
Improving Sampled Matching through Character1

Context Sampling2

Simone Faro
1,†

, Thierry Lecroq
2
, Francesco Pio Marino

1,2,†
, Arianna Pavone

3,‡
and3

Stefano Scafiti
1

4

1Università di Catania, viale A. Doria n.6, 95125, Catania, Italy5

2Univ Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108,6

CNRS NormaSTIC FR 3638, IRIB, Rouen F-76000, France7

3Università di Palermo, via Archirafi n.34, 90123, Palermo, Italy8

Abstract9

Sampled String Matching is a hybrid approach to the string matching problem, blending online and10

offline solutions. Among various sampling methods, Character Distance Sampling (CDS) is one of the11

fastest and most versatile techniques. In optimal conditions, CDS can achieve speedup of up to 100 times,12

while requiring minimal additional space — ranging from 10% to as little as 0.8% of the original text13

size. Furthermore, CDS is adaptable, effectively handling non-classical string matching problems and14

computing structural properties of strings such as periods and coverages. As with all sampling-based15

matching algorithms, a verification phase on the original text is necessary after the initial matching on the16

sampled strings. Often, the computational effort required for this verification phase can be substantial. In17

this article, we introduce a novel sampling method that tracks the context around each sampled location18

rather than the distances to those locations. This approach aims to reduce the number of candidate19

occurrences and the subsequent verification effort. Our experimental results indicate that the proposed20

method outperforms CDS, particularly for short patterns, achieving a speedup of between 15% and 40%.21

Keywords
String Matching, Sampled String Matching, Text Processing, Contextual Information

22

1. Introduction23

The string matching problem involves identifying all instances of a pattern 𝑥 of length 𝑚 within24

a text 𝑦 of length 𝑛, both defined over an alphabet Σ of size 𝜎. This task is fundamental in text25

processing and underpins various software implementations across multiple operating systems.26

Its importance is highlighted by the continued prevalence of text as the primary medium for27

information exchange, despite diverse data storage formats. This is particularly evident in28

linguistics, which relies on extensive corpora and dictionaries, and in computer science, where29

large amounts of data are stored in linear files.30

ICTCS’24: Italian Conference on Theoretical Computer Science, September 11–13, 2024, Torino, Italy
†
Supported by University of Catania, progetto PIACERI 2024-2026 - Linea di Intervento 1

‡
Supported by PNRR project ITSERR - Italian Strengthening of the ESFRI RI RESILIENCE

$ faro@dmi.unict.it (S. Faro); thierry.lecroq@univ-rouen.fr (T. Lecroq); francesco.marino@phd.unict.it

(F. P. Marino); ariannamaria.pavone@unipa.it (A. Pavone); stefano.scafiti@unict.it (S. Scafiti)

� 0000-0001-5937-5796 (S. Faro); 0000-0002-1900-3397 (T. Lecroq); 0000-0003-4722-9542 (F. P. Marino);

0000-0002-8840-6157 (A. Pavone); 0000-0001-7042-3912 (S. Scafiti)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:faro@dmi.unict.it
mailto:thierry.lecroq@univ-rouen.fr
mailto:francesco.marino@phd.unict.it
mailto:ariannamaria.pavone@unipa.it
mailto:stefano.scafiti@unict.it
https://orcid.org/0000-0001-5937-5796
https://orcid.org/0000-0002-1900-3397
https://orcid.org/0000-0003-4722-9542
https://orcid.org/0000-0002-8840-6157
https://orcid.org/0000-0001-7042-3912
https://creativecommons.org/licenses/by/4.0

Applications of string matching require two main approaches: online and offline string31

matching. The online approach handles unprocessed text, necessitating real-time analysis32

during the search operation. Its worst-case time complexity is Θ(𝑛), first achieved by the33

renowned Knuth-Morris-Pratt (KMP) algorithm [1]. Its average time complexity is Θ
(︁
𝑛 log𝜎 𝑚

𝑚

)︁
34

and was initially realized by the Backward-Dawg-Matching (BDM) algorithm [2]. Numerous35

solutions have been devised to attain sub-linear performance in practical scenarios [3], with the36

Boyer-Moore-Horspool algorithm [4, 5] standing out, having influenced subsequent research.37

In contrast, the offline approach aims to expedite searches through text preprocessing, creating38

data structures that facilitate search operations. Known as indexed searching, this method39

includes several efficient solutions. Prominent examples include suffix trees [6], which offer an40

𝑂(𝑚+𝑜𝑐𝑐)worst-case time, suffix arrays [7] with a time complexity of𝑂(𝑚+log 𝑛+𝑜𝑐𝑐), where41

𝑜𝑐𝑐 it the number of occurrences of the searched pattern, and the FM-index [8], a compressed42

structure derived from the Burrows-Wheeler transform that combines input compression with43

efficient substring queries. However, these full-indexes require additional storage space, ranging44

from four to twenty times the size of the text size.45

A hybrid technique in the literature is Sampled String Matching, introduced by Vishkin in46

1991 [9]. This method involves creating a partial index of the text and applying online string47

matching algorithms to this index. While such approach accelerates the detection of candidate48

pattern occurrences, each match in the sampled text must be verified within the original text.49

The sampled-text methodology offers several benefits: it generally requires straightforward50

implementation, minimal additional space, and enables fast search and update operations.51

Beyond Vishkin’s theoretical contributions, a more practical solution was presented by Claude52

et al. [10], who developed an alphabet reduction technique. Their method requires an extra space53

of 14% of the original text size and achieves up to a fivefold increase in search speed compared54

to traditional online string matching algorithms on English texts. They also introduced an55

indexed version of the sampled text, modifying the suffix array to index sampled positions.56

Recently, Faro et al. have introduced several algorithms in the sampling field, notably their57

Character Distance Sampling (CDS) approach [11, 12, 13, 14, 15, 16]. By sampling absolute58

positions of specific characters, referred to as pivot characters, their method has achieved up59

to a ninefold increase in speed on English texts, while requiring only 11% to 2.8% additional60

space relative to the text size. This method provides a 50% reduction in search times compared61

to previous text sampling techniques [12].62

In this paper, we introduce a novel sampling method called Character Context Sampling63

(CCS), which is designed to compactly track the context surrounding pivot characters identified64

within the text. This method involves storing the hash of the substring (or a portion thereof)65

located between two consecutive occurrences of the pivot character. Our experimental results66

demonstrate that this technique significantly reduces the number of verifications required to67

identify matches, thereby substantially decreasing search times, while maintaining the same68

amount of space required for storing the partial index.69

The paper is organized as follows. In Section 2 we briefly review the CDS method and the70

most recent results achieved in this field. Section 3 introduces the new sampling method based71

on the use of context around pivot characters. In Section 4 we provide some experimental72

results and in Section 5 we draw our conclusions.73

2. Characters Distance Sampling in Brief74

This section outlines the methodology employed to build a partial index using the Character75

Distance Sampling (CDS) technique. These concepts are relevant for the description of the new76

sampling method introduced in this paper.77

Consider an input text 𝑦 of length 𝑛 and an input pattern 𝑥 of length 𝑚, both defined over78

an alphabet Σ of size 𝜎. We treat all strings as vectors starting at position 0. Thus, 𝑥[𝑖] refers to79

the (𝑖+ 1)-th character of the string 𝑥 for 0 ≤ 𝑖 < 𝑚.80

The algorithm selects a sub-alphabet 𝐶 ⊆ Σ to serve as the set of pivot characters.1 Using81

these designated pivots, the text 𝑦 is sampled by calculating the distances between consecutive82

occurrences of any pivot character 𝑐 ∈ 𝐶 within 𝑦. Formally, this sampling methodology is83

based on the concept of position sampling within the text.84

Define 𝛿 : {0, . . . , 𝑛𝑐 − 1} → {0, . . . , 𝑛 − 1}, where 𝛿(𝑖) represents the position of the85

(𝑖+ 1)-th occurrence of a pivot character 𝑐 in 𝑦. The position-sampled version of 𝑦, denoted by86

𝑦̇, is a numerical sequence of length 𝑛𝑐 defined as: 𝑦̇ = ⟨𝛿(0), 𝛿(1), . . . , 𝛿(𝑛𝑐 − 1)⟩.87

Define the Character Distance Function Δ : {0, . . . , 𝑛𝑐 − 1} → {0, . . . , 𝑛 − 1}, where88

Δ(𝑖) = 𝛿(𝑖+ 1)− 𝛿(𝑖) represents the distance between two consecutive occurrences of any89

pivot character in 𝑦. The character-distance sampled version of the text 𝑦, denoted by 𝑦, is a90

numerical sequence of length 𝑛𝑐 − 1 defined as:91

𝑦 = ⟨Δ(0),Δ(1), . . . ,Δ(𝑛𝑐 − 1)⟩ = ⟨𝛿(1)− 𝛿(0), 𝛿(2)− 𝛿(1), . . . , 𝛿(𝑛𝑐 − 1)− 𝛿(𝑛𝑐 − 2)⟩.

Example 1. Let 𝑦 = "agaacgcagtata" be a text of length 13, over the alphabet Σ = {a,c,g,t}. Let92

𝐶 = {a} be the set of pivot characters. The position-sampled version of 𝑦 is 𝑦̇ = ⟨0, 2, 3, 7, 10, 12⟩.93

Specifically, the first occurrence of character "a" is at position 0 (𝑦[0] = "a"), its second occurrence94

is at position 2 (𝑦[2] = "a"), and so on. In addition, the character-distance sampled version95

of 𝑦 is 𝑦 = ⟨2, 1, 4, 3, 2⟩. Specifically, 𝑦[0] = Δ(0) = 𝛿(1) − 𝛿(0) = 2 − 0 = 2, while96

𝑦[2] = Δ(2) = 𝛿(3)− 𝛿(2) = 7− 3 = 4, and so on.97

The sampled string matching approach using CDS maintains a partial index, represented by98

the position-sampled version of the text 𝑦. The size of this index is 32𝑛𝑐 bits, assuming the99

index resides in memory and it is readily available for any search operation on the text.100

When searching for a pattern 𝑥 of length 𝑚 within 𝑦, a preprocessing step computes its101

sampled version 𝑥̄. It can be proven that an occurrence of 𝑥 in 𝑦 corresponds to an occurrence102

of 𝑥̄ in 𝑦. Thus, any string matching algorithm can be used to locate occurrences of 𝑥̄ in 𝑦 to103

solve the problem. However, the reverse is not necessarily true. Therefore, each occurrence of104

𝑥̄ in 𝑦, termed a candidate occurrence, requires a validation check in 𝑦.105

Given that the validation process takes 𝑂(𝑚) time, the entire search operation consumes106

𝑂(𝑚𝑛) time. Nevertheless, modifications to the fundamental procedure can ensure that the107

overall search remains linear in time (see [12] for further details) and can also be implemented108

using any online algorithm studied in literature [17].109

An important aspect of the CDS-based approach is that it does not explicitly maintain the110

character-distance sampled version 𝑦 of the text. Instead, it keeps the position-sampled version111

1

In practical applications, particularly when dealing with large alphabets, the set of pivot characters may include

only one character. For simplicity, we often refer to the pivot character in the singular form.

𝑦̇. Since 𝑦 retains only distances between pivot characters without direct ties to their original112

positions, direct verification of every candidate occurrence is impracticable. This is resolved113

by maintaining 𝑦̇ and computing 𝑦 on-the-fly during the search. The 𝑖-th element of 𝑦 can be114

computed in constant time as 𝑦(𝑖) = 𝑦̇(𝑖+ 1)− 𝑦̇(𝑖).115

The CDS-based sampled string matching approach has proven highly effective in practical116

applications, significantly reducing search times by up to 40 times compared to standard online117

exact string matching techniques. This improvement comes at a relatively low cost, requiring118

the construction of a partial index only 2% of the text size.119

Moreover, the sampled string matching method has shown exceptional flexibility, making it120

suitable for text searching challenges, including approximate searches. Notably, Faro et al. [15]121

recently introduced the run-length text sampling, which is tailored for approximate searches in122

texts, proving useful for tasks such as Order Preserving pattern matching [18, 19].123

In addition to its space and time efficiency, the sampled string matching approach offers other124

advantages, such as ease of programming and the ability to adapt to text variations. Minor125

alterations in the text, like character deletions or insertions, can be easily reflected in the index.126

However, this method is not without its challenges. One such challenge is the performance127

variability based on the choice of pivot character. Strategic selection of the pivot character is128

crucial to balance partial index size and execution times. Research suggests that in the English129

language, the pivot character ranked 8th often provides the best performance.130

Another consideration is that if the pattern is very short and lacks occurrences of the pivot131

character, a standard string search within the text may be necessary. Additionally, the method132

may not yield significant benefits for texts with small alphabets, as space efficiency gains may133

not be realized. However, studies by Faro et al. [13] have demonstrated the effectiveness of134

techniques that use condensed alphabets to expand the alphabet size and improve performance.135

A recent study introduced significant advancements in space and time efficiency through136

the introduction of fake samples [16], slightly increasing the number of elements in the partial137

index. Paradoxically, this results in a substantial three-quarters reduction in the overall space138

required to represent the data structure while maintaining algorithmic correctness. The idea139

lies in storing distances between pivot characters rather than their absolute positions within the140

text, which reduces the space used but introduces the challenge of direct addressing of positions141

within the original text.142

The resulting fake distance representation of CDS leverages a clever balance between adding143

minimal redundancy and achieving significant space reduction. By interspersing fake samples144

within the pivot character set, the method ensures that the partial index retains its efficiency in145

identifying potential matches. This leads to quicker verification processes and overall faster146

search times.147

For the sake of completeness, we emphasize that Lecroq and Marino have recently proven148

that the CDS representation can accelerate not only string matching algorithms but also other149

types of algorithms, such as those that compute structural properties of strings, including150

finding periodicities and covers [20]. This broadens the scope of CDS beyond traditional string151

matching, showcasing its adaptability and effectiveness in a wider range of computational152

problems.153

3. Character Context Sampling154

As introduced in the previous sections, sampled string matching stands as an hybrid method155

that allows a practical speed-up in the searching phase with minimal costs required for space156

and pre-processing time. This technique leverages the benefits of sampling to reduce the overall157

search complexity, making it highly efficient for large datasets.158

On the other hand, a crucial requirement of all sampled string matching algorithms is the159

necessity of a verification phase after any candidate match is identified in sampled versions160

of the text. Although such verification phase can be easily implemented in 𝑂(𝑚) time by161

comparing all the pattern characters with the candidate substring in the text, in the worst-case162

scenario, where false matches occur at every sampled position, it would be necessary to perform163

a verification at each sampled position of the text. This results in a complexity of 𝑂(𝑛𝑚), which164

is sub-optimal if compared with the linear time complexity achieved by several well-known165

algorithms. This trade-off highlights the importance of optimizing the sampling strategy to166

balance the speed-up in the search phase with the cost of running the verification phases.167

While the information provided by the CDS approach is enough to compute positions in the168

original text and execute the searching phase using various online algorithms [17], it is not well169

designed for avoiding (or reducing) false matches between the sampled version of the text and170

the pattern. To obtain this result it is instead necessary to store additional data.171

In this section, we introduce the Character Context Sampling (CCS) approach, an enhanced172

variant of the CDS method which stores information computed on the context around each173

pivot character instead of the distances stored by the CDS method. At the core of this idea is174

the necessity to incorporate contextual information about the position of each pivot character175

within the partial index used for the search. This approach aims to reduce the number of false176

positives, thereby minimizing the number of verifications required during the search phase.177

When we refer to a context, we mean a fixed-size substring, of fixed length 𝑞, within the178

vicinity of the pivot character. Figure 1 schematically shows the idea on which the context-based179

sampling model is based. The Figure compares the CDS and CCS methods if the same pivot180

character is used. Although the context size is set to 𝑞 = 2, when two occurrences of the pivot181

character closer than 2 characters apart then the context is reduced accordingly.182

a b r a c a d a b r a m a g i c a

0 3 5 7 10 12 16

3 2 2 3 2 4

a a a a a a a

Figure 1: Text sampling of the string 𝑥 = abracadabramagica. On top, the Character Distance Sampling

representation of 𝑥 using the character 𝑎 as the sole pivot. The exact positions of each occurrence of the

pivot are stored, with the distances between consecutive occurrences indicated below. On the bottom,

an example of Character Context Sampling of 𝑥, using the same pivot character and 𝑞 = 2. Note that

the last context has a length of 3, which is greater than our 𝑞; therefore, the context is reduced to 𝑞 = 2.

However, we immediately notice that memorizing entire substrings is extremely more expen-183

sive than memorizing individual positions. For this reason, due to the potentially high memory184

cost of storing the entire set of substrings representing the set of contexts, our method stores185

the context in a compact and approximate form by computing a fingerprint of the substrings,186

specifically a hash value.187

More formally, let ℎ𝑎𝑠ℎ : Σ* × {0, 1, . . . , 𝑞 − 1} × {0, 1, . . . , 𝑞 − 1} be a function which,188

taking as input a string 𝑤 ∈ Σ*
and two indices 𝑖 and 𝑗 such that 0 ≤ 𝑖 < 𝑗 ≤ |𝑤|−1, computes189

an hash value of the substring 𝑤[𝑖..𝑗]. In addition, let 𝑞 be an integer parameter such that 𝑞 ≥ 2,190

and let 𝑦̇ be the position sampled version of the text 𝑦. Then, the CCS version of a string 𝑦191

is defined as 𝑦 = ⟨ccs(0), ccs(1), . . . , ccs(𝑛𝑐 − 1)⟩, where ccs(𝑖) corresponds to the context192

value of the 𝑖-th pivot character, which is defined by193

ccs(𝑖) =

{︂
ℎ𝑎𝑠ℎ(𝑦, 𝑦̇[𝑖] + 1, 𝑦̇[𝑖+ 1]− 1) if 𝑦̇[𝑖+ 1]− (𝑦̇[𝑖] + 1) ≤ 𝑞
ℎ𝑎𝑠ℎ(𝑦, 𝑦̇[𝑖] + 1, 𝑦̇[𝑖] + 𝑞) otherwise.

In other words, the CCS version, 𝑦, of the text 𝑦 is the sequence of hash values computed194

on the substring starting at the positions just after each pivot character in the text, whose195

length is at most 𝑞 and which does not include the next pivot character. These hash values196

encapsulate contextual information that can be used during the search phase to reduce the197

number of verifications.198

We also notice that, in order to locate the candidate occurrences in the original text for199

the verification phase, the CCS approach necessitates storing both the hash values and the200

exact positions of each pivot character. In the worst-case scenario, storing the complete set of201

positions may lead to an hybrid method consuming a significant amount of additional space. To202

address this issue, an alternative approach involves using a mapping table 𝜌, as demonstrated203

in the OTS algorithm [10]. In their method, a mapping position is stored at regular intervals;204

specifically, every 𝑡 pivots, the exact position of the pivot is recorded. When a sampled match is205

found at position 𝑖, the verification phase commences at the position 𝜌[⌊𝑖/𝑘⌋] and continues206

until the next pivot character (see [10] for more details).207

The searching procedure is divided into two distinct phases: the pre-matching phase, also208

known as sample-matching, and the verification phase. The pseudo-code of the searching209

procedure is described in Figure 2 (on the right).210

Le 𝑦 be a text of length 𝑛, let 𝑥 be a pattern of length 𝑚, both strings over an alphabet Σ, and211

let 𝐶 ⊆ Σ be the set of pivot characters. In order to retrieve the exact position in the text, an212

additional position 𝑓 must be stored. This position 𝑓 corresponds to the distance between the213

first pivot and the initial position of the text. Specifically 𝑓 = min(𝑖 : 𝑦[𝑖] ∈ 𝐶). Thus 𝑓 = 0214

if the text starts with a pivot character, otherwise 𝑓 > 0.215

Both phases are straightforward and similar in nature. The first phase checks if all the216

contexts of the sampled pattern 𝑥̃ occurs in the sampled text 𝑦. If a candidate occurrence is217

found at position 𝑖 of 𝑦, then the second verification phase is initiated to check the presence of218

a real match.219

During the verification phase, the starting position is computed. This requires 𝑦̇[𝑠], which is220

the exact position of the first pivot that was compared, and the distance 𝑓 between the first pivot221

in the pattern and the initial position of the text. Consequently, the position 𝑝 can be computed222

Figure 2: (On the left) The pseudo-code of the procedure to compute the Character Context Sampling

version of a given string. (On the right) The pseudo-code for the brute-force searching procedure for the

Character Context Sampling Matching.

as 𝑝 = 𝑦̇[𝑠] − 𝑓 . However, we point out that, in the procedure shown in Figure 2, the exact223

position 𝑦̇[𝑠] is computed by sub-routine Compute-Position which uses the mapping table 𝜌 to224

identify the value of such position. Once the initial position 𝑝 in the original text is computed, a225

verification check is performed to ensure that all characters in the pattern 𝑥[0..𝑚− 1] match226

the corresponding substring 𝑦[𝑝..𝑝+𝑚− 1].227

While its worst-case complexity can reach 𝑂(𝑛𝑚), necessitating verification of all positions228

in the text, the algorithm described shows competitive, and often superior, performance com-229

pared to other established methods in practical scenarios. The subsequent section will provide230

supporting evidence in this regard.231

4. Experimental Results232

In this section, we present the results of an experimental evaluation of the new text sampling233

approaches introduced in this article. Our evaluation compares our approaches with the best234

solution available in the literature, focusing on three key metrics: time efficiency, memory space235

requirements, and the computational effort needed for verifying candidate occurrences.236

Algorithms and implementation. We compared the text sampling approach proposed in237

this paper (CCS𝑞) for values of 𝑞 ∈ 2, 4, 6 with the FCDS+ approach which is currently the238

most effective CDS variant for natural language texts. We recall that FCDS+ is a CDS variant239

enhanced with fake samples and a mapping table which maps one element every 𝑘 elements to240

its corresponding position within the text. For details of the FCDS+ implementation see [17].241

In addition, we report that the CCS algorithm has been implemented using an hashing function242

wich maps any substring of 𝑞 characters on a 1 byte bucket. For both the CCS and FCDS+243

Figure 3: The implementations of three hash functions that are used in our implementation of the CCS

sampling method. The implementations expect a hash value of 1 byte in size as output. The 𝑞 values

vary in the set {2, 4, 6}, while the shift values vary in the interval {4, 2, 1}, respectively.

algorithms, the mapping table utilizes values of 𝑘 ∈ {8, 16, 32}, selecting the optimal execution244

time for each case. The functions used to calculate the hash value in our implementation245

are those shown in Figure 3. A hash value of 1 byte was selected to ensure that the space246

requirements of CCS closely match those of FCDS+, thereby enabling a fair comparison between247

the two solutions. We compared our algorithms using multiple pivot characters based on the248

rank of their frequency 𝑗.249

Testbed. All the algorithms were implemented in the C programming language and tested250

using the Smart tool
2

[21]. The experiments were executed on a MacBook Pro with a 2.7 GHz251

Intel Core i7 processor, 4 cores, 16 GB RAM 2133 MHz LPDDR3, 256 KB L2 Cache, and 8 MB L3252

Cache. Compilation was performed with the -O3 optimization flag.253

We tested all the algorithms on a text buffer of size 100 MB, sourced from the Pizza and Chili254

dataset [22], which is available for download online. The algorithms were specifically tested255

using the natural language text from this dataset. In our experiments we limited ourselves256

to searching for patterns of fixed length 𝑚 = 2𝑝, with 𝑝 ∈ {4, 5, 6, 7}. For the purpose of257

our experimental evaluation, 1000 patterns were randomly selected from the text buffer, all258

algorithms were run to search for each of the patterns in this set, and the average running time259

was computed over these 1000 runs.260

The choice of using a 100 MB text buffer ensures a substantial and representative sample size261

for evaluating algorithm performance. The natural language text from the Pizza and Chili dataset262

provides a realistic testing scenario, reflecting typical use cases in text processing applications.263

Analysis of search times. The analysis of search times is particularly important in this con-264

text, as sampled matching solutions are designed to achieve significantly superior performance265

compared to online solutions, with minimal cost in terms of spatial resources.266

Figure 4 reports the time performance obtained in our experimental results, highlighting267

the average running times of the tested algorithms. The results shows that the new variant268

proposed in this paper achieves superior performance in terms of time compared to the FCDS+269

variant, with improvements ranging from 50% to 70%. As expected, the greatest advantages270

2

The Smart tool is available online for download at http://www.dmi.unict.it/~faro/smart/ or at https://github.com/

smart-tool/smart.

http://www.dmi.unict.it/~faro/smart/
https://github.com/smart-tool/smart
https://github.com/smart-tool/smart

2 4 6 8 10

2

4

6

8

10

𝑚 = 16

2 4 6 8 10

5

10

15

20

𝑚 = 32

CCS2
CCS4
CCS6
FCDS+

2 4 6 8 10

5

10

15

20

𝑚 = 64

2 4 6 8 10

4

6

8

10

12

𝑚 = 128

Figure 4: Search time for patterns of size 16 ≤ 𝑚 ≤ 128 comparing the CDS algorithm and the CCS𝑞
algorithm for different values of 𝑞. The abscissa shows the rank of the selected pivot character 𝑗, while

the ordinate shows the time expressed in milliseconds (ms).

are observed for short to medium-length patterns, where context plays a fundamental role in271

identifying possible occurrences of the pattern.272

In our experimental results, a detailed description of the best pivot character selection is not273

provided. Regarding the selection of the pivot character, superior performance is once again274

observed with a rank around the value of 8 for both CCS and FCDS+.275

Finally, we note that FCDS+ becomes the most efficient solution for very long patterns. In276

this scenario, the context has less influence on identifying candidate occurrences, and sampling277

based on the distance between pivot characters proves to be the best strategy.278

Table 1 (on the left) presents the experimental results in terms of running times, compared279

with the search times of the original Horspool algorithm (HOR) [5]. In the table, the execution280

times of the Horspool algorithm are expressed in milliseconds, while the results for the sampled281

matching algorithms are expressed in terms of speedup relative to the Horspool algorithm. The282

best results, in terms of speedup, are highlighted with more intense shades of grey.283

As clearly shown in Table 1, the CCS method provides superior speedups compared to FCDS+.284

These speedups range from an impressive 33 times for short patterns (𝑚 = 16) to 5 times for285

very long patterns (𝑚 = 128). These results shows that solutions based on sampled matching286

are significantly more effective than those based on the standard approach.287

Impact on the number of verifications. In order to provide a more comprehensive un-288

derstanding of the improvements brought by the proposed new technique, we analyzed the289

average number of verifications executed by each algorithm under various settings. These290

settings include different pattern lengths, ranks of the chosen pivot character, and the number291

of characters used for hashing. The results of this analysis are illustrated in Table 1.292

The experimental results show that for small patterns, the CDS algorithm requires, in the293

worst case, more than 30, 000 verifications, which is significantly more than the actual number294

of matches (147). In contrast, under optimal conditions, the CCS algorithm requires only 758295

verifications, which is less than 2.5% of the original algorithm’s verification count.296

In the most favorable cases, the new CCS variants significantly reduce the number of veri-297

fications to values remarkably close to the actual number of pattern occurrences within the298

text. Specifically, for 𝑚 = 64, the CCS4 variant reduces the number of false positives to nearly299

match the number of actual occurrences (25 versus 13). Furthermore, for 𝑚 = 128, the CCS6300

variant completely eliminates false positives. This demonstrates that the context-based approach301

manages to drastically reduce the number of verifications required during the search phase,302

justifying the superior performance in terms of search times discussed previously.303

Analysis of the space consumption. Given that the memory required to store the hashing304

is equivalent to the memory needed to store all the distances using the fake-representation, and305

that the mapping tables are identical, the newly proposed algorithm eliminates the need for306

additional fake-samples. Consequently, the CCS algorithm demands fewer memory resources307

while providing a speed-up in the searching time. Specifically, Figure 5 shows the space308

consumption of both the FCDS+ and CCS algorithm for different rank of the pivot character,309

ranging from 2 to 10. We observe that the size of the partial index is always below 10%310

(corresponding to 10 MB) of the text size and reaches 5% (5 MB) for the rank 8 pivot.311

Space Consumption

2 4 6 8 10
4%

6%

8%

Figure 5: Space consumption of both the FCDS+ algorithm and the CCS algorithm for different rank

of the pivot character.

𝑚 j HOR FCDS+ CCS𝑞
(𝑞 = 2) (𝑞 = 4) (𝑞 = 6)

2 5.02 6.73 6.44 6.61

4 6.42 8.56 9.32 9.23

16 6 47.39 12.02 19.50 16.98 18.73

8 20.16 32.68 25.34 33.13
10 21.06 28.20 25.47 28.72

2 1.59 2.72 2.64 2.22

4 2.48 4.68 4.01 4.33

32 6 34.82 3.68 7.22 4.26 5.18

8 1.18 5.65 4.89 5.67

10 3.15 7.20 5.47 5.99

2 1.20 1.35 2.12 1.65

4 1.62 3.32 2.48 4.16

64 6 25.94 2.59 3.49 4.25 4.98

8 2.70 4.17 3.73 4.88

10 3.32 5.34 3.93 5.19

2 2.20 2.17 1.70 2.30

4 3.75 3.25 2.65 3.18

128 6 22.32 4.25 4.00 3.86 3.90

8 4.68 3.72 3.93 4.75

10 5.08 4.44 4.28 5.65

𝑗 𝑚 = 16 𝑚 = 32 𝑚 = 64 𝑚 = 128
Matches - 147 18 13 11

2 19571 18412 5473 27

4 30928 75715 2228 173

FCDS+ 6 22778 7702 6470 1040

8 20235 4986 4487 25215

10 19571 4099 5007 31603

2 11175 12956 25 13

4 28514 3390 476 35

CCS2 6 3330 7271 461 192

8 2874 4520 707 350

10 1957 2467 377 347

2 9292 9832 25 13

4 28403 6487 575 31

CCS4 6 758 1895 482 191

8 1548 2990 891 163

10 1957 780 51 168

2 8215 9069 25 13

4 28385 1749 277 11
CCS6 6 1814 6050 443 189

8 1379 1377 174 194

10 1957 512 31 168

Table 1
(On the left) Experimental results for the Exact String Matching problem. Running times of the HOR are

expressed in milliseconds. Results for all other algorithms are expressed in terms of speed-up against

the reference HOR algorithm. Over a text of 100MB. (On the right) Number of verifications performed

by the sampled matching algorithms during the search phase. The values shown represent the average

results obtained over 1000 runs. The first row displays the exact number of pattern occurrences within

the text. The subsequent rows show the number of false positives identified by each sampled matching

algorithm during the search phase.

5. Conclusions and Future Works312

In this paper, we introduced a novel sampling method called Character Context Sampling313

(CCS), designed to enhance the efficiency of the string matching process. This method tracks314

the context surrounding each sampled location, rather than just the distances between these315

locations. Our experimental results demonstrate that CCS significantly reduces the number of316

verifications required, thereby substantially decreasing search times while maintaining minimal317

additional space requirements. CCS stands out by outperforming the existing Character Distance318

Sampling (CDS) method, especially for short patterns, achieving a speedup of between 15% and319

40%. This improvement is attributed to the effective use of contextual information, which helps320

in reducing false positives during the verification phase.321

Future research could focus on several areas to further enhance the performance and applica-322

bility of the CCS method. First, exploring more efficient hashing techniques and investigating323

their impact on the speed and accuracy of CCS could yield valuable insights. Second, adapting324

the CCS method for other types of string matching problems, such as approximate matching or325

order-preserving matching, could broaden its utility.326

Additionally, integrating CCS with other advanced data structures and algorithms, such as327

suffix trees, may provide hybrid solutions that combine the strengths of different approaches.328

Finally, optimizing the selection of pivot characters based on specific text characteristics or329

application requirements could further improve the efficiency of the CCS method.330

References331

[1] D. E. Knuth, J. H. Morris, Jr., V. R. Pratt, Fast pattern matching in strings, SIAM Journal332

on Computing 6 (1977) 323–350. URL: https://doi.org/10.1137/0206024. doi:10.1137/333

0206024. arXiv:https://doi.org/10.1137/0206024.334

[2] M. Crochemore, A. Czumaj, L. Ga̧sieniec, S. Jarominek, T. Lecroq, W. Plandowski, W. Rytter,335

Speeding up two string-matching algorithms, Algorithmica 12 (1994) 247–267. URL:336

https://doi.org/10.1007/BF01185427. doi:10.1007/BF01185427.337

[3] S. Faro, T. Lecroq, The exact online string matching problem: A review of the most recent338

results, ACM Comput. Surv. 45 (2013). URL: https://doi.org/10.1145/2431211.2431212.339

doi:10.1145/2431211.2431212.340

[4] R. S. Boyer, J. S. Moore, A fast string searching algorithm, Commun. ACM 20 (1977)341

762–772. URL: https://doi.org/10.1145/359842.359859. doi:10.1145/359842.359859.342

[5] R. N. Horspool, Practical fast searching in strings, Software: Practice and343

Experience 10 (1980) 501–506. URL: https://onlinelibrary.wiley.com/doi/abs/344

10.1002/spe.4380100608. doi:https://doi.org/10.1002/spe.4380100608.345

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380100608.346

[6] A. Apostolico, The myriad virtues of subword trees, in: A. Apostolico, Z. Galil (Eds.),347

Combinatorial Algorithms on Words, Springer Berlin Heidelberg, Berlin, Heidelberg, 1985,348

pp. 85–96.349

[7] U. Manber, G. Myers, Suffix arrays: A new method for on-line string searches, SIAM350

Journal on Computing 22 (1993) 935–948. URL: https://doi.org/10.1137/0222058. doi:10.351

1137/0222058. arXiv:https://doi.org/10.1137/0222058.352

[8] P. Ferragina, G. Manzini, Indexing compressed text, J. ACM 52 (2005) 552–581. URL:353

https://doi.org/10.1145/1082036.1082039. doi:10.1145/1082036.1082039.354

[9] U. Vishkin, Deterministic sampling–a new technique for fast pattern matching, SIAM Jour-355

nal on Computing 20 (1991) 22–40. URL: https://doi.org/10.1137/0220002. doi:10.1137/356

0220002. arXiv:https://doi.org/10.1137/0220002.357

[10] F. Claude, G. Navarro, H. Peltola, L. Salmela, J. Tarhio, String matching with alphabet358

sampling, Journal of Discrete Algorithms 11 (2010). doi:10.1016/j.jda.2010.09.004.359

[11] S. Faro, F. P. Marino, Reducing time and space in indexed string matching by characters360

distance text sampling, in: J. Holub, J. Zdárek (Eds.), Prague Stringology Conference 2020,361

Prague, Czech Republic, August 31 - September 2, 2020, Czech Technical University in362

Prague, Faculty of Information Technology, Department of Theoretical Computer Science,363

2020, pp. 148–159. URL: http://www.stringology.org/event/2020/p13.html.364

[12] S. Faro, F. P. Marino, A. Pavone, Efficient online string matching based on characters365

distance text sampling, Algorithmica 82 (2020) 3390–3412. URL: https://doi.org/10.1007/366

s00453-020-00732-4. doi:10.1007/S00453-020-00732-4.367

[13] S. Faro, F. P. Marino, A. Pavone, Enhancing characters distance text sampling by condensed368

alphabets, in: C. S. Coen, I. Salvo (Eds.), Proceedings of the 22nd Italian Conference on369

Theoretical Computer Science, Bologna, Italy, September 13-15, 2021, volume 3072 of CEUR370

Workshop Proceedings, CEUR-WS.org, 2021, pp. 1–15. URL: https://ceur-ws.org/Vol-3072/371

paper1.pdf.372

[14] S. Faro, F. P. Marino, A. Pavone, Improved characters distance sampling for online and373

https://doi.org/10.1137/0206024
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1137/0206024
http://arxiv.org/abs/https://doi.org/10.1137/0206024
https://doi.org/10.1007/BF01185427
http://dx.doi.org/10.1007/BF01185427
https://doi.org/10.1145/2431211.2431212
http://dx.doi.org/10.1145/2431211.2431212
https://doi.org/10.1145/359842.359859
http://dx.doi.org/10.1145/359842.359859
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380100608
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380100608
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380100608
http://dx.doi.org/https://doi.org/10.1002/spe.4380100608
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380100608
https://doi.org/10.1137/0222058
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1137/0222058
http://arxiv.org/abs/https://doi.org/10.1137/0222058
https://doi.org/10.1145/1082036.1082039
http://dx.doi.org/10.1145/1082036.1082039
https://doi.org/10.1137/0220002
http://dx.doi.org/10.1137/0220002
http://dx.doi.org/10.1137/0220002
http://dx.doi.org/10.1137/0220002
http://arxiv.org/abs/https://doi.org/10.1137/0220002
http://dx.doi.org/10.1016/j.jda.2010.09.004
http://www.stringology.org/event/2020/p13.html
https://doi.org/10.1007/s00453-020-00732-4
https://doi.org/10.1007/s00453-020-00732-4
https://doi.org/10.1007/s00453-020-00732-4
http://dx.doi.org/10.1007/S00453-020-00732-4
https://ceur-ws.org/Vol-3072/paper1.pdf
https://ceur-ws.org/Vol-3072/paper1.pdf
https://ceur-ws.org/Vol-3072/paper1.pdf

offline text searching, Theor. Comput. Sci. 946 (2023) 113684. URL: https://doi.org/10.1016/374

j.tcs.2022.12.034. doi:10.1016/J.TCS.2022.12.034.375

[15] S. Faro, F. P. Marino, A. Pavone, A. Scardace, Towards an efficient text sampling approach376

for exact and approximate matching, in: J. Holub, J. Zdárek (Eds.), Prague Stringology377

Conference 2021, Prague, Czech Republic, August 30-31, 2021, Czech Technical University378

in Prague, Faculty of Information Technology, Department of Theoretical Computer379

Science, 2021, pp. 75–89. URL: http://www.stringology.org/event/2021/p07.html.380

[16] S. Faro, F. P. Marino, A. Moschetto, A. Pavone, A. Scardace, The Great Textual Hoax:381

Boosting Sampled String Matching with Fake Samples, in: A. Z. Broder, T. Tamir (Eds.),382

12th International Conference on Fun with Algorithms (FUN 2024), volume 291 of Leibniz383

International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für384

Informatik, Dagstuhl, Germany, 2024, pp. 13:1–13:17. URL: https://drops.dagstuhl.de/385

entities/document/10.4230/LIPIcs.FUN.2024.13. doi:10.4230/LIPIcs.FUN.2024.13.386

[17] S. Faro, F. P. Marino, A. Moschetto, Beyond Horspool: A comparative analysis in sampled387

matching, in: Proceedings of the Prague Stringology Conference 2024, Prague, Czech388

Republic, Prague Stringology Club, Department of Computer Science and Engineering,389

Faculty of Electrical Engineering, Czech Technical University in Prague, 2024.390

[18] J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C. S. Iliopoulos, K. Park, S. J. Puglisi, T. Tokuyama,391

Order-preserving matching, Theoretical Computer Science 525 (2014) 68–79. URL: https:392

//www.sciencedirect.com/science/article/pii/S0304397513007585. doi:https://doi.org/393

10.1016/j.tcs.2013.10.006, advances in Stringology.394

[19] D. Cantone, S. Faro, M. O. Külekci, An efficient skip-search approach to395

the order-preserving pattern matching problem, 2015, p. 22 – 35. URL:396

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978488339&partnerID=397

40&md5=d5c48fdb1cde28eb746b06b0bee63b35.398

[20] T. Lecroq, F. P. Marino, Fast computation of the period and of the shortest cover of a string399

using its character-distance-sampling representation, 2024. URL: https://arxiv.org/abs/400

2407.18216. arXiv:2407.18216.401

[21] S. Faro, T. Lecroq, S. Borzi, S. D. Mauro, A. Maggio, The string matching algorithms research402

tool, in: Proceedings of the Prague Stringology Conference 2016, Department of Theoretical403

Computer Science, Faculty of Information Technology, Czech Technical University in404

Prague, 2016, pp. 99–111. URL: http://www.stringology.org/event/2016/p09.html.405

[22] P. Ferragina, G. Navarro, Pizza&Chili, Available online: pizzachili.dcc.uchile.cl/, 2005.406

https://doi.org/10.1016/j.tcs.2022.12.034
https://doi.org/10.1016/j.tcs.2022.12.034
https://doi.org/10.1016/j.tcs.2022.12.034
http://dx.doi.org/10.1016/J.TCS.2022.12.034
http://www.stringology.org/event/2021/p07.html
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2024.13
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2024.13
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2024.13
http://dx.doi.org/10.4230/LIPIcs.FUN.2024.13
https://www.sciencedirect.com/science/article/pii/S0304397513007585
https://www.sciencedirect.com/science/article/pii/S0304397513007585
https://www.sciencedirect.com/science/article/pii/S0304397513007585
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2013.10.006
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2013.10.006
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2013.10.006
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978488339&partnerID=40&md5=d5c48fdb1cde28eb746b06b0bee63b35
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978488339&partnerID=40&md5=d5c48fdb1cde28eb746b06b0bee63b35
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978488339&partnerID=40&md5=d5c48fdb1cde28eb746b06b0bee63b35
https://arxiv.org/abs/2407.18216
https://arxiv.org/abs/2407.18216
https://arxiv.org/abs/2407.18216
http://arxiv.org/abs/2407.18216
http://www.stringology.org/event/2016/p09.html

	1 Introduction
	2 Characters Distance Sampling in Brief
	3 Character Context Sampling
	4 Experimental Results
	5 Conclusions and Future Works

