
PathFinder Demo: Returning Paths in Graph Queries
Vicente Calisto2, Benjamín Farías1,2, Wim Martens3, Carlos Rojas2 and
Domagoj Vrgoč1,2

1Pontificia Universidad Católica de Chile, Santiago, Chile
2Instituto Milenio Fundamentos de los Datos (IMFD), Santiago, Chile
3University of Bayreuth, Bayreuth, Germany

Abstract
In this demonstration we showcase PathFinder, a unified approach to returning paths in graph database
queries. Returning paths is a central feature of regular path queries in the new GQL graph query standard.
In the demo we showcase how PathFinder works by establishing two public endpoints, which the
attendees will be able to access using their browser to try different queries. The first endpoint will host
a property graph version of Wikidata to test GQL-style path queries, while the second one contains
Wikidata in RDF format and illustrates how SPARQL can be extended to return paths.

Keywords
GQL, regular path queries, SPARQL, property paths, returning paths

1. Introduction and Outline

Graph databases have gained significant popularity [1, 2] and are supported by numerous
SPARQL engines [3, 4, 5], as well as industry vendors like Oracle, Amazon, and Neo4j. A core
feature of all these systems is support for path queries. In SPARQL these are supported through
property paths, which are a variant of regular path queries (RPQs) commonly used in the database
literature [6, 7, 8, 9, 10, 11]. While property paths and RPQs simply test the existence of a path
between two nodes in a graph, the recent ISO standardization of the Graph Query Language
(GQL) [12] brought forth a significant new challenge in querying paths, namely the combination
of (i) regular path queries; and (ii) returning different types of paths.

To illustrate these features, consider the property graph in Figure 1 representing a travel
network. We might be interested to find all the places we can reach from the city of Bayreuth
by taking one or more train rides. In a GQL-like syntax such a query could be written as:
MATCH (?x:City WHERE ?x.name='Bayreuth')-[:train+]->(?y)

Here the pattern following the MATCH keyword is matched to the graph. In our case, ?x
is matched to the city of Bayreuth (node n1 in Figure 1), and ?y to any city reachable by
a non-empty sequence of edges labeled train, as specified by expression -[:train+]->.
Unlike Cypher, GQL allows arbitrary regular languages to describe how nodes in the graph are
connected, just as SPARQL. Note that here we merely test for the existence of a path.

Posters, Demos, and Industry Tracks at ISWC 2024, November 13–15, 2024, Baltimore, USA
$ vicente.calisto@imfd.cl (V. Calisto); bffarias@uc.cl (B. Farías); wim.martens@uni-bayreuth.de (W. Martens);
cirojas6@uc.cl (C. Rojas); vrdomagoj@uc.cl (D. Vrgoč)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:vicente.calisto@imfd.cl
mailto:bffarias@uc.cl
mailto:wim.martens@uni-bayreuth.de
mailto:cirojas6@uc.cl
mailto:vrdomagoj@uc.cl
https://creativecommons.org/licenses/by/4.0

name = Bayreuth
country = Germany

n1 : City

name = Nürnberg
Country = Germany

n2 : City

name = Frankfurt
country = Germany

n4 : City

name = Stuttgart
country = Germany

n3 : City

name = Paris
country = France

n5 : City

name = Amsterdam
country = Netherlands

n6 : City

name = Rome
country = Italy

n7 : City

name = Santiago
Country = Chile

n8 : City

e1 : train

e2 : train

e4 : train

duration = 2h
e3 : train

e6 : train

e5 : train

e7 : train

code = AF406
duration = 13h

e8 : flight

e9 : flighte10 : flight

tolls = 73.81€

e11 : car

Figure 1: A sample graph database representing a (part of a) travel network.

The second key component of GQL is the ability to return paths in query answers. Examining
the graph of Figure 1, we can immediately see that returning all the paths conforming to the
query in our example is not feasible. Namely, the loop generated by the edges e1 and e2 allows
us to generate an infinite number of paths. To prohibit infinite query answers, GQL uses path
modes [12], which limit the type of paths we can return. Common modes are simple and trail,
which forbid reusing nodes and edges on paths, respectively. Another option is shortest; for
instance, if we wished to find a shortest way to reach Santiago from Bayreuth by using any
number of train connections or flights, we would write:
MATCH (?x:City WHERE ?x.name='Bayreuth')

-[?p ANY SHORTEST (:train | :flight)+]->
(?y: City WHERE ?y.name='Santiago')

In this query the path itself is bound to the variable ?p and has non-deterministic semantics since
there could be multiple shortest paths between the two nodes. For instance, in our example one
answer is traced by the edges e1 → e3 → e5 → e8, another one by e1 → e4 → e7 → e9, etc.
According to GQL, all these answers are valid, and there is no guarantee as to which one will
be returned. Returning all of them can be done using the ALL SHORTEST mode.

Given the novelty of GQL [12] and the fact that queries that return paths are intrinsically
difficult to evaluate [13], it is not surprising that their coverage is somewhat lacking in modern
systems. For instance, most engines only support a few path modes out of the 15 that are
possible in GQL [14]. To remedy these issues, we will showcase PathFinder, an add-on for
graph database engines that allows processing path queries at scale and supports all GQL path
modes. PathFinder is based on years of theoretical work on the subject, is implemented on top
of the MillenniumDB graph database engine [15], and supports different storage mechanisms,
showcasing its independence of the graph pipeline.

Conference paper. We remark that this demo accompanies our paper PathFinder: Returning
Paths in Graph Queries [16] which will be presented in the ISWC research track. Compared to
the conference version, here we put a strong focus on usability; namely, we develop a graphical
interface for returning paths and host two endpoints where attendees can test path queries. We
also propose an extension of SPARQL where paths can be returned in the query results. Finally,
we remark that an additional author is added compared with the Research Track paper to work
on providing user interfaces and SPARQL support for the demo.

2. The Demonstration

The demonstration will consist of the following use cases, all of which are supported through
public query endpoints that will be available during the review process and later on.

A public query endpoint. The main highlight of our demonstration will be a public query
endpoint where the attendees will be able to test GQL path queries using only their Web
browser. In particular, our endpoint will be hosting a property graph version of Wikidata [17]
which we used in our scalability tests. In particular, we use a curated version of the data set
based on the truthy dump of Wikidata [18], which was used in WDBench [19]. The dataset
is publicly available at [20]. During the demonstration we will also have a brief explanation
of the underlying data and will prepare a series of instructive queries for the users to get
acquainted with the language. The Wikidata endpoint is available for the review purposes at
https://mdb.imfd.cl/path_finder/, with a series of illustrative queries included on the endpoint.

PathFinder and SPARQL engines. Since the PathFinder approach can also work as a part
of a SPARQL engine, we first showcase its functionality in the context of evaluating property
paths without returning the path themselves. This approach is already used in MillenniumDB’s
Wikidata SPARQL endpoint at https://wikidata.imfd.cl/, which leverages PathFinder to handle
property path queries, and can be tried there. We remark that in this case the entire Wikidata
dump is from 2023–07–16 and not Wikidata Truthy.

Returning paths in SPARQL. In addition to checking reachability via property paths, we
would also like to illustrate how PathFinder can be used to return paths in SPARQL queries,
through a syntactic extension of the language. One such proposal can be accessed directly
through the PathFinder console as explained in our online repository [14]. For the demo
presentation we also developed a Web interface for displaying paths that witness SPARQL
property path query answers in a similar fashion as done for our property graph endpoint. To
test this functionality, the attendees can access our (extended) SPARQL endpoint hosting the
Wikidata Truthy dataset at https://mdb.imfd.cl/path_finder/. Figure 2 shows how this extension
of SPARQL syntax and semantics works on our endpoint.

Figure 2: Returning paths in SPARQL query answers.

https://mdb.imfd.cl/path_finder/
https://wikidata.imfd.cl/
https://mdb.imfd.cl/path_finder/

Acknowledgments

Calisto, Farías, Rojas and Vrgoč were supported by ANID – Millennium Science Initiative
Program – Code ICN17_002. Vrgoč was also supported by the ANID Fondecyt Regular project
1240346. Martens was supported by ANR project EQUUS ANR-19-CE48-0019; funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number
431183758.

References

[1] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, D. Vrgoč, Foundations of
Modern Query Languages for Graph Databases, ACM Comput. Surv. 50 (2017). URL:
https://doi.org/10.1145/3104031. doi:10.1145/3104031.

[2] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. G. Aref, M. Arenas,
M. Besta, P. A. Boncz, K. Daudjee, E. D. Valle, S. Dumbrava, O. Hartig, B. Haslhofer,
T. Hegeman, J. Hidders, K. Hose, A. Iamnitchi, V. Kalavri, H. Kapp, W. Martens, M. T. Özsu,
E. Peukert, S. Plantikow, M. Ragab, M. Ripeanu, S. Salihoglu, C. Schulz, P. Selmer, J. F.
Sequeda, J. Shinavier, G. Szárnyas, R. Tommasini, A. Tumeo, A. Uta, A. L. Varbanescu,
H. Wu, N. Yakovets, D. Yan, E. Yoneki, The future is big graphs: a community view on
graph processing systems, Commun. ACM 64 (2021) 62–71.

[3] J. Team, Jena TDB, 2021. URL: https://jena.apache.org/documentation/tdb/.
[4] B. Thompson, M. Personick, M. Cutcher, The Bigdata® RDF Graph Database, in: Linked

Data Management, Chapman and Hall/CRC, 2014, pp. 193–237.
[5] O. Erling, Virtuoso, a Hybrid RDBMS/Graph Column Store, IEEE Data Eng. Bull. 35 (2012)

3–8. URL: http://sites.computer.org/debull/A12mar/vicol.pdf.
[6] I. F. Cruz, A. O. Mendelzon, P. T. Wood, A graphical query language supporting recursion,

in: SIGMOD 1987, 1987, pp. 323–330.
[7] A. O. Mendelzon, P. T. Wood, Finding regular simple paths in graph databases, in: VLDB

1989, 1989, pp. 185–193.
[8] D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Y. Vardi, Rewriting of regular expressions

and regular path queries, J. Comput. Syst. Sci. 64 (2002) 443–465.
[9] M. Arenas, S. Conca, J. Pérez, Counting beyond a yottabyte, or how SPARQL 1.1 property

paths will prevent adoption of the standard, in: Proceedings of the 21st World Wide Web
Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, ACM, 2012, pp. 629–638.
URL: https://doi.org/10.1145/2187836.2187922. doi:10.1145/2187836.2187922.

[10] P. B. Baeza, Querying graph databases, in: PODS 2013, 2013, pp. 175–188. URL: https:
//doi.org/10.1145/2463664.2465216. doi:10.1145/2463664.2465216.

[11] K. Losemann, W. Martens, The complexity of regular expressions and property paths in
SPARQL, ACM Trans. Database Syst. 38 (2013) 24. URL: https://doi.org/10.1145/2494529.
doi:10.1145/2494529.

[12] A. D. et. al., Graph pattern matching in GQL and SQL/PGQ, in: SIGMOD ’22, 2022. URL:
https://doi.org/10.1145/3514221.3526057. doi:10.1145/3514221.3526057.

https://doi.org/10.1145/3104031
http://dx.doi.org/10.1145/3104031
https://jena.apache.org/documentation/tdb/
http://sites.computer.org/debull/A12mar/vicol.pdf
https://doi.org/10.1145/2187836.2187922
http://dx.doi.org/10.1145/2187836.2187922
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/2463664.2465216
http://dx.doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/2494529
http://dx.doi.org/10.1145/2494529
https://doi.org/10.1145/3514221.3526057
http://dx.doi.org/10.1145/3514221.3526057

[13] W. Martens, M. Niewerth, T. Popp, C. Rojas, S. Vansummeren, D. Vrgoč, Representing
paths in graph database pattern matching, Proc. VLDB Endow. 16 (2023) 1790–1803.

[14] B. Farías, W. Martens, C. Rojas, D. Vrgoč, PathFinder: A unified approach for handling
paths in graph query languages, 2024. URL: https://github.com/AnonCSR/PathFinder.

[15] D. Vrgoč, C. Rojas, R. Angles, M. Arenas, D. Arroyuelo, C. Buil-Aranda, A. Hogan,
G. Navarro, C. Riveros, J. Romero, Millenniumdb: An open-source graph database system,
Data Intell. 5 (2023) 560–610. URL: https://doi.org/10.1162/dint_a_00229.

[16] B. Farias, W. Martens, C. Rojas, D. Vrgoč, Evaluating regular path queries in GQL and
SQL/PGQ:, CoRR abs/2306.02194 (2023). URL: https://doi.org/10.48550/arXiv.2306.02194.

[17] D. Vrandecic, M. Krötzsch, Wikidata: a free collaborative knowledgebase, Commun. ACM
57 (2014) 78–85.

[18] T. W. Foundation, Wikidata:database download, 2021. URL: https://www.wikidata.org/
wiki/Wikidata:Database_download.

[19] R. Angles, C. B. Aranda, A. Hogan, C. Rojas, D. Vrgoč, Wdbench: A wikidata graph
query benchmark, in: The Semantic Web - ISWC 2022, 2022. URL: https://doi.org/10.1007/
978-3-031-19433-7_41. doi:10.1007/978-3-031-19433-7_41.

[20] R. Angles, C. B. Aranda, A. Hogan, C. Rojas, D. Vrgoč, WDBench Dataset Download, 2022.
doi:10.6084/m9.figshare.19599589.

https://github.com/AnonCSR/PathFinder
https://doi.org/10.1162/dint_a_00229
https://doi.org/10.48550/arXiv.2306.02194
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:Database_download
https://doi.org/10.1007/978-3-031-19433-7_41
https://doi.org/10.1007/978-3-031-19433-7_41
http://dx.doi.org/10.1007/978-3-031-19433-7_41
http://dx.doi.org/10.6084/m9.figshare.19599589

	1 Introduction and Outline
	2 The Demonstration

