and is a non-conservative extension of propositional logic.

Formulas are interpreted on Kripke models. A Kripke model 𝐾 = (𝑊,𝑅, 𝑣) consists of a finite set of
worlds 𝑊 (including a distinguished world 𝑤0, called the initial world), a binary accessibility relation
𝑅 ⊆ 𝑊 ×𝑊 , and a valuation function 𝑣 : 𝑊 → 2𝒫 , which associates each world with the set of
propositions true in that world. The pair (𝑊,𝑅) is known as the frame. The truth relation 𝐾,𝑤 ⊩ 𝜙
for a model and a world within that model is defined by the following clauses:

𝐾,𝑤 ⊩ 𝑝 iff 𝑝 ∈ 𝑣(𝑤);
𝐾,𝑤 ⊩ ¬𝜙 iff 𝐾,𝑤 ̸⊩ 𝜙;
𝐾,𝑤 ⊩ 𝜙 ∧ 𝜓 iff 𝐾,𝑤 ⊩ 𝜙 and 𝐾,𝑤 ⊩ 𝜓;
𝐾,𝑤 ⊩ ♢𝜙 iff ∃𝑤′ s.t. 𝑤𝑅𝑤′ and 𝐾,𝑤′ ⊩ 𝜙.

Note that the truth relation is inherently internal, as formulas are evaluated within models at specific
worlds, and local, since a world is compared only with those accessible through the relation 𝑅.

We use modal logic to express properties of non-tabular data. A non-tabular instance can be seen as
a finite Kripke model, and a set of non-tabular instances as a modal dataset.

Definition 1 (modal dataset). Given a set of propositions 𝒫 , a modal dataset ℐ = {𝐼1, . . . , 𝐼𝑚} is a finite
collection of 𝑚 instances, each of which is a finite Kripke model 𝐼𝑖 = (𝑊𝑖, 𝑅𝑖, 𝑣𝑖), for each 𝑖 = 1, . . . ,𝑚.
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Figure 2: Example of modal dataset consisting of two instances 𝐼1 and 𝐼2. Each world 𝑤𝑖 ∈𝑊 is labelled with
the literals in Λ𝒫 = {𝑝,♢𝑝,□𝑝, 𝑞,♢𝑞,□𝑞} that are true on it.

Fig. 1 illustrates an example of modal dataset.
A modal association rule is informally defined as a pair of modal formulas that show a statistically

interesting association pattern on a modal dataset. For a rigorous definition, we begin with the atomic
concept of modal literal.

Definition 2 (modal literals, modal rules). For a fixed alphabet 𝒫 , a positive modal literal (or, simply, a
literal) is an object 𝜆 of the type

𝜆 ::= 𝑝 | ♢𝜆 | □𝜆.

The set of all modal literals over 𝒫 is denoted by Λ𝒫 . A modal rule (or, simply, a rule) is an object of the
type

𝜌 : 𝜆1 ∧ . . . ∧ 𝜆𝑘 ⇒ 𝜆𝑘+1,

where 𝜆1, . . . , 𝜆𝑘, 𝜆𝑘+1 ∈ Λ𝒫 .

Modal literals of the type 𝑝 are called propositional, as in the propositional case, and modal literals of
the type ♢𝜆 (resp., □𝜆) are called existential (resp., universal). Non-empty subsets of Λ𝒫 are called
modal patterns. In a rule 𝜌, 𝑋 = {𝑝1, . . . , 𝑝𝑘} is called antecedent, and it is also denoted by 𝑎𝑛𝑡(𝜌),
𝑌 = {𝑝𝑘+1} is called consequent, also denoted by 𝑐𝑜𝑛(𝜌), and𝑋∩𝑌 = ∅. The length of a (propositional)
pattern 𝑋 is the set-theoretic cardinality of 𝑋 . An example of modal dataset with six instances is
shown in Fig. 2. Observe that in the example, all instances have the same frame; although this is not a
requirement in modal association rule extraction, it is often the case.

Association analysis should be interpreted with caution. Causality is not implied by an association
rule: it simply indicates a strong co-occurrence of the literals in the antecedent with those in the
consequent [13]. To emphasize the distinction from logical implication (denoted →), we use the
symbol ⇒ in rules. Consequently, the conjunction in antecedents should not be interpreted as a logical
conjunction. Thus, 𝜌 is not a modal logic formula. After the extraction phase, however, rules are
considered meaningful and can be treated as logical formulas. A modal association rule then becomes
a formula of the Horn fragment of modal logic [14, 15] (similar to the propositional case, where an
association rule becomes a Horn formula [16]). Horn propositional and modal logics are interesting
from a deductive perspective, as satisfiability often becomes computationally simpler. This is relevant
when data-driven knowledge is integrated with expert, top-down knowledge in intelligent applications.

Not all rules are interesting or meaningful. Similar to the propositional case, in order to capture the
notion of meaningfulness in logical terms, in [17] the authors implicitly defined the notion of a rule 𝜌
holding on an instance, and then on a dataset, by introducing two parameters: support and confidence.
These parameters modify the notion of truth of a literal, and subsequently of a rule. Following the
introduction of these concepts, especially confidence, alternative measures of meaningfulness have
been proposed, including lift and conviction (see, e.g., [13]). More recently, additional measures of rule
interestingness have been introduced to avoid extracting trivially true rules.

Generalizing these concepts to the modal case requires generalizing the notion of a set of literals,
that is, a pattern, being frequent in a dataset. At the propositional level, a literal 𝑝 is considered to hold



on some instance if it is true in it; at the modal level, a literal 𝜆 should be considered interesting if
it is both locally and globally frequent: via local frequency we aim to evaluate on how many worlds
of a given instance 𝜆 occurs, while via global frequency we aim to evaluate in how many instances
this happens. This notion, that requires two parameters 𝑠𝑙, 𝑠𝑔 (resp., the local and the global support),
induces a generalized notion of a pattern 𝑋 holding on some instance 𝐼 and on some dataset ℐ .

Definition 3 (support). Let ℐ be a modal dataset and 𝑋 ⊆ Λ𝒫 be a set of modal literals. The local
support of 𝑋 on some instance 𝐼 ∈ ℐ , being 𝐼 = (𝑊,𝑅, 𝑣), is defined as:

𝑙𝑠𝑢𝑝𝑝(𝐼,𝑋) =
|{𝑤 ∈𝑊 | 𝐼, 𝑤 ⊩ 𝑋}|

|𝑊 |
,

and, given a certain local support 𝑠𝑙 ∈ (0, 1], the global support of 𝑋 on ℐ relatively to 𝑠𝑙 is defined as:

𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋) =
|{𝐼 ∈ ℐ | 𝑙𝑠𝑢𝑝𝑝(𝐼,𝑋) ≥ 𝑠𝑙}|

|ℐ|
.

Notation-wise, given certain local and global supports 𝑠𝑙, 𝑠𝑔 ∈ (0, 1], we write 𝐼 ⊩𝑠𝑙 𝑋 (resp., ℐ ⊩𝑠𝑙,𝑠𝑔

𝑋) to denote the fact that 𝑙𝑠𝑢𝑝𝑝(𝐼,𝑋) ≥ 𝑠𝑙 (resp., 𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋) ≥ 𝑠𝑔), and we say that 𝑋 locally
holds (resp., globally holds) on 𝐼 (resp., ℐ). A set of literals that globally holds on a dataset ℐ is said to
be frequent.

Rule extraction relies on frequent pattern extraction, which is determined by support. Rules are
derived from frequent patterns using a probing algorithm that assesses the interestingness of a potential
rule in terms of its confidence, lift, or other support-dependent indices. These indices must also be
generalized to the modal case.

Definition 4 (confidence, lift). Let ℐ be a modal dataset, and 𝜌 : 𝑋 ⇒ 𝑌 a modal rule. The local
confidence of 𝜌 on some instance 𝐼 ∈ ℐ is defined as:

𝑙𝑐𝑜𝑛𝑓(𝐼,𝑋 ⇒ 𝑌 ) =
𝑙𝑠𝑢𝑝𝑝(𝐼,𝑋 ∪ 𝑌 )

𝑙𝑠𝑢𝑝𝑝(𝐼,𝑋)
,

and, given a certain local support 𝑠𝑙 ∈ (0, 1], the global confidence of 𝜌 on ℐ relatively to 𝑠𝑙 is defined as:

𝑔𝑐𝑜𝑛𝑓𝑠𝑙(ℐ, 𝑋 ⇒ 𝑌 ) =
𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋 ∪ 𝑌 )

𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋)
.

Similarly, the local lift of 𝜌 on some instance 𝐼 ∈ ℐ is defined as:

𝑙𝑙𝑖𝑓𝑡(𝐼,𝑋 ⇒ 𝑌 ) =
𝑙𝑠𝑢𝑝𝑝(𝐼,𝑋 ∪ 𝑌 )

𝑙𝑠𝑢𝑝𝑝(𝐼,𝑋) · 𝑙𝑠𝑢𝑝𝑝(𝐼, 𝑌 )
,

and, given a certain local support 𝑠𝑙 ∈ (0, 1], the global lift of 𝜌 on ℐ relatively to 𝑠𝑙 is defined as:

𝑔𝑙𝑖𝑓𝑡𝑠𝑙(ℐ, 𝑋 ⇒ 𝑌 ) =
𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋 ∪ 𝑌 )

𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋) · 𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑌 )
.

As before, and again generalizing the propositional case, local and global confidence (as well as lift and
the other interestingness measures) induce a notion of a rule holding on an instance and on a dataset;
for example, given a certain local and global support, and global confidence 𝑠𝑙, 𝑠𝑔, 𝑐𝑔 ∈ (0, 1] ⊂ R,
for a rule 𝜌 : 𝑋 ⇒ 𝑌 we write ℐ ⊩𝑠𝑙,𝑠𝑔 ,𝑐𝑔 𝜌 to denote the fact that ℐ ⊩𝑠𝑙,𝑠𝑔 𝑋 ∪ 𝑌 and that
𝑔𝑐𝑜𝑛𝑓𝑠𝑙(ℐ, 𝑋 ⇒ 𝑌 ) ≥ 𝑐𝑔 . This is not the only possible notion of a rule holding on a dataset; different
ones depend on the subset of measures that are considered in a particular case, and both a local (to
a single instance) and a global (to a whole dataset) analysis can be performed. To ease the notation,
in general we write ℐ ⊩𝜃 𝜌 (or 𝐼 ⊩𝜃 𝜌, if the analysis is purely local), where 𝜃 collects all chosen
thresholds.



In summary, a proper modal association rule extraction process is characterized by the following
choices: (𝑖) the modal logic of reference: deciding how to interpret the instances of a non-tabular
dataset as modal instances, identifying worlds, relations, and propositions; (𝑖𝑖) the learning parameters:
setting appropriate parameters to determine minimal local and global support; and (𝑖𝑖𝑖) the rule probing
algorithm: listing all frequent sets of literals, probing different rules on each, and accepting them if they
meet minimal confidence and lift, and possibly other specific conditions relevant to the case at hand.

3. Frequent Modal Pattern Extraction with ModalFP-Growth and
Association Rule Mining

The FP-Growth algorithm is designed to efficiently extract frequent itemsets from a propositional dataset
by compressing the dataset into an FP-Tree structure. This compression enables efficient reading and
processing of the crucial information needed for mining frequent itemsets. We start by summarizing
the essential characteristics of an FP-Tree and the operation of FP-Growth as originally introduced
by Han et al. [11]. Subsequently, we generalize this approach to handle modal datasets, which we
call ModalFP-Growth, following the pseudocode in Alg. 1. Finally, we prove both ModalFP-Growth’s
soundness and completeness, before presenting the association rule mining algorithm.

3.1. Overview of FP-Growth

An FP-Tree 𝑇 is a data structure composed of two main components: 𝑇.𝑡𝑟𝑒𝑒, a prefix tree, and 𝑇.ℎ𝑡𝑎𝑏𝑙𝑒,
a hash table known as the header table. Each node 𝜂 ∈ 𝑇.𝑡𝑟𝑒𝑒 has five attributes: 𝜂.𝑐𝑜𝑛𝑡𝑒𝑛𝑡, a literal
from a fixed alphabet 𝒫 , 𝜂.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, a collection of child nodes, 𝜂.𝑝𝑎𝑟𝑒𝑛𝑡, a reference to the parent
node (possibly null), 𝜂.𝑐𝑜𝑢𝑛𝑡, a counter indicating the number of identical nodes represented by 𝜂, and
𝜂.𝑙𝑖𝑛𝑘, a pointer to next node 𝜈 ∈ 𝑇.𝑡𝑟𝑒𝑒 with the same content (𝜂.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝜈.𝑐𝑜𝑛𝑡𝑒𝑛𝑡).

The header table 𝑇.ℎ𝑡𝑎𝑏𝑙𝑒 maps each literal 𝑝 ∈ 𝒫 to a node 𝜂 ∈ 𝑇.𝑡𝑟𝑒𝑒 where 𝜂.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝑝. This
mapping facilitates efficient horizontal traversal of the tree, which is frequently required during the
construction of conditional pattern bases in FP-Growth.

The first step in FP-Growth is to compress the initial dataset into an FP-Tree. This is achieved by
inserting each instance into the tree as a branch, considering items in order of decreasing frequency to
maximize compression. Nodes representing non-frequent items are pruned to ensure the tree contains
only necessary information. The process involves two iterative phases. First, it extracts a conditional
pattern base for a frequent item 𝑝, which is a projection of the original dataset retaining only relevant
information for mining itemsets containing 𝑝. Then, it builds a new FP-Tree from the conditional
pattern base. This iterative process stops when the generated FP-Tree degenerates into a list, at which
point all itemsets and their combinations are mined from the list. The reader can refer to FP-Growth’s
original paper by Han et al. [11] for comprehensive details.

3.2. Transition to ModalFP-Growth

To handle modal datasets, we extend the FP-Growth algorithm to the ModalFP-Growth algorithm. A
modal dataset consists of instances represented as Kripke models. From an operational perspective,
each Kripke model is transformed into a tabular form: rows of the table correspond to worlds in the
Kripke model, and the columns correspond to literals (see Fig. 3).

Alg. 1 is the generalization of FP-Growth to modal datasets. The transition from FP-Growth to
ModalFP-Growth involves the following key modifications. Each instance in the modal dataset is
represented as a Kripke model. These models are transformed into a tabular form where rows correspond
to worlds and columns to literals (modal data representation). The literals Λ𝒫 are generated based on the
propositions𝒫 and the maximum modal depth 𝛿 (literal generation). For each world𝑤 ∈𝑊 in the Kripke
model 𝐼 = (𝑊,𝑅, 𝑣) ∈ ℐ , locally frequent itemsets 𝐹𝑤 ⊆ Λ𝒫 are identified based on a local support
threshold 𝑠𝑙 (local support calculation). These locally frequent itemsets 𝐹𝑤 are inserted into an FP-Tree,
which is then used to extract (locally) frequent patterns (𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠) through the FP-Growth process
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Figure 3: Instance 𝐼 ∈ ℐ of a modal dataset ℐ in its tabular form.

ALGORITHM 1: ModalFP-Growth algorithm for mining frequent modal patterns.
input :Modal dataset ℐ , propositions 𝒫 , maximum modal depth 𝛿, user-specific parameterization 𝜃
output :Set of globally frequent modal itemsets

1 function 𝑀𝑜𝑑𝑎𝑙𝐹𝑃 -𝐺𝑟𝑜𝑤𝑡ℎ(ℐ,𝒫, 𝛿, 𝜃):
2 Λ𝒫 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠(𝒫, 𝛿)
3 𝑠𝑙 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝜃)
4 𝑠𝑔 ← 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝜃)
5 𝐿𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠← ∅
6 foreach 𝐼 = (𝑊,𝑅, 𝑣) ∈ ℐ do
7 𝑇 ← 𝑁𝑒𝑤𝐹𝑃 -𝑇𝑟𝑒𝑒()
8 foreach 𝑤 ∈𝑊 do
9 𝐹𝑤 ← {𝑋 ∈ Λ𝒫 | 𝐼, 𝑤 ⊩ 𝑋 and 𝑙𝑠𝑢𝑝𝑝(𝐼,𝑋) ≥ 𝑠𝑙}

10 𝐹𝑤 ← 𝑆𝑜𝑟𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑙𝑦𝐵𝑦𝐿𝑜𝑐𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐹𝑤)
11 𝐼𝑛𝑠𝑒𝑟𝑡𝑇𝑟𝑒𝑒(𝑇.𝑡𝑟𝑒𝑒, 𝐹𝑤)

12 end
13 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑒𝐻𝑒𝑎𝑑𝑒𝑟𝑇𝑎𝑏𝑙𝑒(𝑇.ℎ𝑡𝑎𝑏𝑙𝑒)
14 𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠← 𝐹𝑃 -𝐺𝑟𝑜𝑤𝑡ℎ(𝑇, 𝑠𝑙, ∅)
15 𝐿𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠← 𝐿𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠 ∪ 𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠

16 end
17 𝐺𝑙𝑜𝑏𝑎𝑙𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠← 𝐹𝑖𝑙𝑡𝑒𝑟𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠(𝐿𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠, ℐ, 𝑠𝑔)
18 return 𝐺𝑙𝑜𝑏𝑎𝑙𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠

19 end
20 function 𝐼𝑛𝑠𝑒𝑟𝑡𝑇𝑟𝑒𝑒(𝜂,𝑋):
21 if |𝑋| = 0 then return
22 𝜆, 𝑋̃ ← 𝑃𝑜𝑝𝐹 𝑖𝑟𝑠𝑡(𝑋)
23 if ∃𝜈 ∈ 𝜂.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 and 𝜈.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝜆 then
24 𝜂 ← 𝜈
25 𝜂.𝑐𝑜𝑢𝑛𝑡← 𝜂.𝑐𝑜𝑢𝑛𝑡+ 1

26 else
27 𝜈 ← 𝑁𝑒𝑤𝑁𝑜𝑑𝑒(𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝜆, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝜂, 𝑐𝑜𝑢𝑛𝑡 = 1)
28 𝐴𝑑𝑑𝐶ℎ𝑖𝑙𝑑(𝜂, 𝜈)
29 𝜂 ← 𝜈

30 end
31 𝐼𝑛𝑠𝑒𝑟𝑡𝑇𝑟𝑒𝑒(𝜂, 𝑋̃)

32 end
33 function 𝐹𝑃 -𝐺𝑟𝑜𝑤𝑡ℎ(𝑇, 𝑠𝑙, 𝑋):
34 if 𝐼𝑠𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ(𝑇.𝑡𝑟𝑒𝑒) then return {𝑋 ∪ 𝑌 | 𝑌 ∈ 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠(𝑇.𝑡𝑟𝑒𝑒)}
35 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠← ∅
36 foreach 𝜆 ∈ 𝑇.ℎ𝑡𝑎𝑏𝑙𝑒 do
37 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐵𝑎𝑠𝑒← 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐵𝑎𝑠𝑒(𝑇, 𝜆)
38 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑇𝑟𝑒𝑒← 𝐵𝑢𝑖𝑙𝑑𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑇𝑟𝑒𝑒(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐵𝑎𝑠𝑒, 𝑠𝑙)
39 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠← 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠 ∪ 𝐹𝑃 -𝐺𝑟𝑜𝑤𝑡ℎ(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑇𝑟𝑒𝑒, 𝑠𝑙, {𝜆})
40 end
41 return 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠

42 end
43 function 𝐹𝑖𝑙𝑡𝑒𝑟𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠(𝐺𝑙𝑜𝑏𝑎𝑙𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠, ℐ, 𝑠𝑔):
44 𝐻 ← 𝐶𝑜𝑢𝑛𝑡𝑀𝑎𝑝(𝐺𝑙𝑜𝑏𝑎𝑙𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠)

45 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠← {𝑋 ∈ 𝐻.𝑘𝑒𝑦𝑠 | 𝐻[𝑋]
|ℐ| ≥ 𝑠𝑔}

46 return 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠

47 end



(FP-Tree construction). The globally frequent itemsets (𝐺𝑙𝑜𝑏𝑎𝑙𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠) are identified by filtering the
combined locally frequent itemsets (𝐿𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑚𝑠𝑒𝑡𝑠) based on the global support threshold 𝑠𝑔 (global
filtering). The ModalFP-Growth algorithm ensures the efficient extraction of frequent modal itemsets,
maintaining the interpretability and explainability of the symbolic models.

3.3. Soundness and Completeness

The ModalFP-Growth algorithm is both sound and complete, ensuring that all and only the frequent
modal itemsets are identified.

Theorem 1 (Soundness of ModalFP-Growth). Let ℐ = {𝐼1, . . . , 𝐼𝑚} be a modal dataset, where each 𝐼𝑖
is a Kripke model represented in tabular form. Then, if ModalFP-Growth returns an 𝑋 ⊆ Λ𝒫 then 𝑋 is
frequent.

Proof. To prove the soundness of the ModalFP-Growth algorithm, we need to show that every itemset
𝑋 included in the final output is frequent, meaning that it meets the global support criterion.

First, we consider the FP-Growth algorithm applied to the tabular representation of each Kripke model
instance 𝐼𝑖 = (𝑊𝑖, 𝑅𝑖, 𝑣𝑖). This algorithm correctly identifies all itemsets that are locally frequent.
Formally, for an itemset 𝑋 to be considered locally frequent in an instance 𝐼𝑖, it must satisfy:

𝑙𝑠𝑢𝑝𝑝(𝐼𝑖, 𝑋) =
|{𝑤 ∈𝑊𝑖 | 𝐼𝑖, 𝑤 ⊩ 𝑋}|

|𝑊𝑖|
≥ 𝑠𝑙,

where 𝑠𝑙 is the local support threshold.
After running FP-Growth on each instance 𝐼𝑖 ∈ ℐ , we obtain a collection of locally frequent itemsets

for each instance. These itemsets are then combined to form a global collection. An itemset 𝑋 is
included in the final result if and only if it appears in a sufficient number of instances with the required
local support. Specifically, 𝑋 is included if:

𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋) =
|{𝐼𝑖 ∈ ℐ | 𝑙𝑠𝑢𝑝𝑝(𝐼𝑖, 𝑋) ≥ 𝑠𝑙}|

|ℐ|
≥ 𝑠𝑔,

where 𝑠𝑔 is the global support threshold.
Since the FP-Growth algorithm ensures that any itemset 𝑋 identified for an instance 𝐼𝑖 satisfies

𝑙𝑠𝑢𝑝𝑝(𝐼𝑖, 𝑋) ≥ 𝑠𝑙, the final step of ModalFP-Growth ensures that an itemset 𝑋 is included in the
output if and only if it satisfies the global support criterion. By the definition of global support, for an
itemset 𝑋 to be included in the final output, it must satisfy:

𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋) ≥ 𝑠𝑔.

This means that 𝑋 is frequent in the modal dataset ℐ according to the defined global support criterion.
Therefore, every itemset 𝑋 included in the final output of the ModalFP-Growth algorithm is frequent
with respect to the specified support thresholds.

Theorem 2 (Completeness of ModalFP-Growth). Let ℐ = {𝐼1, . . . , 𝐼𝑚} be a modal dataset, where each
𝐼𝑖 is a Kripke model represented in tabular form. Then, if 𝑋 ⊆ Λ𝒫 is frequent, then ModalFP-Growth
returns it.

Proof. To prove the completeness of the ModalFP-Growth algorithm, we need to show that every itemset
𝑋 that is frequent, meaning it meets the global support criterion 𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋) ≥ 𝑠𝑔 , is included in
the final output of the algorithm.

First, consider an itemset 𝑋 that is frequent in the modal dataset ℐ . By definition, this means:

𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋) =
|{𝐼𝑖 ∈ ℐ | 𝑙𝑠𝑢𝑝𝑝(𝐼𝑖, 𝑋) ≥ 𝑠𝑙}|

|ℐ|
≥ 𝑠𝑔,



ALGORITHM 2: Association rule mining from a set of frequent itemsets.
input :Modal dataset ℐ , set of frequent itemsets 𝒮 , user-specific parameterization 𝜃
output :Set of globally confident association rules

1 function 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒𝑀𝑖𝑛𝑖𝑛𝑔(ℐ,𝒮, 𝜃):
2 𝑠𝑙 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝜃)
3 𝜇← 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑀𝑒𝑡𝑟𝑖𝑐(𝜃)
4 𝜏 ← 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑀𝑒𝑡𝑟𝑖𝑐𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝜃)
5 𝑅𝑢𝑙𝑒𝑠← ∅
6 foreach 𝑍 ∈ 𝒮 do
7 foreach non-empty set 𝑋 ⊂ 𝑍 do
8 𝑌 ← 𝑍 ∖𝑋
9 if 𝐶ℎ𝑒𝑐𝑘𝑠𝑂𝑢𝑡(𝑋 ⇒ 𝑌, 𝜃) and 𝜇𝑠𝑙 (ℐ, 𝑋 ⇒ 𝑌 ) ≥ 𝜏 then

10 𝑅𝑢𝑙𝑒𝑠← 𝑅𝑢𝑙𝑒𝑠 ∪ {𝑋 ⇒ 𝑌 }
11 end
12 end
13 end
14 return 𝑅𝑢𝑙𝑒𝑠

15 end

implying that 𝑋 has a local support of at least 𝑠𝑙 in at least a fraction 𝑠𝑔 of the instances in ℐ . Let
𝒥 ⊆ ℐ be the subset of instances where 𝑋 has a local support of at least 𝑠𝑙:

𝒥 = {𝐼𝑖 ∈ ℐ | 𝑙𝑠𝑢𝑝𝑝(𝐼𝑖, 𝑋) ≥ 𝑠𝑙}.

By the definition of global support, we have:

|𝒥 |
|ℐ|

≥ 𝑠𝑔.

Next, consider the FP-Growth algorithm applied to each instance 𝐼𝑖 ∈ 𝒥 . Since 𝑋 has a local support
of at least 𝑠𝑙 in each 𝐼𝑖 ∈ 𝒥 , the FP-Growth algorithm will correctly identify 𝑋 as a locally frequent
itemset for these instances. ModalFP-Growth then combines the locally frequent itemsets identified by
FP-Growth from each instance. Since 𝑋 is identified as locally frequent in each instance of 𝒥 , it will be
included in the collection of itemsets combined by ModalFP-Growth.

Finally, ModalFP-Growth checks if 𝑋 meets the global support criterion. Since 𝑋 is frequent by
assumption, it satisfies 𝑔𝑠𝑢𝑝𝑝𝑠𝑙(ℐ, 𝑋) ≥ 𝑠𝑔 . Therefore, 𝑋 will be included in the final output of the
ModalFP-Growth algorithm.

3.4. Association Rule Mining

Alg. 2 extracts significant relationships from frequent itemsets using a user-defined interestingness
measure, generically denoted by 𝜇 (e.g., confidence or lift, among others) and its threshold 𝜏 . The
algorithm processes the modal dataset ℐ and the set of frequent itemsets 𝒮 , by using parameters from
𝜃, which is supposed to include the value of 𝜇.

For each frequent itemset 𝑍 ∈ 𝒮 , the algorithm considers all non-empty subsets 𝑋 ⊂ 𝑍 , generating
potential rules of the type 𝑋 ⇒ 𝑌 , where 𝑌 = 𝑍 ∖𝑋 . Each rule is evaluated based on 𝜇, which is
parametric in 𝑠𝑙 (recall Definition 4), and those meeting or exceeding 𝜏 are retained. Generating these
potential rules follows specific policies defined by the user in 𝜃 and checked by the function𝐶ℎ𝑒𝑐𝑘𝑠𝑂𝑢𝑡.
Such policies range from rather standard ones, such as imposing that 𝑌 is always a singleton, to specific
ones to lower the probability of getting insignificant results. To understand this, recall that at the
propositional level a literal 𝑝 is considered to hold on some instance if it is true on it, but at the modal
level literals may sometimes be trivially true on a world of a finite Kripke structure, such as in the case
of □𝑝 on a world without successors; another representative example of potential problem is that of a
proposition 𝑝 being true on some world which is the successor of many worlds, forcing ♢𝑝 to hold on
all of them and making it difficult to establish its interesting degree only by the cardinality of its support
set. Rule selection policies may partially address these problems; forcing an antecedent to include at
least one non-modal literal, and avoiding specific combinations of propositions between antecedent
and consequent of a rule are two among many possible examples.



HS modality Definition w.r.t. the interval structure Example

𝑥 𝑦

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

⟨𝐴⟩ (after) [𝑥, 𝑦]𝑅𝐴[𝑤, 𝑧] ⇔ 𝑦 = 𝑤

⟨𝐿⟩ (later) [𝑥, 𝑦]𝑅𝐿[𝑤, 𝑧] ⇔ 𝑦 < 𝑤

⟨𝐵⟩ (begins) [𝑥, 𝑦]𝑅𝐵 [𝑤, 𝑧] ⇔ 𝑥 = 𝑤 ∧ 𝑧 < 𝑦

⟨𝐸⟩ (ends) [𝑥, 𝑦]𝑅𝐸 [𝑤, 𝑧] ⇔ 𝑦 = 𝑧 ∧ 𝑥 < 𝑤

⟨𝐷⟩ (during) [𝑥, 𝑦]𝑅𝐷[𝑤, 𝑧] ⇔ 𝑥 < 𝑤 ∧ 𝑧 < 𝑦

⟨𝑂⟩ (overlaps) [𝑥, 𝑦]𝑅𝑂[𝑤, 𝑧] ⇔ 𝑥 < 𝑤 < 𝑦 < 𝑧

Table 1
Allen’s interval relations and HS modalities.

This approach offers flexibility by allowing any user-defined interestingness measure to be used to
ensure that the algorithm adapts to various analytical needs. Additionally, it supports local mining
within individual modal instances, leveraging local definitions of support, confidence, lift, and other
measures to generate significant rules. These locally mined rules can then be assessed for their global
significance.

4. Experiments

As we have explained, modal association rules can be extracted from temporal, spatial, or other types
of non-tabular data; to show the effectiveness of our approach, we focus here on a temporal case.

4.1. Interval Temporal Logic and HS Modalities

A temporal dataset is generally presented as dataset of multivariate time series. We choose to describe
temporal logical patterns using interval temporal logic, a specialization of modal logic; among the
various interval temporal logics proposed in recent literature [18], Halpern and Shoham’s Modal Logic
for Time Intervals (HS) [19] has received significant attention.

Let D = ⟨𝐷,<⟩ be a linear order with domain 𝐷. A strict interval over D is an ordered pair [𝑥, 𝑦],
where 𝑥, 𝑦 ∈ D and 𝑥 < 𝑦. Excluding the identity relation, there are 12 different binary ordering
relations between two strict intervals on a linear order, often called Allen’s interval relations [20], and
depicted in Tab. 1. Interval structures are interpreted as Kripke structures, with Allen’s relations serving
as accessibility relations. Each Allen’s relation 𝑅𝑋 is associated with an existential modality ⟨𝑋⟩.
Additionally, for each 𝑋 ∈ {𝐴,𝐿,𝐵,𝐸,𝐷,𝑂}, the transpose of modality ⟨𝑋⟩ is ⟨𝑋⟩, corresponding
to the inverse relation 𝑅𝑋 .

Well-formed HS formulas are built from a set of propositions 𝒫 , classical connectives ∧ and ¬, and a
modality for each Allen’s interval relation:

𝜙 ::= 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 | ⟨𝑋⟩𝜙,

where 𝑝 ∈ 𝒫 and 𝑋 ∈ 𝒳 . Syntactically, HS is a modal logic with 12 diamond operators and their
corresponding box versions.

The strict semantics of HS is defined in terms of interval models 𝑀 = ⟨I(D), 𝑣⟩, where I(D) is the
set of all strict intervals over D, and 𝑣 : I(D) → 2𝒫 , which associates each interval with the set of
propositions true in that world. The truth of a formula 𝜙 on an interval [𝑥, 𝑦] in an interval model 𝑀 ,



Figure 4: The six movements of interest, referred to as 1, . . . , 6 in the text, extracted from NATOPS dataset.

denoted 𝑀, [𝑥, 𝑦] ⊩ 𝜙, is defined by structural induction:

𝑀, [𝑥, 𝑦] ⊩ 𝑝 iff 𝑝 ∈ 𝑣([𝑥, 𝑦]), for each 𝑝 ∈ 𝒜𝒫,
𝑀, [𝑥, 𝑦] ⊩ ¬𝜓 iff 𝑀, [𝑥, 𝑦] ̸⊩ 𝜓,
𝑀, [𝑥, 𝑦] ⊩ 𝜓1 ∧ 𝜓2 iff 𝑀, [𝑥, 𝑦] ⊩ 𝜓1 and 𝑀, [𝑥, 𝑦] ⊩ 𝜓2,
𝑀, [𝑥, 𝑦] ⊩ ⟨𝑋⟩𝜓 iff there exists [𝑤, 𝑧] s.t. [𝑥, 𝑦]𝑅𝑋 [𝑤, 𝑧] and 𝑀, [𝑤, 𝑧] ⊩ 𝜓,

where 𝑋 ∈ 𝒳 .

4.2. Time Series as Interval Models

A single multivariate time series with variables 𝒱 = {𝑉1, . . . , 𝑉𝑛}, where each temporal variable is
defined over 𝑁 points, can be interpreted as an interval model. To this end, we use a set of feature
extraction functions ℱ = {𝐹1, . . . , 𝐹𝑘}, where each function 𝐹 is defined as 𝐹 : R𝑑 → R for some
natural value 𝑑 ≤ 𝑁 ; examples include maximum and mean. To interpret a time series as an interval
model, we fix D = ⟨{1, . . . , 𝑁}, <⟩, compute the set of strict intervals I(D), and define the set of
propositions

𝒫 = {𝑎 ≤ 𝐹 (𝑉 ) ≤ 𝑏 | 𝐹 ∈ ℱ , 𝑉 ∈ 𝒱, 𝑎 ∈ R ∪ {−∞}, 𝑏 ∈ R ∪ {+∞}}.

In a way, feature extraction functions reduce the dimensionality of time series by summarizing informa-
tion over intervals, allowing for more sophisticated analysis of the temporal relationships. By applying
feature extraction functions to intervals within a time series, we can study their values and their relative
qualitative positions. Such transformation enables expressing complex temporal relationships through
propositional interval temporal logic, such as, for instance, describing an interval where the average of
𝑉1 ≥ 4 and such that it is overlapped by an interval where the maximum of 𝑉2 ≤ 12.

4.3. Experimental Setup

In our experiments we use a well-known public dataset, namely NATOPS, introduced in [21]. Each
instance in this dataset is a time series representing the 𝑥, 𝑦, 𝑧 coordinates of sensors placed on various
body parts of subjects performing aircraft handling signals. These signals are standardized in the
Naval Air Training and Operating Procedures Standardization (NATOPS) manual. The dataset, initially
designed for classification, includes several signals such as "I have command", "All clear", "Not clear",
"Spread wings", "Fold wings", and "Lock wings", as depicted in Fig. 4.

Our objective is to describe common patterns within the same family of movements and highlight
unique patterns across different classes. We focus on the six classes in Fig. 4, so that our actual dataset
comprises 360 instances balanced across classes (i.e., 60 instances per class).

4.4. Experimental Procedure

The experiments are organized as follows. First, we decide the policy following which the set 𝒫 is
built; we analyze the variable behaviour via a pre-processing step to identify the informative ones
and the significant thresholds. Then, we set the local and global support thresholds; in our case,
𝑠𝑙 = 𝑠𝑔 = 0.1, and 𝑐𝑔 = 0.3. Finally, we set the policy for rule extraction; in particular, we choose to



Rule Target class Measures 1− 𝑆

⟨𝐸⟩𝑚𝑖𝑛(𝑥𝑟ℎ) ≥ 1 ∧𝑚𝑖𝑛(𝑧𝑟ℎ) ≥ −0.5⇒ [𝐷]𝑚𝑖𝑛(𝑦𝑟ℎ) ≥ 0 I have command
𝑠𝑔 = 0.47

𝑐𝑔 = 0.61
0.37

𝑚𝑖𝑛(𝑦𝑟ℎ) ≥ 1⇒ [𝐵]𝑚𝑖𝑛(𝑧𝑟ℎ) ≥ −0.5 I have command
𝑠𝑔 = 0.20

𝑐𝑔 = 1.00
0.61

𝑚𝑖𝑛(𝑥𝑟ℎ) ≥ 1 ∧ ⟨𝑂⟩𝑚𝑖𝑛(𝑦𝑟ℎ) ≥ 1⇒ [𝐷]𝑚𝑖𝑛(𝑧𝑟ℎ) ≥ −0.5 I have command
𝑠𝑔 = 0.10

𝑐𝑔 = 1.00
1.00

𝑚𝑖𝑛(𝑦𝑟ℎ) ≥ −0.5⇒ [𝑂]𝑚𝑎𝑥(Δ𝑟ℎ𝑟𝑡) ≤ 0.0 Not clear
𝑠𝑔 = 0.80

𝑐𝑔 = 0.80
0.54

𝑚𝑎𝑥(Δ𝑟ℎ𝑟𝑡) ≤ 0.0⇒ [𝑂]𝑚𝑖𝑛(𝑦𝑟ℎ) ≥ −0.5 Not clear
𝑠𝑔 = 1.00

𝑐𝑔 = 1.00
1.00

𝑚𝑖𝑛(𝑦𝑙ℎ) ≥ −1.0⇒ 𝑚𝑎𝑥(𝑧𝑙𝑒) ≤ −0.25 Lock wings
𝑠𝑔 = 0.23

𝑐𝑔 = 0.87
0.39

⟨𝑂⟩𝑚𝑖𝑛(𝑦𝑙ℎ) ≥ −1.0 ∧𝑚𝑎𝑥(𝑧𝑙𝑒) ≤ −0.25 ∧ ⟨𝑂⟩𝑚𝑖𝑛(𝑦𝑟𝑒) ≥ −0.5
∧ ⟨𝑂⟩𝑚𝑎𝑥(𝑧𝑟𝑒) ≥ −0.3⇒ ⟨𝑂⟩𝑚𝑖𝑛(𝑦𝑟ℎ) ≥ 0.5

Lock wings
𝑠𝑔 = 0.23

𝑐𝑔 = 0.78
0.64

Table 2
Experiment results showing the association rules extracted, target class, measures of global support 𝑠𝑔 and
global confidence 𝑐𝑔 , and the entropy 𝑆 of the confidence across all classes except the target. Variables represent
coordinates 𝑥, 𝑦, 𝑧, with subscripts indicating body parts (𝑟: right, 𝑙: left, ℎ: hand, 𝑒: elbow). The variable ∆𝑟ℎ𝑟𝑡

indicates the difference between the height of the right hand and the right thumb. A 1 − 𝑆 value close to 1
indicates high specificity of the rule to the target class.

extract only rules with a singleton consequent, to exclude rules where the same variable appears in
both antecedent and consequent (self-absorbing rules), and to exclude rules with antecedents containing
only non-propositional literals (non-anchored rules). After mining the most interesting association rules
for the target class, we compute the entropy 𝑆 of the set {𝑐1, . . . , 𝑐6}, where 𝑐𝑖 is the global confidence
of the rule on the instances of class 𝑖. Setting 𝐶 =

∑︀6
𝑖=1 𝑐𝑖 and 𝜋𝑖 = 𝑐𝑖/𝐶 , the entropy is defined

as 𝑆 = −
∑︀6

𝑖=1 𝜋𝑖𝑙𝑜𝑔2(𝜋𝑖), and it is one way to determine a rule’s effectiveness in describing only
the target class. Finally, we interpret the results by reading the rules in natural language, in order to
understand and to explain, whenever possible, the extracted patterns.

4.5. Results and Analysis

We conducted three experiments, with results summarized in Tab. 2. Each rule is associated with a
target class, and its global support 𝑠𝑔 and confidence 𝑐𝑔 are reported. The entropy 𝑆 of the confidence
across other classes is also included; a 1− 𝑆 value close to 1 indicates that the rule is very specific to
the target class. Variables in the rules represent coordinates 𝑥, 𝑦, 𝑧 with subscripts indicating the body
part (e.g., 𝑟ℎ for right hand, 𝑙𝑒 for left elbow). The variable ∆𝑟ℎ𝑟𝑡 denotes the difference between the
height of the right hand and the right thumb.

Experiment 1: "I have command". The first two rules are common between "I have command"
(resp., 𝑐𝑔 = 0.61 and 𝑐𝑔 = 1.00) and "Lock wings" (resp., 𝑐𝑔 = 0.30 and 𝑐𝑔 = 1.00) classes. The second
rule, for instance, translates to when the right hand is above the ears, it is also slightly to the right of the
body. The third rule uniquely identifies a pattern typical to the target class, translating to when the right
hand is distant from the body forward and at ear height, it is also to the right.

Experiment 2: "Not clear". The fourth rule is common between "All clear" (𝑐𝑔 = 0.42) and "Not
clear" (𝑐𝑔 = 0.80) classes, describing a less precise movement. It translates to when the arm is just
below shoulder height, the right thumb points downward. The fifth rule uniquely identifies the target
class, translating to when the right thumb points downward, the right hand is just below shoulder height,
indicating that the thumb is pointed downward during the hand’s ascent.



Experiment 3: "Lock wings". The second-to-last rule captures a common behavior across three
classes: "Spread wings", "Fold wings", and "Lock wings." The final rule uniquely describes the target
class, translating to when the left hand is at chest height and the left elbow is retracted towards the sternum,
while the right elbow is raised and to the right, the right hand is above the chin.

5. Conclusions

This paper introduced a novel approach for extracting modal association rules from non-tabular data.
Our extension of the FP-Growth algorithm to handle modal data allows for mining frequent patterns
and interpretable association rules, which may be crucial in certain applications. We demonstrated the
effect of non-propositional rule extraction on a public dataset in the temporal case.

The primary value of our work lies in its ability to process non-tabular data natively, maintaining
interpretability and relevance for domain experts. A significant challenge identified is the selection of
appropriate modal relations and alphabets for specific problems, which we propose as a future research
direction. We have open-sourced our implementation to promote transparency and reproducibility,
enabling others to apply and extend our methods.

Our research provides a robust framework for modal association rule mining and is a first step toward
showing its applicability in practice to capture temporal relationships. In future work we will optimize
language selection, integrate additional interestingness measures, and extend the framework to other
forms of modal logics and relational data.
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