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Abstract
Translating notions and results from category theory to the theory of computability models of Longley
and Normann, we introduce the Grothendieck computability model. We define the corresponding first-
projection-simulation, and we prove some of its basic properties. With the Grothendieck computability
model the category of computability models is shown to be a type-category, in the sense of Pitts, a
result that bridges the categorical interpretation of dependent types with the theory of computability
models. We introduce the notion of a fibration and opfibration-simulation, and we show that the
first-projection-simulation is a split opfibration-simulation.
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1. Introduction

The important role of category theory in computability theory has been emphasised by Cockett
and Hofstra in [1, 2, 3], who influenced the work of Longley on computability models and
simulations between them in [7, 8, 9]. The categorical notion of equivalence between com-
putability models that is studied by Longley and Normann in [10] allowed a better way to
“identify” seemingly different computability structures. By associating to a computability model
C its category of assemblies 𝒜sm(C), Longley and Normann established an equivalence of
Morita-type between them. We can summarise the work of Longley and Normann by the phrase
“from computability models to categories”.

In the previous work [11, 12, 13] of the second author the converse direction i.e., “from
categories to computability models”, is followed. Given a category 𝒞 and a presheaf 𝑆 on 𝒞, the
total computability model CMtot(𝒞;𝑆) was introduced, and if 𝒞 is a category with pullbacks
and 𝑆 preserves pullbacks, the partial computability model CMprt(𝒞;𝑆) was studied. In our
joint work in progress [5] the notion of a computability model over a category 𝒞 with a base
of computability, a notion close to Rosolini’s concept of dominion in [16], and a pullback-
preserving presheaf on 𝒞, is elaborated. In this way, both constructions, that of CMtot(𝒞;𝑆)
and of CMprt(𝒞;𝑆), are generalised. Strict computability models are very close to categories
of sets and partial functions, but avoiding the equality rules for composition of partial functions
(as it is mentioned by Cockett in [1], p. 16, “program equality itself is not well-understood”),
they possess a more expressive power than categories. Consequently, simulations, the arrows
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between computability models, avoid equality too, involving certain forcing and tracking
relations instead.

Working within the direction “from categories to computability models” in this paper too,
we “translate” the categorical Grothendieck construction and the categorical notion of split
(op)fibration to the partial and without equality, or relational framework of computability
models. The Grothendieck computability models become then the Sigma-objects, in the sense
of Pitts [15], in the category of computability models. We structure this paper as follows:

• In section 2 we include all basic definitions within the theory of computability models
necessary to the rest of this paper. Crucial to the definition of the Grothendieck model is
our introduction of the computability model Sets, the computability model-counterpart
to the category of sets and functions (Definition 2.2). The introduced representable-
simulations correspond to the representable presheaves (Example 2.5).

• In section 3 we define the Grothendieck computability model
∑︀

C 𝛾𝛾𝛾 and the corresponding
first-projection-simulation pr1 :

∑︀
C 𝛾𝛾𝛾 _C (Proposition 3.1). We prove basic properties

of the Grothendieck computability model, such as the existence of a full, faithful, and
essentially surjective functor from the category of simulations

[︀∑︀
C 𝛾𝛾𝛾,Sets

]︀
to the slice

category [C, Sets]/𝛾𝛾𝛾, where 𝛾𝛾𝛾 : C → Sets is a simulation (Proposition 3.4).

• In section 4 we show that the category of computability models CompMod is a type-
category, in the sense of Pitts [15] (Theorem 4.3). With this result the categorical semantics
of dependent type theory are connected with the theory of computability models.

• In section 5 we introduce the notion of a (split) fibration and opfibration-simulation
and we show that the first-projection-simulation pr1 :

∑︀
C 𝛾𝛾𝛾 _C is a (split) opfibration-

simulation (Proposition 5.6 and Corollary 5.8).

• In section 6 we include some questions and topics for future work.

For all notions and results from category theory that are used here without explanation or
proof we refer to [18]. For various examples of computability models and simulations from
higher-order computability theory we refer to [10].

2. Basic definitions

Definition 2.1. A (strict) computability model C consists of the following data: a class 𝑇 ,
whose members are called type names; for each 𝑡 ∈ 𝑇 a set C(𝑡) of data types; for each 𝑠, 𝑡 ∈ 𝑇
a class C[𝑠, 𝑡] of computable functions, i.e., partial functions from C(𝑠) to C(𝑡). Moreover, for
every 𝑟, 𝑠, 𝑡 ∈ 𝑇 the following hold:

1. The identity 1C(𝑡) is in C[𝑡, 𝑡].

2. For every 𝑓 ∈ C[𝑟, 𝑠] and 𝑔 ∈ C[𝑠, 𝑡] we have that 𝑔 ∘ 𝑓 ∈ C[𝑟, 𝑡].

Next, we describe the computability model of sets and partial functions Sets, as the com-
putability model-analogue to the category of sets and functions Sets.
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Definition 2.2. The computability model Sets has as type names the class of sets and as data
types the set 𝑈 itself, for every type name 𝑈 . If 𝑈, 𝑉 are sets, the computable functions from 𝑈
to 𝑉 is the class of partial functions from 𝑈 to 𝑉 .

A partial arrow (𝑖, 𝑓) : 𝑎 ⇀ 𝑏 in a category 𝒞 consists of a monomorphism 𝑖 : dom(𝑖) → 𝑎
and an arrow 𝑓 : dom(𝑖) → 𝑏 in 𝒞. Given a (covariant) presheaf 𝑆 : 𝒞 → Sets, we write 𝑆(𝑖, 𝑓)
instead of

(︀
𝑆(𝑖), 𝑆(𝑓)

)︀
. In [13] computability models over categories and presheaves on them

were defined in a canonical way.

Definition 2.3. Let 𝒞 be a category and 𝑆 : 𝒞 → Sets a presheaf on 𝒞. The total canonical
computability model CMtot(𝒞;𝑆) over 𝒞 and 𝑆 has as type names the class of objects 𝒞0 of 𝒞
and data types the sets 𝑆(𝑐), for every 𝑐 ∈ 𝒞0. If 𝑐1, 𝑐2 ∈ 𝒞0, the (total) functions from 𝑆(𝑐1)
to 𝑆(𝑐2) is the class {𝑆(𝑓) | 𝑓 ∈ Hom(𝑐1, 𝑐2)}. The partial canonical computability model
CMprt(𝒞;𝑆) over 𝒞 and a pullback-preserving presheaf 𝑆 has the same type names and data
types, while the partial functions from 𝑆(𝑐1) to 𝑆(𝑐2) is the class {𝑆(𝑖, 𝑓) | (𝑖, 𝑓) : 𝑐1 ⇀ 𝑐2}.

The pullback-preserving property on 𝑆 is necessary to prove that CMprt(𝒞;𝑆) is a com-
putability model. We can also use the category Setsprt of sets and partial functions, and the
computability model CMtot(Setsprt, idSetsprt) is the computability model Sets of Definition 2.2.
Next, we describe the arrows in the category of computability models CompMod. A notion
of contravariant simulation can also be defined, allowing the contravariant version of the
Grothendieck construction for computability models.

Definition 2.4. A simulation 𝛾𝛾𝛾 from C (over 𝑇 ) to D (over 𝑈) consists of a class-function
𝛾 : 𝑇 → 𝑈 and a relation ⊩𝛾

𝑡⊆ D
(︀
𝛾(𝑡)

)︀
×C(𝑡), for each 𝑡 ∈ 𝑇 (a so-called forcing relation),

subject to the following conditions:

1. For each 𝑥 ∈ C(𝑡) there exists some 𝑦 ∈ D(𝛾(𝑡)), such that 𝑦 ⊩𝛾
𝑡 𝑥.

2. For each 𝑓 ∈ C[𝑠, 𝑡] there exists some 𝑓 ′ ∈ D
[︀
𝛾(𝑠), 𝛾(𝑡)

]︀
such that

∀𝑥∈C(𝑠)∀𝑦∈D(𝛾(𝑠))

(︀
𝑥 ∈ dom(𝑓) ∧ 𝑦 ⊩𝛾

𝑠 𝑥 ⇒ 𝑦 ∈ dom(𝑓 ′) ∧ 𝑓 ′(𝑦) ⊩𝛾
𝑡 𝑓(𝑥)

)︀
.

In this case we say that 𝑓 ′ tracks 𝑓 , and we write 𝑓 ′ ⊩𝛾
(𝑠,𝑡) 𝑓 . We also write 𝛾𝛾𝛾 : C_D for a

simulation 𝛾𝛾𝛾 from C to D. We call a simulation 𝛾𝛾𝛾 : C_Sets a (covariant) presheaf-simulation.
The identity simulation 1C : C_C is the pair

(︀
id𝑇 , (⊩

𝜄C
𝑡 )𝑡∈𝑇

)︀
, where 𝑥′ ⊩𝜄C

𝑡 𝑥 :⇔ 𝑥′ = 𝑥,
for every 𝑥′, 𝑥 ∈ C(𝑡). If 𝛿𝛿𝛿 : D_E, the composite simulation 𝛿𝛿𝛿 ∘ 𝛾𝛾𝛾 : C_E is the pair(︀
𝛿 ∘ 𝛾, (⊩𝛿∘𝛾

𝑡 )𝑡∈𝑇
)︀
, where the relation ⊩𝛿∘𝛾

𝑡 ⊆ E
(︀
𝛿(𝛾(𝑡))

)︀
×C(𝑡) is defined by

𝑧 ⊩𝛿∘𝛾
𝑡 𝑥 :⇔ ∃𝑦∈D(𝛾(𝑡))

(︀
𝑧 ⊩𝛿

𝛾(𝑡) 𝑦 ∧ 𝑦 ⊩𝛾
𝑡 𝑥

)︀
.

The following presheaf-simulations on a computability model C correspond to the repre-
sentable functors Hom(𝑎,−) over 𝑎 in a category 𝒞.

Example 2.5. Let C be a locally-small computability model over 𝑇 , i.e., the class C[𝑠, 𝑡] of
computable functions from C(𝑠) to C(𝑡) is a set, for every 𝑠, 𝑡 ∈ 𝑇 . If 𝑡0 ∈ 𝑇 , the representable-
simulation 𝛾𝛾𝛾𝑡0 : C_Sets consists of the class-function 𝛾𝑡0 : 𝑇 → Sets, defined by 𝛾𝑡0(𝑡) :=
C[𝑡0, 𝑡], for every 𝑡 ∈ 𝑇 , and the forcing relations ⊩

𝛾𝑡0
𝑡 ⊆ C[𝑡0, 𝑡]×C(𝑡), defined by

𝑓 ⊩
𝛾𝑡0
𝑡 𝑥 :⇔ ∃𝑦∈dom(𝑓)

(︀
𝑓(𝑦) = 𝑥

)︀
.
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To show that 𝛾𝛾𝛾𝑡0 is a simulation, we also need to suppose that C is left-regular i.e.,

∀𝑡∈𝑇∀𝑥∈C(𝑡)∃𝑓∈C[𝑡0,𝑡]∃𝑦∈dom(𝑓)

(︀
𝑓(𝑦) = 𝑥

)︀
.

All computability models that include the constant functions are left-regular (such as Kleene’s
first model 𝐾1 over 𝑇 = {0} with C(0) = N, and C[0, 0] the Turing-computable partial
functions from N to N). If 𝑓 ∈ C[𝑠, 𝑡], it is easy to show that 𝑓* ⊩

𝛾𝑡0
(𝑠,𝑡) 𝑓 , where 𝑓* is the

total function from C[𝑡0, 𝑠] to C[𝑡0, 𝑡], defined by 𝑓*(𝑔) := 𝑓 ∘ 𝑔, for every 𝑔 ∈ C[𝑡0, 𝑠].
A right-regularity condition on a locally-small computability model is needed, to define the
contravariant representable-simulations 𝛿𝑡0 : C_Sets, where 𝛿𝑡0 : C → Sets is defined by
𝛿𝑡0(𝑡) := C[𝑡, 𝑡0], for every 𝑡 ∈ 𝑇 .

Next follows the notion of an arrow between simulations.

Definition 2.6. If 𝛾, 𝛿 : C_D, then 𝛾 is transformable to 𝛿, in symbols 𝛾 ⪯ 𝛿, if for every
𝑡 ∈ 𝑇 there is 𝑓 ∈ D[𝛾(𝑡), 𝛿(𝑡)] such that

∀𝑥∈C(𝑡)∀𝑥′∈D(𝛾(𝑡))

(︀
𝑥′ ⊩𝛾

𝑡 𝑥 ⇒ 𝑥′ ∈ dom(𝑓) & 𝑓(𝑥′) ⊩𝛿
𝑡 𝑥

)︀
.

3. The Grothendieck computability model

The Grothendieck computability model is the categorical counterpart to the category of el-
ements, a special case of the general categorical Grothendieck construction. A category 𝒞
is replaced by a computability model C, and a (covariant) presheaf 𝑆 : 𝒞 → Sets by a (co-
variant) simulation 𝛾𝛾𝛾 : C_Sets. Moreover, the first-projection functor is replaced by the
first-projection-simulation.

Proposition 3.1. Let C be a computability model over the class 𝑇 together with a simulation
𝛾𝛾𝛾 : C_Sets. The structure

∑︀
C 𝛾𝛾𝛾 with type names the class∑︁

𝑡∈𝑇
𝛾𝛾𝛾(𝑡) :=

{︀
(𝑡, 𝑏) | 𝑡 ∈ 𝑇 and 𝑏 ∈ 𝛾(𝑡)

}︀
,

with data types, for every (𝑡, 𝑏) ∈
∑︀

𝑡∈𝑇 𝛾𝛾𝛾(𝑡), the sets(︁∑︁
C

𝛾𝛾𝛾
)︁
(𝑡, 𝑏) :=

{︀
𝑦 ∈ C(𝑡) | 𝑏 ⊩𝛾

𝑡 𝑦
}︀
,

and computable functions from
(︁∑︀

C 𝛾𝛾𝛾
)︁
(𝑠, 𝑎) to

(︁∑︀
C 𝛾𝛾𝛾

)︁
(𝑡, 𝑏) the classes{︁

𝑓 ∈ C[𝑠, 𝑡] | ∀𝑥∈dom(𝑓)

(︁
𝑥 ∈

(︁∑︁
C

𝛾𝛾𝛾
)︁
(𝑠, 𝑎) ⇒ 𝑓(𝑥) ∈

(︁∑︁
C

𝛾𝛾𝛾
)︁
(𝑡, 𝑏)

)︁}︁
,

is a computability model. The class-function pr1 :
∑︀

𝑡∈𝑇 𝛾𝛾𝛾(𝑡) → 𝑇 , defined by the rule (𝑡, 𝑏) ↦→ 𝑡,
and the forcing relations, defined, for every (𝑡, 𝑏) ∈

∑︀
𝑡∈𝑇 𝛾𝛾𝛾(𝑡), by

𝑦′ ⊩pr1
(𝑡,𝑏) 𝑦 :⇔ 𝑦′ = 𝑦,

determine the first-projection-simulation pr1 :
∑︀

C 𝛾𝛾𝛾 _C.
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Proof. We show that the computable functions include the identities and are closed under
composition. Notice that the defining property of the computable functions in the Grothendieck
model is equivalent to the condition 𝑎 ⊩𝛾

𝑠 𝑥 ⇒ 𝑏 ⊩𝛾
𝑡 𝑓(𝑥), for every 𝑥 ∈ dom(𝑓). If (𝑡, 𝑏) ∈∑︀

𝑡∈𝑇 𝛾𝛾𝛾(𝑡), then the identity on
∑︀

C 𝛾𝛾𝛾(𝑡, 𝑏) is the identity on C(𝑡), i.e., 1C(𝑡) is a computable

function from
(︁∑︀

C 𝛾𝛾𝛾
)︁
(𝑡, 𝑏) to itself: if 𝑥 ∈ C(𝑡), then the implication 𝑏 ⊩𝛾

𝑡 𝑥 ⇒ 𝑏 ⊩𝛾
𝑡 𝑥 holds

trivially. If 𝑔 is a computable function from
∑︀

C 𝛾𝛾𝛾(𝑡, 𝑏) to
∑︀

C 𝛾𝛾𝛾(𝑢, 𝑐) and 𝑓 is a computable
function from

∑︀
C 𝛾𝛾𝛾(𝑠, 𝑎) to

∑︀
C 𝛾𝛾𝛾(𝑡, 𝑏), then 𝑔 ∘ 𝑓 is a computable function from

∑︀
C 𝛾𝛾𝛾(𝑠, 𝑎)

to
∑︀

C 𝛾𝛾𝛾(𝑢, 𝑐). For that, let 𝑥 ∈ dom(𝑓) and 𝑓(𝑥) ∈ dom(𝑔). If 𝑎 ⊩𝛾
𝑠 𝑥, then 𝑏 ⊩𝛾

𝑡 𝑓(𝑥), and
hence 𝑐 ⊩𝛾

𝑢 𝑔(𝑓(𝑥)). Next, we show that pr1 is a simulation. If 𝑦 ∈
∑︀

C 𝛾𝛾𝛾(𝑡, 𝑏), then 𝑥 ⊩pr1
(𝑡,𝑏) 𝑥,

and if 𝑓 is a computable function from
∑︀

C 𝛾𝛾𝛾(𝑠, 𝑎) to
∑︀

C 𝛾𝛾𝛾(𝑡, 𝑏), then 𝑓 ⊩pr1
((𝑠,𝑎),(𝑡,𝑏)) 𝑓 .

The following proposition expresses that the Grothendieck construction on a computability
model obtained from a category with a presheaf can be presented as the canonical partial
computability model associated to the category of elements. The proof is omitted as it is
straightforward.

Proposition 3.2. Let 𝒞 be a category and 𝑆 : 𝒞 → Sets a pullback-preserving presheaf on 𝒞. Let
𝛾𝑆 : 𝒞0 _Sets be defined via 𝛾𝑆(𝑐) = 𝑆(𝑐) and the relations ⊩𝛾𝑆

𝑐 are simply the diagonal, and
let {pr2} :

∑︀
𝒞 𝑆 → Sets be defined by {pr2}(𝑐, 𝑥) := {𝑥} and if 𝑓 : (𝑐, 𝑥) → (𝑑, 𝑦) in

∑︀
𝒞 𝑆,

let [𝑆(𝑓)](𝑥) := 𝑦. Then ∑︁
CMprt(𝒞;𝑆)

𝛾𝛾𝛾𝑆 = CMprt
(︁∑︁

𝒞
𝑆; {pr2}

)︁
.

Remark 3.3. The functor C ↦→ 𝒜sm(C), studied in [10], does not “preserve” the Grothendieck
construction. Namely, if 1 is a terminal computability model with type names {∅}, data type
1(∅) = {∅}, and as only computable function the identity, then one can define a presheaf
id1 : 1_Sets, and show that

𝒜sm

(︂∑︁
1

id1

)︂
̸=

∑︁
𝒜sm (1)

𝒜sm(id1).

Next we show an analogous result to [6, Proposition 1.1.7]. Our goal is to show that for any
presheaf simulation 𝛾𝛾𝛾 : C_Sets we obtain an equivalence[︁∑︁

C

𝛾𝛾𝛾,Sets
]︁
∼= [C,Sets]/𝛾𝛾𝛾.

We do this by exhibiting a full, faithful and essentially surjective functor

𝐼 :
[︁∑︁

C

𝛾𝛾𝛾,Sets
]︁
→ [C,Sets]/𝛾𝛾𝛾.

Notice, that for both categories the morphism structure is thin and thus a preorder, thus we
only need to define our functor on morphisms and show that it preserves this preorder. More

5
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explicitly the objects of [C,Sets]/𝛾𝛾𝛾 themselves are simply simulations 𝛿𝛿𝛿 : C_Sets such that
𝛿𝛿𝛿 ⪯ 𝛾𝛾𝛾. For all simulations 𝛾𝛾𝛾 : C_Sets we have that for all 𝑡 ∈ 𝑇 the set 𝛾(𝑡) is nonempty.
This stems from the fact that otherwise ⊩𝛾

𝑡 could not fulfil the first condition on simulations as
𝛾(𝑡) is empty so no 𝑎 ∈ 𝛾(𝑡) with 𝑎 ⊩𝛾

𝑡 𝑏 for any 𝑏 ∈ C(𝑡). (There is the possibility that C(𝑡)
is empty, but we shall exclude this from now on). Due to space restrictions the proof of the
following proposition is omitted.

Proposition 3.4. Let C over 𝑇 be a computability model and 𝛾𝛾𝛾 : C_Sets be a simulation.
There is a functor 𝐼 :

[︀∑︀
C 𝛾𝛾𝛾,Sets

]︀
→ [C,Sets]/𝛾𝛾𝛾 defined as follows: if 𝛽𝛽𝛽 :

∑︀
C 𝛾𝛾𝛾 _Sets, let

𝐼(𝛽𝛽𝛽) be the underlying class function 𝐼(𝛽) : 𝑇 → Sets, where, for every 𝑡 ∈ 𝑇 ,

𝐼(𝛽)(𝑡) =
⋃︁

𝑥∈𝛾(𝑡)

𝛽(𝑡, 𝑥).

The tracking relation ⊩𝐼(𝛽)
𝑡 ⊆

(︀⋃︀
𝑥∈𝛾(𝑡) 𝛽(𝑡, 𝑥)

)︀
×C(𝑡) is defined as follows:

𝑎 ⊩𝐼(𝛽)
𝑡 𝑏 :⇔ ∃𝑥∈𝛾(𝑡)

(︀
𝑎 ⊩𝛽

(𝑡,𝑥) 𝑏
)︀
.

The functor 𝐼 is full, faithful, and essentially surjective.

4. Computability models form a type-category

In this section we show that the category of computability models CompMod is a type-category,
in the sense of Pitts [15], pp. 110-111, a reformulation of Cartmell’s categories with attributes
in [4]. Type-categories are what we call (fam,Σ)-categories with a terminal object in [14], and
serve as categorical models of dependent type systems. First, we lift a simulation 𝛾𝛾𝛾 : C_D to
a simulation between the Grothendieck computability models

∑︀
C(𝛿𝛿𝛿 ∘ 𝛾𝛾𝛾) and

∑︀
D 𝛿𝛿𝛿.

Lemma 4.1. Let C,D be computability models over the classes 𝑇,𝑈 respectively, and

𝛾𝛾𝛾 : C_D, 𝛿𝛿𝛿 : D_Sets

simulations. There is a simulation
∑︀

𝛿𝛿𝛿 𝛾𝛾𝛾 :
∑︀

C(𝛿𝛿𝛿 ∘ 𝛾𝛾𝛾)_
∑︀

D 𝛿𝛿𝛿, such that the following is a
pullback square ∑︀

C(𝛿𝛿𝛿 ∘ 𝛾𝛾𝛾)
∑︀

D 𝛿𝛿𝛿

C D.

_
∑︀

𝛿𝛿𝛿 𝛾𝛾𝛾

_ pr1 _ pr1

_𝛾𝛾𝛾

Proof. To define
∑︀

𝛿𝛿𝛿 𝛾𝛾𝛾, let the underlying class-function
∑︀

𝛿 𝛾 :
∑︀

𝑡∈𝑇 𝛾𝛾𝛾(𝑡) →
∑︀

𝑢∈𝑈 𝛿𝛿𝛿(𝑢) be
defined by the rule (𝑡, 𝑏) ↦→

(︀
𝛾(𝑡), 𝑏). The corresponding forcing relations are defined by

𝑥′ ⊩
∑︀

𝛿 𝛾

(𝑡,𝑏) 𝑥 :⇔ 𝑥′ ⊩𝛾
𝑡 𝑥. It is straightforward to show that

∑︀
𝛿𝛿𝛿 𝛾𝛾𝛾 is a simulation. Next we show

that the above square commutes. On the underlying classes this is immediate as

pr1
(︀∑︁

𝛿

𝛾(𝑡, 𝑏)
)︀
= pr1

(︀
𝛾(𝑡)

)︀
= 𝛾

(︀
pr1(𝑡, 𝑏)

)︀
.

6
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On the forcing relations we observe that if 𝑥′ ⊩pr1 ∘
∑︀

𝛿 𝛾

(𝑡,𝑏) 𝑥, then 𝑥′ ⊩
∑︀

𝛿 𝛾

(𝑡,𝑏) 𝑥, and thus 𝑥′ ⊩𝛾
𝑡

𝑥, which is also equivalent to 𝑥′ ⊩𝛾∘pr1
(𝑡,𝑏) 𝑥. Finally, we show the pullback property. Let a

computability model E over a class 𝑉 with simulations 𝛼𝛼𝛼,𝛽𝛽𝛽 be given, such that the following
rectangle commutes

E
∑︀

D 𝛿𝛿𝛿

C D.

_𝛽
𝛽𝛽

_ 𝛼𝛼𝛼 _ pr1

_𝛾𝛾𝛾

(1)

We find a unique simulation 𝜁𝜁𝜁 : E_
∑︀

C(𝛿𝛿𝛿 ∘ 𝛾𝛾𝛾) such that both following triangles

E

∑︀
C(𝛿𝛿𝛿 ∘ 𝛾𝛾𝛾)

∑︀
D 𝛿𝛿𝛿

C D

_
𝜁𝜁𝜁

_

𝛼𝛼𝛼

_

𝛽𝛽𝛽

_
∑︀

𝛿𝛿𝛿 𝛾𝛾𝛾

_ pr1 _ pr1

_𝛾𝛾𝛾

commute. First we define 𝜁 on the level of the underlying classes. If 𝑣 ∈ 𝑉 , let 𝜁(𝑣) =
(︀
𝛼(𝑣), 𝑐

)︀
,

where 𝑐 ∈ 𝛿(𝛾(𝑣)) is the unique 𝑐 such that 𝛽(𝑣) = (𝑢, 𝑐) for some 𝑢. Clearly, 𝜁 is well-defined.
Next we define the forcing relations. Let

𝑥′ ⊩𝜁
𝑣 𝑥 :⇔ 𝑥′ ⊩𝛼

𝑣 𝑥.

This relations are well-defined and in conjunction with the aforementioned class-function they
constitute a simulation. Observe that the two triangles already commute on the level of the
underlying class-functions, so it remains to check the forcing relations. Assume we are given
𝑣 ∈ 𝑉 and 𝑥′′ ∈ E(𝑣), 𝑥′ ∈

(︁∑︀
D 𝛿𝛿𝛿

)︁(︀
𝛽(𝑣)

)︀
and 𝑥 ∈ C

(︀
𝛼(𝑣)

)︀
such that

𝑥′ ⊩𝛽
𝑣 𝑥′′ and 𝑥 ⊩𝛼

𝑣 𝑥′′.

By definition we have to show that there exist 𝑦1, 𝑦2 such that

𝑥′ ⊩
∑︀

𝛿 𝛾

𝜁(𝑣) 𝑦1 and 𝑦1 ⊩
𝜁
𝑣 𝑥′′, and 𝑥 ⊩pr1

𝜁(𝑣) 𝑦2 and 𝑦2 ⊩
𝜁
𝑣 𝑥′′.

We know that the square (1) commutes and 𝑥′ ⊩pr1
(
∑︀

𝛿 𝛾)(𝜁(𝑣))
𝑥′, thus from 𝑥′ ⊩𝛽

𝑣 𝑥′′ we conclude

that 𝑥′ ⊩𝛾∘𝛼
𝑣 𝑥′′. This in turn ensures that there is 𝑦 such that 𝑥′ ⊩𝛾

𝛼(𝑣) 𝑦 and 𝑦 ⊩𝛼
𝑣 𝑥′′. By

definition of
∑︀

𝛿 𝛾 we then have that 𝑥′ ⊩
∑︀

𝛿 𝛾

𝛼(𝑣) 𝑦 and thus 𝑦 is our desired 𝑦1. For 𝑦2 we simply
choose 𝑥 and it is easy to see that this fulfills the requirements. The above implications also
work in the reverse direction. It is immediate to show that 𝜁𝜁𝜁 is the unique simulation making
the triangles commutative, as it is determined by the definition of 𝛽𝛽𝛽,𝛼𝛼𝛼.

7
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Lemma 4.2. If C,D,E ∈ CompMod, 𝛾𝛾𝛾 : C_D, 𝛿𝛿𝛿 : D_E, and 𝜖𝜖𝜖 : E_Sets is a presheaf-
simulation, then the following strictness conditions hold:
(i)

∑︀
𝜖𝜖𝜖 1E = 1∑︀

E 𝜖𝜖𝜖.
(ii)

∑︀
𝜖𝜖𝜖(𝛿𝛿𝛿 ∘ 𝛾𝛾𝛾) =

∑︀
𝜖𝜖𝜖 𝛿𝛿𝛿 ∘

∑︀
(𝜖𝜖𝜖∘𝛿𝛿𝛿) 𝛾𝛾𝛾.

Proof. (i) It suffices to observe that by its definition the simulation
∑︀

𝜖𝜖𝜖 1E on the level of the
underlying class takes a pair (𝑡, 𝑢) to (1E(𝑡), 𝑢) = (𝑡, 𝑢), so on the level of the underlying
class-functions the two simulations agree. For the forcing relations we see that both simulations
are the corresponding diagonal.
(ii) To verify this equation on the level of underlying classes we have that∑︁

𝜖𝜖𝜖

(𝛿𝛿𝛿 ∘ 𝛾𝛾𝛾)(𝑡, 𝑏) =
(︀
𝑡, (𝛿 ∘ 𝛾)(𝑏)

)︀
=

∑︁
𝜖𝜖𝜖

𝛿𝛿𝛿
(︀
𝑡, 𝛾(𝑏)

)︀
=

∑︁
𝜖𝜖𝜖

𝛿𝛿𝛿
(︁(︁∑︁

𝜖𝜖𝜖∘𝛿𝛿𝛿
𝛾𝛾𝛾
)︁
(𝑡, 𝑏)

)︁
.

For the forcing relations we simply remark that 𝑥 ⊩
∑︀

𝜖 𝛿∘𝛾
(𝑡,𝑏) 𝑦 if and only if 𝑥 ⊩𝛿∘𝛾

𝑡 𝑦. Similarly,

we have that 𝑥 ⊩
∑︀

𝜖 𝛿

(𝑡,𝑏) 𝑦 if and only if 𝑥 ⊩𝛿
𝑡 𝑦, and 𝑥 ⊩

∑︀
𝜖∘𝛿 𝛾

(𝑡,𝑏) 𝑦 if and only if 𝑥 ⊩𝛾
𝑡 𝑦. Hence,

𝑥 ⊩
∑︀

𝜖 𝛿∘
∑︀

𝜖∘𝛿 𝛾

(𝑡,𝑏) 𝑦 if and only if 𝑥 ⊩𝛿∘𝛾
𝑡 𝑧, which by the above is equivalent to 𝑥 ⊩

∑︀
𝜖 𝛿∘𝛾

(𝑡,𝑏) 𝑧.

Theorem 4.3. The category CompMod is a type-category.

Proof. This follows immediately from Lemma 4.1, Lemma 4.2, and the fact that CompMod has
a terminal object, as explained in Remark 3.3.

This result bridges the categorical interpretation of dependent types with the theory of
computability models. In section 6 we discuss its importance and its role in our future work.

5. Fibration-simulations and opfibration-simulations

The (covariant) Grothendieck construction allows the generation of fibrations (opfibrations),
as the first-projection functor pr1 :

∑︀
𝒞 𝑃 → 𝒞 is a (split) opfibration, if 𝑃 is a covariant

presheaf, or a (split) fibration, if 𝑃 is a contravariant presheaf. In this section we introduce
the notion of a fibration and opfibration-simulation and we show that the first-projection-
simulation pr1 :

∑︀
C 𝛾𝛾𝛾 _C is a (split) opfibration-simulation, as we work with covariant

presheaf-simulations. The dual result is shown similarly.
In this section, E is a computability model over 𝑇 and B a computability model over 𝑈 .
Moreover, the pair

𝜛𝜛𝜛 :=

(︂
𝜛 : : 𝑇 → 𝑈,

(︀
⊩𝜛
𝑡

)︀
𝑡∈𝑇

)︂
is a simulation of type E_B.

In contrast to what it holds for functors, for simulations 𝛾𝛾𝛾 : E _ B each computable function
𝑓 in E is tracked, in general, by a multitude of maps 𝑓 ′ in B. Thus, for each opspan

E(𝑡1) E(𝑡2) E(𝑡3)

_

𝑓
_𝑔

8
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we have a whole class, in general, of opspans

B(𝛾(𝑡1)) B(𝛾(𝑡2)) B(𝛾(𝑡3))

_

𝑓 ′_
𝑔′

such that 𝑓 ′ tracks 𝑓 and 𝑔′ tracks 𝑔.

Definition 5.1 (Cartesian computable function). Let 𝑓 ′ ∈ B[𝑠, 𝑠′] and 𝑡′ ∈ 𝑇 , such that 𝜛(𝑡′) =
𝑠′ be given. We call a computable function 𝑓 ∈ E[𝑡, 𝑡′] cartesian for 𝑓 ′ and 𝑡′, if 𝑓 ′ ⊩𝜛

(𝑡,𝑡′) 𝑓 , and
given computable functions 𝑔 ∈ E[𝑡′′, 𝑡′], 𝑔′ ∈ B[𝜛(𝑡′′), 𝜛(𝑡′)], and ℎ ∈ B[𝜛(𝑡′′), 𝜛(𝑡)] as in
the following diagram

E(𝑡) B(𝜛(𝑡))

E(𝑡′′) B(𝜛(𝑡′′))

E(𝑡′) B(𝜛(𝑡′))

⊩𝜛
𝑡

𝑓 ′

𝑘

⊩𝜛
𝑡′′

𝑔 𝑔′

ℎ

⊩𝜛
𝑡′

𝑓

that is 𝑔′ tracks 𝑔, there is some 𝑘 ∈ E[𝑡′′, 𝑡] satisfying the following property: ℎ ⊩𝜛
(𝑡′′,𝑡) 𝑘,

and for every 𝑥 ∈ E(𝑡′′), 𝑦 ∈ B(𝜛(𝑡′′)), such that 𝑦 ⊩𝜛
𝑡′′ 𝑥, 𝑦 ∈ dom(𝑓 ′ ∘ ℎ) ∩ dom(𝑔′), and

𝑓 ′(ℎ(𝑦)) = 𝑔′(𝑦), then 𝑥 ∈ dom(𝑓 ∘ 𝑘) ∩ dom(𝑔) and 𝑔(𝑥) = 𝑓(𝑘(𝑥)).

Definition 5.2 (Opcartesian computable function). Let 𝑓 ′ ∈ B[𝑠′, 𝑠] and 𝑡′ ∈ 𝑇 , such that
𝜛(𝑡′) = 𝑠′ be given We call a computable function 𝑓 ∈ E[𝑡′, 𝑡] opcartesian for 𝑓 ′ and 𝑡′, if
𝑓 ′ ⊩𝜛

(𝑡′,𝑡′) 𝑓 , and given computable functions 𝑔 ∈ E[𝑡′, 𝑡′′], 𝑔′ ∈ B[𝜛(𝑡′), 𝜛(𝑡′′)] and ℎ ∈
B[𝜛(𝑡), 𝜛(𝑡′′)] as in the following diagram

E(𝑡) B(𝜛(𝑡))

E(𝑡′′) B(𝜛(𝑡′′))

E(𝑡′) B(𝜛(𝑡′))

𝑙 𝑓

⊩𝜛
𝑡

𝑓 ′
⊩𝜛
𝑡′′

𝑔 𝑔′

ℎ

⊩𝜛
𝑡′

that is 𝑔′ tracks 𝑔, there is some 𝑙 ∈ E[𝑡, 𝑡′′] satisfying the following property: ℎ tracks 𝑙,
and for every 𝑥 ∈ E(𝑡′), 𝑦 ∈ B(𝜛(𝑡′)), such that 𝑦 ⊩𝜛

𝑡′ 𝑥, 𝑦 ∈ dom(ℎ ∘ 𝑓 ′) ∩ dom(𝑔′), and
𝑓 ′(ℎ(𝑦)) = 𝑔′(𝑦), then 𝑥 ∈ dom(𝑙 ∘ 𝑓) ∩ dom(𝑔) and 𝑔(𝑥) = 𝑙(𝑓(𝑥)).

Note that the computable functions 𝑘 ∈ E[𝑡′′, 𝑡] and 𝑙 ∈ E[𝑡, 𝑡′′] in the above two definitions,
respectively, are not unique.

Definition 5.3 (Fibration-simulation). We call 𝜛𝜛𝜛 : E _ B a fibration-simula-
tion, if for every computable function 𝑓 ∈ B

[︀
𝑢,𝜛(𝑡)

]︀
there is 𝑔 ∈ E[𝑡′, 𝑡] cartesian for 𝑓 and 𝑡.

In this case, we call 𝑔 a lift of 𝑓 .

9
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Definition 5.4 (Opfibration-simulation). We call 𝜛𝜛𝜛 : E → B an opfibration-simulation, if for
every computable function 𝑓 ∈ B

[︀
𝜛(𝑡), 𝑢

]︀
, there is 𝑔 ∈ E[𝑡, 𝑡′] opcartesian for 𝑓 and 𝑡. In this

case, we call 𝑔 a lift of 𝑓 .

Example 5.5. Let ℰ ,ℬ be categories with presheaves 𝑆, 𝑆′ and let 𝐹 : ℰ → ℬ be a fibration,
such that 𝑆′ ∘ 𝐹 = 𝑆. Then, 𝛾𝛾𝛾𝐹 : CMtot(ℰ ;𝑆)_CMtot(ℬ;𝑆′) is a fibration-simulation.
To see this, assume we are given a computable function in CMtot(ℬ;𝑆′), that is a function
𝑆′(𝑓) : 𝑆′(𝑏) → 𝑆′(𝑏′), and 𝑒 ∈ ℰ such that 𝐹 (𝑒′) = 𝑏′. As 𝐹 is a fibration, we find an arrow
𝑔 : 𝑒 → 𝑒′ cartesian over 𝑓 and 𝑏′ . We show that 𝑆(𝑔) is the desired cartesian function over
𝑆′(𝑓) and 𝑆(𝑏′). For this, let functions 𝑆(ℎ), 𝑆(ℎ2), 𝑆(𝑔2) as in the following diagram,

𝑆(𝑒) 𝑆′(𝑏)

𝑆(𝑒′′) 𝑆′(𝑏′′)

𝑆(𝑒′) 𝑆′(𝑏′)

𝑆(𝑔)

⊩𝛾𝐹

𝑒

𝑆′(𝑓)

𝑆′(ℎ)𝑆(𝑘)

𝑆(𝑔2)

⊩𝛾𝐹

𝑒′′

𝑆′(ℎ2)

⊩𝛾𝐹

𝑒′

be given, where we used that CMprt(ℰ ;𝑆)(𝑒) = 𝑆(𝑒) and CMprt(ℬ;𝑆′)(𝑏) = 𝑆(𝑏), for every
𝑒 and 𝑏, respectively. As 𝑔 is cartesian over 𝑓 and 𝑏′, we obtain an arrow 𝑘 : 𝑒′′ → 𝑒, such that
𝑔 ∘ 𝑘 = 𝑔2 and 𝐹 (𝑘) = ℎ2. Obviously, 𝑆(𝑘) is the function needed, and hence 𝑆(𝑔) is cartesian
over 𝑆′(𝑓) and 𝑆(𝑏′).

Proposition 5.6. If C is a computability model and 𝛾 : C → Sets a simulation, then the
first-projection-simulation pr1 :

∑︀
C 𝛾𝛾𝛾 _C is an opfibration-simulation.

Proof. Assume we are given a computable function 𝑓 ∈ C[𝑡, 𝑡′] and pr1(𝑡, 𝑏) = 𝑡. We
need to find some 𝑏 ∈ C(𝑡′), such that pr1(𝑡

′, 𝑏′) = 𝑡′, and a computable function 𝑓 ′ ∈(︁∑︀
C 𝛾𝛾𝛾

)︁[︀
(𝑡, 𝑏), (𝑡′, 𝑏′)

]︀
, such that 𝑓 ⊩pr1

((𝑡,𝑏),(𝑡′,𝑏′)) 𝑓
′. By definition we know that 𝑓 ⊩pr1

((𝑡,𝑏),(𝑡′,𝑏′))

𝑓 ′ if and only if 𝑓 = 𝑓 ′, so we have to find 𝑦 ∈ C(𝑡′), such that 𝑓(𝑏) = 𝑏′. For this, we simply
take 𝑏′ := 𝑓(𝑏). To show that 𝑓 is opcartesian for 𝑓 and 𝑏, we consider the following diagram(︁∑︀

C 𝛾𝛾𝛾
)︁
(𝑡, 𝑏) C(𝑡)

(︁∑︀
C 𝛾𝛾𝛾

)︁
(𝑡′′, 𝑏′′) C(𝑡′′)

(︁∑︀
C 𝛾𝛾𝛾

)︁
(𝑡′, 𝑏′) C(𝑡′)

𝑓

𝑔

⊩
pr1
(𝑡,𝑏)

𝑓

𝑔

ℎ

⊩
pr1
(𝑡′′,𝑏′′)

ℎ

⊩
pr1
(𝑡′,𝑏′)

and we observe that ℎ fills also the triangle on the left, as we have that 𝑓 = ℎ ∘ 𝑔 whenever they
are defined, so in particular 𝑓(𝑏) = ℎ

(︀
𝑔(𝑏)

)︀
, and thus 𝑏′ = ℎ(𝑏′′). Hence, ℎ is a computable

function from
(︁∑︀

C 𝛾𝛾𝛾
)︁
(𝑡′′, 𝑏′′) to

(︁∑︀
C 𝛾𝛾𝛾

)︁
(𝑡′, 𝑏′).

10
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Next we define split fibration-simulations and split opfibration-simulations.

Definition 5.7. A splitting for a fibration-simulation 𝜛𝜛𝜛 : E_B is a rule 𝜛△ that corresponds
a pair (𝑓, 𝑢), where 𝑓 ∈ B[𝑡1, 𝑡2] and 𝜛(𝑢) = 𝑡2, to a function 𝑓 ′ ∈ E[𝑢, 𝑢′] cartesian for 𝑓
and 𝑢. This rule 𝜛△ is subject to the following conditions:

• For every 𝑓 ∈ B[𝑡1, 𝑡2] and every 𝑔 ∈ B[𝑡2, 𝑡3] we have that

𝜛△(𝑔 ∘ 𝑓, 𝑢1) = 𝜛△(𝑔, 𝑢1) ∘𝜛△(𝑓, 𝑢2).

• For every 𝑡 ∈ 𝑇 we have that 𝜛△(1B(𝑡), 𝑢) = (1E(𝑢), 𝑢).

A splitting for an opfibration-simulation 𝜛𝜛𝜛 : E_B is a rule 𝜛△ that corresponds a pair (𝑓, 𝑢),
where 𝑓 ∈ B[𝑡1, 𝑡2] and 𝜛(𝑢) = 𝑡1, to a function 𝑓 ′ ∈ E[𝑢, 𝑢′] opcartesian over 𝑓 and 𝑢. This
rule 𝜛△ is subject to the following conditions:

• For every 𝑓 ∈ B[𝑡1, 𝑡2] and every 𝑔 ∈ B[𝑡2, 𝑡3] we have that

𝜛△(𝑔 ∘ 𝑓, 𝑢1) = 𝜛△(𝑔, 𝑢2) ∘𝜛△(𝑓, 𝑢1).

• For every 𝑡 ∈ 𝑇 we have that 𝜛△(1B(𝑡), 𝑢) = (1E(𝑢), 𝑢).

A (op)fibration-simulation 𝜛𝜛𝜛 is split, if it admits a splitting 𝜛△.

Corollary 5.8. The simulation pr1 :
∑︀

C 𝛾𝛾𝛾 _C is a split opfibration-simulation.

Proof. We can simply take pr△1 to be defined by the rule pr△1 (𝑓, 𝑢) := (𝑓, 𝑢).

6. Conclusions and future work

In [10] many concepts and results from category theory were translated to the theory of
computability models, where equalities between arrows are replaced by certain relations between
type names and (partial) computable functions. In this paper we extended the work initiated
in [12, 13] by translating the Grothendieck construction and the notions of fibration and
opfibration within computability models. The category CompMod was shown to be a type-
category, a fact that allows the transport of concepts and facts from the theory of type-categories
to the theory of computability models.

Table 1 includes the correspondences between categorical and computability model theory-
notions presented here. It is natural to ask whether the category of presheaves, or more generally
of all functors between two categories, can be translated within computability models. As a
consequence, a Yoneda-type embedding and a corresponding Yoneda lemma for computability
models and appropriate presheaf-simulations can be formulated. In such a framework the
Grothendieck computability model is expected to have the same crucial role to the proof of
a corresponding density theorem with that of the Grothendieck category to the proof of the
categorical density theorem. For that, we need to introduce forcing and tracking-moduli in
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Table 1
The correspondence between category theory and theory of computablity models

Category theory Theory of computablity models
category 𝒞 computability model C
functor 𝐹 : 𝒞 → 𝒟 simulation 𝛾 : C_D
category of Sets computability model of Sets
presheaf 𝑃 : 𝒞 → Sets presheaf-simulation 𝛾 : C_Sets
representable functor Hom(𝑎,−) representable simulation 𝛾𝑡0
representable functor Hom(−, 𝑎) representable-simulation 𝛿𝑡0
Grothendieck category

∑︀
𝒞 𝑃 Grothendieck computability model

∑︀
C 𝛾𝛾𝛾

first-projection functor

pr1 :
∑︁
𝒞

𝑃 → 𝒞

first-projection-simulation

pr1 :
∑︁
C

𝛾𝛾𝛾 _C

(op)cartesian arrow (op)cartesian computable function
(op)fibration 𝜋 : ℰ → ℬ (op)fibration-simulation 𝜛𝜛𝜛 : E_B
split (op)fibration split (op)fibration-simulation

the definition of a simulation i.e., realisers for the forcing and tracking relations. We hope to
elaborate these concepts in subsequent work.

In [15], Proposition 6.11, it is shown that the classifying category of a dependently typed
algebraic theory Th i.e., the category that contains the most general model of this theory, is a
type category. Moreover, a model of Th in any type-category is defined in [15], pp. 117-118.
Theorem 4.3 allows the seemingly unexpected connection between dependently type algebraic
theories and the theory of computability models. It is a result that bridges dependent type
theory with computability models, where the theory of the latter was introduced by Longley and
Normann independently from type-theoretic system with dependent features1. In subsequent
work we plan to study models of various dependently typed algebraic theories within CompMod.
In [15] it is defined when a type-category has dependent products (Definition 6.23). We need
to examine whether the type-category CompMod has dependent objects, in the sense of Pitts,
and, if yes, to relate them to the canonical dependent arrows that every type-category has (see
Theorem 4.6 in [14]). Namely, the simulations

𝜑𝜑𝜑 : C_
∑︁
C

𝛾𝛾𝛾, with pr1 ∘𝜑𝜑𝜑 = 1C

are the canonical dependent functions over C and 𝛾𝛾𝛾.
Our approach to (op)fibration-simulations and (op)cartesian functions is different from the

2-categorical approach to fibrations in [17, 19]. In a subsequent work we will explain the exact
relation between our approach and the 2-categorical one in detail. Namely, we will show that our
approach to cartesian arrows yields a different notion from the 2-categorical one. Nonetheless,
we prove that by adding the weak assumption that all computability models include all constant
functions, every fibration in our sense is a 2-categorical fibration.
1As Longley and Normann remark in [10], p. 544, “there is unexplored territory here, e.g. in combining constructive
type theory and set theory with classical approaches to functional algorithms”.
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