
Interpretable classifiers for tabular data via feature
selection and discretization
Reijo Jaakkola, Tomi Janhunen, Antti Kuusisto, Masood Feyzbakhsh Rankooh and
Miikka Vilander∗,†

Tampere University, Finland

Abstract
We introduce a method for computing immediately human interpretable yet accurate classifiers from
tabular data. The classifiers obtained are short Boolean formulas, computed via first discretizing the
original data and then using feature selection coupled with a very fast algorithm for producing the best
possible Boolean classifier for the setting. We demonstrate the approach via 12 experiments, obtaining
results with accuracies comparable to ones obtained via random forests, XGBoost, and existing results
for the same datasets in the literature. In most cases, the accuracy of our method is in fact similar to that
of the reference methods, even though the main objective of our study is the immediate interpretability
of our classifiers. We also prove a new result on the probability that the classifier we obtain from real-life
data corresponds to the ideally best classifier with respect to the background distribution the data comes
from.
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1. Introduction

Explainability and human interpretability are becoming an increasingly important part of
research on machine learning. In addition to the immediate benefits of explanations and
interpretability in scientific contexts, the capacity to provide explanations behind automated
decisions has already been widely addressed also on the level of legislation. For example, the
European General Data Protection Regulation [1] and California Consumer Privacy Act [2] both
refer to the right of individuals to get explanations of automated decisions concerning them.

This article investigates interpretability in the framework of tabular data. Data in tabular
form is important for numerous scientific and real-life contexts, being often even regarded as the
most important data form: see, e.g., [3, 4]. While explainable AI (or XAI) methods custom-made
for pictures and text cannot be readily used as such in the setting of tabular data [5], numerous
successful XAI methods for the tabular setting exist; see the survey [6] for an overview.

In the current paper, we focus on producing highly interpretable classifiers for tabular data.
By “interpretable” we here mean that the inner workings of the classifier are directly readable
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from the classifier itself, which contrasts with explaining the operation of an external, black-box
classifier [7].1 For most of our experiments, the classifiers we obtain are globally interpretable,
meaning that the classifier itself immediately reveals how it works on every possible input.
Global interpretability stems from the classifiers being extremely short logical formulas and
thereby directly intelligible. Now, globally interpretable classifiers obtained by our method are
automatically also locally interpretable, meaning that they provide an easy way of explicating
why any particular input was classified in a particular way. For a reasonably small part of our
experiments, the classifiers obtained are only locally but not quite globally interpretable.

The classifiers we produce are given in the form of short Boolean DNF-formulas which
can naturally be conceived as simply Boolean concepts. One of the key issues that makes
our approach possible is the surprising power of successful feature selection. Indeed, in our
formulas, we use very small numbers of attributes, making them short and thus interpretable.
Already in [8], it was observed that by using a single attribute, one could get, for many of the 16
datasets studied in that paper, an accuracy not drastically different from the then state-of-the-art
decision trees. We apply this “simplicity first” approach in our method, together with a very
rough discretization of numerical attributes to Boolean form. While we focus on interpretability,
we obtain also relatively accurate classifiers. Indeed, our classifiers perform surprisingly well
in comparison to widely recognized methods despite the fact that generally, there exists an
obvious trade-off between accuracy and interpretability.

1.1. Overview of our method and contributions

Our method works as follows. We have a tabular dataset 𝑆 with numerical and categorical
attributes 𝑋1, … , 𝑋𝑘 and a binary target attribute 𝑞. Our goal is to produce a classifier for 𝑞 based
on 𝑋1, … , 𝑋𝑘. Our method is based on the following steps; see Section 3 for more details.

1. We first discretize the data to Boolean form using a very rough method of chopping
numerical predicates at the median.

2. Then, for increasing numbers ℓ, we use feature selection to choose ℓ suitable attributes.
After that, we compute the best possible Boolean formula for predicting 𝑞. By “best
possible” we mean the Boolean formula has the least percentage of misclassified points
among all Boolean formulas using the ℓ chosen attributes. In other words, the formula
has the least empirical error with respect to the 0-1 loss function. The formula is given in
DNF-form.

3. We use nested cross-validation to test the accuracy of the formulas and find the most
accurate formula using up to 10 attributes (the parameter 10 can be adjusted, but the
choice 10 turned out sufficient for our experiments: see Section 3 for a discussion). We
look through the sequence of formulas obtained above for different numbers ℓ of features.
Among the formulas with accuracy within one percentage point of the most accurate
formula in the sequence, we select the one with the least number of features. We use the

1However, our method could of course also be used to explicate existing black-box models in a model agnostic way
via first generating data with the black-box model to be explained and then using the method to produce a closely
corresponding interpretable classifier.



attributes in this formula to train the final formula via the entire training data. Finally,
we slightly simplify the final obtained formula—keeping it in DNF-form—via using a
standard method from the literature.

To demonstrate the robustness of our method, the discretization step is performed very
roughly. Also the feature selection procedures are not critical to our approach; we use three
readily available ones and choose the best final formula.

Concerning step 2, for computing the best possible DNF-formula, we present a very efficient
algorithm running in time 𝒪(|𝑊 ||𝜏 ||𝑇 |), where |𝑊 | is the number of rows in the data, |𝜏 | the
number of selected features and |𝑇 | ≤ min(|𝑊 |, 2|𝜏 |) the number of different row types realized in
the data with the selected features. The algorithm is fixed-parameter linear when |𝜏 | is bounded
by a constant—which it is in our scenario. If |𝜏 | was not constant, the algorithm would have
running time 𝒪(|𝑊 |2). Now, all our tests ran fast and smoothly on a laptop even with large
datasets containing up to 423 680 rows. For six of the datasets, the runs took less than 30
seconds per split. Of the remaining datasets, five took less than 12 minutes per split. Even the
two largest datasets had a runtime of less than an hour. The hyperparameter optimizations of
random forests and XGBoost took systematically longer than running our method. For example,
for the largest dataset, the hyperparameter optimization for XGBoost took roughly two and
half hours per split.

As already indicated, we test our method on 12 tabular datasets: seven binary classification
tasks from the UCI machine learning repository; a high-dimensional binary classification task
with biological data; and four benchmark sets from [9]. See Section 4 for a detailed list. In each
test, we compare the accuracy of our classifier to a result obtained by state-of-the art classifiers.
Now, taking into account that tabular data is still a challenge to deep learning methods [9, 4],
we use both XGBoost [10] and Sklearn’s implementation of random forests [11] as reference
methods. These models are widely recognized for their performance on tabular data [3, 9]. For
the UCI datasets we additionally compare to the method of [12] based on the length of formulas.
This method is computationally too inefficient to use on the other datasets we consider. In
addition to the reference methods, in relation to 10 of the experiments, we also report results
found in the literature for the used datasets.

For 11 datasets we use standard ten-fold cross-validation and report the average accuracy as
well as the standard deviation over the ten splits. For the high-dimensional dataset Colon with
less than 100 data points we instead use leave-one-out cross-validation.

All formulas encountered in our experiments are small enough to be easily locally inter-
pretable. In the local interpretation process, the interpreter has a row of classified data which is
then compared to the conjunctions of the DNF-classifier our method produces. A positively
classified row will match with precisely one conjunction of the DNF-classifier, and a negatively
interpreted one will clash with at least one attribute of each conjunction.

In addition to local interpretability, most of the formulas produced in the experiments are in
fact so simple that they can be readily globally interpreted, meaning that their behaviour on
any input is clear simply by the form of the formula. Globally interpreting a short DNF-formula
involves looking at each of the few conjunctions separately and interpreting the meaning of
their particular combination of attributes. The behaviour of the entire formula is then given by
the fact that it accepts the cases given by the conjunctions and rejects everything else.



As a concrete example of an interpretable classifier, we get the formula

¬𝑝1 ∨ (¬𝑝2 ∧ ¬𝑝3)

from an experiment on a Breast Cancer dataset concerning the benignity of breast tumors. The
attributes 𝑝1, 𝑝2 and 𝑝3 relate to measures of uniformity of cell size, bare nuclei and bland
chromatin. The accuracy of this formula on the corresponding test data is 94.1 percent. The
average accuracy of our method over ten splits of the Breast Cancer data is 95.9 percent, while
XGBoost obtains 97.1 percent and random forests 97.4 percent. We stress that our formula is,
indeed, highly interpretable, while the classifiers obtained by XGBoost and random forests are
of very large and of a black box nature.

As another example, from a Colon dataset we get the formula

𝑝1 ∨ 𝑝2

from the majority of our tests. The attributes 𝑝1 and 𝑝2 have been selected from a total of 5997
Booleanized attributes related to genes. The accuracy of our method on this dataset is 80.6
percent, while random forests get 83.9 percent and XGBoost 72.6 percent.
In relation to accuracy, the experiments are summarized in Figure 1. In Table 1 we

report the average number of attributes (features) used by the final formulas and the dimensions
of the datasets.

In general, our method has similar accuracy to the reference methods. For the UCI datasets
reported on the left in Figure 1, our method obtains accuracies on par with and sometimes
better than the state-of-the-art reference methods. For example, on the Hepatitis dataset we
obtain an average accuracy of 80.7 percent compared to the 78.2 percent of random forests, 79
percent of XGBoost and 79.4 percent of the formula-size method of [12]. The four benchmark
datasets from [9] reported on the right in Figure 1 were the most difficult for our method, but
even for these we obtained some surprisingly accurate and reasonably interpretable formulas.
For example we obtain a formula of the form

(𝑝1 ∧ 𝑝2 ∧ 𝑝3 ∧ ¬𝑝4) ∨ (𝑝2 ∧ ¬𝑝1 ∧ ¬𝑝5 ∧ ¬𝑝4)
∨ (𝑝4 ∧ 𝑝3 ∧ ¬𝑝1 ∧ ¬𝑝5 ∧ ¬𝑝2)

from an experiment on the RoadSafety dataset. This formula is quite short and has a test
accuracy of 73.2 percent compared to the average 83.2 percent achieved by black box classifiers.

Concerning our experiments, we stress once more that the main advantage of our method is
interpretability. As Table 1 indicates, most of our classifiers use very small numbers of features,
thus being interpretable. Some classifiers obtained in the tests are longer, but still within the
bounds of local (while not necessarily global) interpretability.

Finally, a key insight behind our method is the idea of computing the ideal classifiers (i.e.,
the above mentioned best possible Boolean classifiers) and the fact that this can be done fast
using the 𝒪(|𝑊 ||𝜏 ||𝑇 |) algorithm (where |𝑇 | ≤ min(|𝑊 |, 2|𝜏 |)) when 𝜏 is small. Since small 𝜏 is
often sufficient—which is another key insight in the method—the approach indeed works quite
accurately and fast. The ideal classifiers being central to the approach, we call the method the
ideal classifier method. A possible alternative for this is would be the ideal DNF-method.



In addition to experiments, we also prove a novel theoretical sample bound result that can be
used for estimating whether a Boolean classifier obtained from data is in fact an ideal Boolean
classifier with respect to the background distribution the data comes from. See Section 3.1
for the related theorem and the Appendix for the proof. Our result is in flavour similar to
the various results in statistics that estimate the sizes of samples needed for obtaining a given
confidence interval; see, e.g., [13] for further details. Results of this form can indeed be useful
for estimating if the classifiers we obtain from datasets are in fact best possible classifiers (for the
given features) with respect to the underlying probability distribution the data originates from.
In Section 3.1 we illustrate how our result can be used in practice in relation to the datasets of
the current paper.

1.2. Further related work

Concerning further related work, while the literature on explainability is rather extensive, only
a relatively small part of it is primarily based on logic. See [14] for a survey on logic-based
explainability, called formal explainable AI (or FXAI) there. We mention here the two prominent
works dealing with minimality notions for Boolean classifiers and pioneering much of the recent
work in FXAI, [15] and [16].

Like the articles [15] and [16], in fact most of logic-based explainability differs significantly
from the current paper. Firstly, most papers in the field concern local rather than global expla-
nations, and also inherent interpretability (as opposed to explainability of existing classifiers) is
rarely the main focus. However, there is one method that is close enough to ours to require an
explicit and direct analysis in the current paper. That method—let us here call it the formula-size
method (FSM)—is investigated in [12]. Just like the current work, FSM uses a validation-based
approach to avoid overfitting and find Boolean formulas with a small error over real-life datasets.
A major difference between our approach and FSM is that in our method, we investigate in-
creasing numbers of features as opposed to increasing length bounds on formulas as in FSM.
The algorithm of FSM searches through the space of all possible formulas of increasing lengths,
making it impossible to use with larger datasets. This contrasts with the fixed-parameter linear
𝒪(|𝑊 |2|𝜏 |) algorithm we use with |𝜏 | being a constant.2 Our algorithm outputs classifiers with
the minimum error in relation to the set of input features used, whereas FSM optimizes with
respect to formula size. Together with other experiments, we also describe in Section 4.2 tests
we ran to compare FSM with our method.

Concerning yet further related work on interpretable AI, the articles [17, 18] investigate
the use of sparse rule lists and scoring systems which are optimized with respect to their
error and size. These models are sparse in the sense that they try to use a small number of
features, which makes them interpretable. The empirical results reported in these papers also
demonstrate the surprising effectiveness of these interpretable models on real-world tabular
data. Using the methods proposed in the articles [17, 18] requires—as in the case of FSM in
[12]—solving very resource-consuming combinatorial optimization problems, since in addition
to their error, classifiers are also optimized with respect to their size. For yet further related
work on interpretable AI, see [7].

2In our experiments we constrain |𝜏 | to be at most 10.



2. Preliminaries

A vocabulary is a finite set of symbols 𝑝𝑖 referred to as proposition symbols. For a vocabulary
𝜎 = {𝑝1, … , 𝑝𝑘} the syntax of propositional logic PL[𝜎] over 𝜎 is given by the grammar 𝜑 ∶∶=
𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣ 𝜑 ∨ 𝜑, where 𝑝 ∈ 𝜎. We also define the exclusive or 𝜑 ⊕ 𝜓 ∶= (𝜑 ∨ 𝜓) ∧ ¬(𝜑 ∧ 𝜓)
as an abbreviation. A formula 𝜑 ∈ PL[𝜎] is in disjunctive normal form (DNF) if 𝜑 = ⋁𝑚

𝑖=1 𝜓𝑖,
where each 𝜓𝑖 is a conjunction of literals (i.e., formulas 𝑝 or ¬𝑝 where 𝑝 ∈ 𝜎).

A 𝜎-model is a structure𝑀 = (𝑊 , 𝑉 ), where𝑊 is a finite non-empty set called the domain of
𝑀 and 𝑉 ∶ 𝜎 → 𝒫 (𝑊) is a valuation which assigns to each 𝑝 ∈ 𝜎 the set of points 𝑉 (𝑝) ⊆ 𝑊
where 𝑝 is true. Such a valuation extends in the usual way into a valuation 𝑉 ∶ PL[𝜎] → 𝒫 (𝑊),
with ∧, ∨ and ¬ corresponding to the intersection, union and complementation (with respect
to 𝑊) operations. A formula 𝜑 ∈ PL[𝜎] is true in the point 𝑤 ∈ 𝑊 of a 𝜎-model 𝑀 = (𝑊 , 𝑉 ),
denoted 𝑀,𝑤 ⊧ 𝜑, if 𝑤 ∈ 𝑉 (𝜑). Note that thereby each formula 𝜑 corresponds to a subset 𝑉 (𝜑)
of 𝑊. For 𝜑, 𝜓 ∈ PL[𝜏 ], we define 𝜑 ⊨ 𝜓 if for all models 𝑀 and all 𝑤 ∈ 𝑊, 𝑀,𝑤 ⊨ 𝜑 implies
𝑀,𝑤 ⊨ 𝜓.

A 𝜎-type 𝑡 is a conjunction such that for each 𝑝 ∈ 𝜎, precisely one of the literals 𝑝 and ¬𝑝 is a
conjunct of 𝑡 and 𝑡 has no other conjuncts. We assume some standard bracketing and ordering
of literals so that there are exactly 2|𝜎 | 𝜎-types. We denote the set of 𝜎-types by 𝑇𝜎. Note that
each point 𝑤 ∈ 𝑊 of a 𝜎-model 𝑀 = (𝑊 , 𝑉 ) satisfies exactly one 𝜎-type. Thus, 𝜎-types induce a
partition of the domain 𝑊. On the other hand, from the truth table of a formula 𝜑 ∈ PL[𝜎] one
can obtain an equivalent formula 𝜓 that is a disjunction of types and thus in DNF.

For a vocabulary 𝜏, let 𝜇 ∶ 𝑇𝜏∪{𝑞} → [0, 1] be a probability distribution. Here 𝑞 is the separate
target attribute of the classification task. For 𝑡 ∈ 𝑇𝜏, we define 𝜇(𝑡) = 𝜇(𝑡 ∧ 𝑞) + 𝜇(𝑡 ∧ ¬𝑞).
The distribution 𝜇 corresponds to the real-world phenomenon that gives rise to practical data.
Thus, we generally assume that 𝜇 is unknown and define the true error (or risk) of a formula
𝜑 ∈ PL[𝜏 ] with respect to 𝜇 as

err𝜇(𝜑) ∶= Pr
𝑡∼𝜇

[𝑡 ⊧ 𝜑 ⊕ 𝑞] = ∑
𝑡 ∈ 𝑇𝜏∪{𝑞}
𝑡⊨𝜑⊕𝑞

𝜇(𝑡).

This is the probability that 𝜑 disagrees with 𝑞. Our goal is to obtain formulas with a small true
error. This is made difficult by the fact that 𝜇 is unknown. We can, however, estimate the true
error via available data.

Let 𝑀 = (𝑊 , 𝑉 ) be a 𝜏 ∪ {𝑞}-model. For us, 𝑀 corresponds to the available tabular data. Given
a propositional formula 𝜑 ∈ PL[𝜏 ], we define the empirical error (or empirical risk) of 𝜑 with
respect to 𝑀 as

err𝑀(𝜑) ∶=
|𝑉 (𝜑 ⊕ 𝑞)|

|𝑊 |
.

The empirical error err𝑀(𝜑) is easily computable as the proportion of points where 𝜑 disagrees
with 𝑞. If𝑀 is fairly sampled from 𝜇, then by the law of large numbers err𝑀(𝜑) → err𝜇(𝜑) almost
surely when |𝑊 | → ∞.

Given a distribution 𝜇, the formula

𝜑𝜇id ∶= ⋁{𝑡 ∈ 𝑇𝜏 ∣
𝜇(𝑡 ∧ 𝑞)
𝜇(𝑡)

≥ 1/2},



which we call the ideal classifier, has the smallest true error with respect to 𝜇 among the
formulas in PL[𝜏 ]. This is a syntactic, logic-based representation of what is known as the Bayes
classifier in the literature [19], not to be confused with naive Bayesian classifiers. A Bayes
classifier always gives the best possible prediction, and clearly so does an ideal classifier. Now,
as 𝜇 is unknown, the ideal classifier is again a theoretical goal for us to approximate.

Given a 𝜏 ∪ {𝑞}-model 𝑀 = (𝑊 , 𝑉 ), the formula

𝜑𝑀id ∶= ⋁{𝑡 ∈ 𝑇𝜏 ∣
|𝑉 (𝑡 ∧ 𝑞)|
|𝑉 (𝑡)|

≥ 1/2},

which we call the empirical ideal classifier, has the smallest empirical error with respect to
𝑀 among the formulas in PL[𝜏 ]. This formula is easily computable and an essential tool of our
study.

3. Feature selection and overfitting

Our general goal is to use, for a suitable set 𝜏 of attributes, the empirical ideal classifier to
approximate the ideal classifier. In this section, we specify our methodology and show bounds
on sufficient sample size to guarantee that the two classifiers are identical with high probability.

Let 𝜏 be a small set of promising attributes chosen from the initially possibly large set of all
attributes. We describe a quadratic time algorithm to obtain the empirical ideal classifier. The
pseudocode Algorithm 1 below describes a formal implementation of this algorithm. Basically,
we scan the points 𝑤 ∈ 𝑊 once. For every 𝜏-type 𝑡 that is realized in𝑀 = (𝑊 , 𝑉 ), we initiate and
maintain two counters, 𝑛𝑡 and 𝑐𝑡. The first counter 𝑛𝑡 counts how many times 𝑡 is realized in 𝑀,
while 𝑐𝑡 counts how many times 𝑡 ∧ 𝑞 is realized in 𝑀. The number 𝑐𝑡/𝑛𝑡 is then the probability
|𝑉 (𝑡 ∧ 𝑞)|/|𝑉 (𝑡)|. The empirical ideal classifier 𝜑𝑀𝑖𝑑 can be constructed by taking a disjunction
over all the types 𝑡 which are realized in 𝑀 and for which 𝑐𝑡/𝑛𝑡 ≥ 1/2.

Algorithm 1 Compute the ideal classifier 𝜑𝑀𝑖𝑑
Input: a (𝜏 ∪ {𝑞})-model 𝑀 = (𝑊 , 𝑉 )

1: 𝑇𝑀 ← ∅ {All the 𝜏-types realized in 𝑀 will be stored in the set 𝑇𝑀}
2: for 𝑤 ∈ 𝑊 do
3: 𝑡 ← the 𝜏-type of 𝑤
4: if 𝑡 ∉ 𝑇𝑀 then
5: 𝑇𝑀 ← 𝑇𝑀 ∪ {𝑡}
6: 𝑛𝑡, 𝑐𝑡 ← 0, 0
7: 𝑛𝑡 ← 𝑛𝑡 + 1
8: if 𝑤 ∈ 𝑉 (𝑞) then
9: 𝑐𝑡 ← 𝑐𝑡 + 1

10: 𝜑𝑀𝑖𝑑 ← ⊥
11: for 𝑡 ∈ 𝑇𝑀 do
12: if 𝑐𝑡/𝑛𝑡 ≥ 1/2 then
13: 𝜑𝑀𝑖𝑑 ← 𝜑𝑀𝑖𝑑 ∨ 𝑡
14: return 𝜑𝑀𝑖𝑑



It is clear that this algorithm runs in polynomial time with respect to the size of 𝑀, the
size being 𝒪(|𝑊 ||𝜏 |). A more precise analysis shows that the running time of this algorithm is
𝒪(|𝑊 ||𝑇𝑀||𝜏 |), where |𝑇𝑀| counts the number of 𝜏-types that are realized in 𝑀. Since |𝑇𝑀| ≤ |𝑊 |,
this gives a worst case time complexity of 𝒪(|𝑊 |2|𝜏 |). If 𝜏 has a fixed size bound, as in our
experiments below, then this reduces to a linear time algorithm. Moreover, we note that clearly
the size |𝜑𝑀𝑖𝑑 | is 𝒪(|𝑊 ||𝜏 |).

A full step-by-step description of our method follows:

1. We begin with a tabular dataset with features 𝑋1, … , 𝑋𝑚, 𝑞, where 𝑞 is a Boolean target
attribute. We denote this full training data by 𝑊0.

2. We randomly separate 30 percent of 𝑊0 as validation data 𝑊val. The remaining part we
call the training data 𝑊train. We then discretize (or Booleanize) both of these datasets,
ending up with tabular datasets with strictly Boolean attributes 𝑝1, … , 𝑝𝑘, 𝑞. To this end,
we simply chop the numerical attributes at the median value of the training data 𝑊train,
above median meaning “yes” and at most median corresponding to “no”. For categorical
attributes we use one-hot encoding.

3. We iterate steps 4 and 5 for increasing numbers ℓ of features from 1 to 10.

4. We run three feature selection procedures on the training data, each selecting ℓ of the
attributes 𝑝1, … , 𝑝𝑘 to be used for classification.

5. Suppose one procedure selected the set 𝐹 = {𝑝𝑖1 , … , 𝑝𝑖ℓ} of features. We use Algorithm 1
to compute the empirical ideal classifier for 𝑞 on the data 𝑊train using the attributes in 𝐹.
Note that this is the best possible classifier for 𝑞 over 𝐹, given in DNF-form. We do this
step for all three sets of features given by the procedures. We select the formula with
the highest validation accuracy 𝑟 on the data 𝑊val and record the tuple (ℓ, 𝐹 , 𝑟) for future
steps.

6. Once step 5 has halted, we look back at the tuples (ℓ, 𝐹 , 𝑟) recorded. We select the feature
set 𝐹ℓ corresponding to the smallest number ℓ with validation accuracy 𝑟ℓ within one
percentage point of the best accuracy in the full sequence

(1, 𝐹1, 𝑟1), … , (10, 𝐹10, 𝑟10).

We run the Booleanization again using themedian of the full training data𝑊0 and compute
the best possible classifier one last time using the selected set 𝐹ℓ of features and the data
𝑊0.

7. Finally, we simplify the selected DNF-formula via simplify_logic from SymPy. This
gives a potentially simpler logically equivalent DNF-formula.

To demonstrate the robustness of our method, the discretization steps are performed very
roughly, using simply the medians. Also the specific feature selection procedures are not in any



way custom-made for our method; we use three readily available ones (see Sect. 4 for details)
and use the one with the best accuracy.

Regarding step 5, choosing the formula with the best validation accuracy is done to avoid
overfitting to the training data. With the increase of the number of features, the validation
accuracy generally first improves and at some point starts to decline. This decline is a sign of
overfitting. As overfitting often occurs already for small numbers of selected attributes, we
may regard overfitting as useful for the method, leading to short formulas. However, in some
cases, the accuracy stagnates and the overfitting point seems hard to find. In these cases, we
nevertheless stop at ten features, the maximum considered in the method. For some datasets it
could be necessary to go further before the accuracy stagnates, but for our experiments, ten
features was (more than) enough.

While the last formula obtained in step 5 can be quite long, step 6 helps to obtain shorter
formulas. By choosing an earlier formula in the obtained sequence with almost the same
accuracy, we can reduce the number of features used, drastically improving the interpretability
of our formulas without sacrificing much accuracy.

The formula obtained from step 6 is often very short and in most cases even globally inter-
pretable. Nevertheless, as a final step, a standard formula simplifying tool simplify_logic
from SymPy is used, and this gives a potentially even shorter DNF-formula. We note that even
without using simplify_logic, all formulas encountered in our experiments are readily locally
interpretable. Recall from the Introduction that in the local interpretation process, a positively
classified input will match with precisely one conjunction of the DNF-classifier, and a negatively
interpreted one will clash with at least one attribute of each conjunction.

3.1. Bounds on sample size

As our method consists of using the empirical ideal classifier as an approximation of the ideal
classifier, we would like to have some guarantees on when the two classifiers are the same. We
next present a theorem which tells us how large samples we need in order to be confident that
the empirical ideal classifier is also the true ideal classifier.

The lower bound provided by our theorem depends in a crucial way on how “difficult” the
underlying distribution 𝜇 is. More formally, we say that a probability distribution 𝜇 ∶ 𝑇𝜏∪{𝑞} →
[0, 1] 𝜀-separates 𝑡 ∈ 𝑇𝜏, if we have that |𝜇(𝑡 ∧ 𝑞) − 𝜇(𝑡 ∧ ¬𝑞)| ≥ 𝜀. The larger the 𝜀 is, the easier
it is to detect via sampling which of the types 𝑡 ∧ 𝑞 and 𝑡 ∧ ¬𝑞 has the higher probability of
occurring.

The formal statement of the theorem is now as follows. See Appendix 6.1 for the proof.

Theorem 3.1. Fix a vocabulary 𝜏, a proposition symbol 𝑞 ∉ 𝜏 and a probability distribution
𝜇 ∶ 𝑇𝜏∪{𝑞} → [0, 1]. Let 𝜀, 𝛿 > 0 and

𝑛 ≥
2 ln(2|𝜏 |+1/𝛿)

𝜀2
.

Then with probability at least 1 − 𝛿, the empirical ideal classifier with respect to a sample 𝑀 of
size 𝑛 agrees with the ideal classifier with respect to 𝜇 on every 𝑡 ∈ 𝑇𝜏 which is 𝜀-separated by 𝜇. In
particular, if 𝜇 𝜀-separates every 𝑡 ∈ 𝑇𝜏, then the empirical ideal classifier is the ideal classifier with
probability at least 1 − 𝛿.



Corollary 3.2. Fix a vocabulary 𝜏, a proposition symbol 𝑞 ∉ 𝜏 and a probability distribution
𝜇 ∶ 𝑇𝜏∪{𝑞} → [0, 1]. Let 𝜀, 𝛿 > 0 and

𝑛 ≥
22|𝜏 |+1 ln(2|𝜏 |+1/𝛿)

𝜀2
.

Then with probability at least 1 − 𝛿, we have that

err𝜇(𝜑𝑀𝑖𝑑 ) < err𝜇(𝜑
𝜇
𝑖𝑑) + 𝜀.

Proof. Fix 𝜀, 𝛿 > 0. Given 𝜂 > 0 we know that if 𝜑𝑀𝑖𝑑 agrees with 𝜑𝜇𝑖𝑑 on every 𝑡 ∈ 𝑇𝜏 which is
𝜂-separated by 𝜇, then

err𝜇(𝜑
𝜇
𝑖𝑑) − err𝜇(𝜑𝑀𝑖𝑑 ) = ∑

𝑡∈𝑇𝜏
𝜇 does not 𝜂-separate 𝑡

|𝜇(𝑡 ∧ 𝑞) − 𝜇(𝑡 ∧ ¬𝑞)|

< |𝑇𝜏|𝜂.

Setting 𝜂 ∶= 𝜀/|𝑇𝜏| and applying Theorem 3.1 gives us the desired result.

To illustrate the use of this latter bound, suppose that |𝜏 | = 3, 𝛿 = 0.01 and 𝜀 = 0.05. Corollary
3.2 shows that we need a sample 𝑀 of size at least 18887 to know that with probability at least
0.99 the theoretical error of 𝜑𝑀𝑖𝑑 is less than that of 𝜑𝜇𝑖𝑑 plus 0.05. The datasets that we consider
in Section 4 contain three datasets (Covertype, Electricity, RoadSafety) that have at least 18887
data points. Thus we can be fairly confident that for these datasets any empirical ideal classifier
that uses at most three features obtains an accuracy which is similar to that of the true ideal
classifier on those features.

4. Experiments

4.1. Experimental setup

We compared our method empirically to random forests and XGBoost. These two comparison
methods are very commonly used and state-of-the-art for tabular data. We tested all three
methods on 12 tabular datasets. The datasets can be categorized as follows.

1. 7 binary classification tasks from the UCI machine learning repository. Five of these
were selected arbitrarily, while two further ones (BreastCancer and GermanCredit) were
randomly chosen among the ones used in [12]. One of the 7 datasets (StudentDropout)
was originally a ternary classification task; we converted it into a binary one.

2. 4 tabular-data benchmarks out of 7 binary classification benchmarks that were presented
in the paper [9]. These datasets were also originally from the UCI machine learning
repository.

3. a high-dimensional binary classification task containing biological data from an open-
source feature selection repository presented in [20].
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Figure 1: The average test accuracies obtained with our method, random forests and XGBoost for all
datasets. For all but the Colon dataset, also standard deviations are reported. For the UCI datasets we
also include a comparison to the formula size method. When available, we have also included accuracies
reported in literature, though these are not directly comparable due to different technical particularities
in the experiments.

All rows with missing values were removed from these datasets.3 Most of the datasets contained
both categorical and numerical features. While our method includes a rough median-based
Booleanization of the data as discussed in Section 3, random forests and XGBoost used the
original non-Booleanized data.

3In the case of the Hepatitis dataset we removed two columns that had several missing values.



For all but one of the datasets we use ten-fold cross-validation for all methods. That is, we
split the data into ten equal parts and for each such 10 percent part we input the remaining
90 percent into the method being tested, obtain a classifier (using the chosen 90 percent of
the data) and record its accuracy on the 10 percent part. We report the averages and standard
deviations of the accuracies over the ten 90/10 splits.

For the high-dimensional dataset Colon with less than 100 data points, we use leave-one-out
cross-validation. That is, for each data point, we set the point aside and input the remaining data
into the method. We test whether the obtained classifier classifies the omitted point correctly
or not. We report the average accuracy over all data points. This is a well-known standard
practice for small datasets.

As mentioned in Section 3, our method utilizes readily available feature selection methods.
We used Scikit-learn’s SelectKBest, which returns 𝑘 features that have the highest scores based
on a given univariate statistical test. SelectKBest supports three methods for calculating the
scores for the features: F-test, mutual information, and 𝜒2-test. When generating formulas,
we tested all three of these methods and selected the best in terms of validation accuracy. We
emphasize that feature selection was performed after Booleanizing the data.

If the empirical ideal classifier is allowed to use too many features, it will most likely overfit on
its training data. As already discussed, we used nested cross-validation to determine how many
features the empirical ideal classifier can use without overfitting. For nested cross-validation
we used a 70/30-split. In all of the experiments we allowed the empirical ideal classifier to use
at most ten attributes. This is a hyperparameter one could optimize for each dataset separately.
For simplicity we used the same limit for all datasets. In all of our experiments, the validation
accuracy either declined or stagnated well before ten features, indicating that a larger number is
not needed. On the other hand, for interpretability, ten features is perhaps even a bit excessive.

For random forests we used Scikit-learn’s implementation. For both random forests and
XGBoost, nested cross-validation was used for tuning the hyperparameters. As for our method,
we used a 70/30-split. For hyperparameter optimization, we used Optuna [21] with the number
of trials being 100. The hyperparameter spaces used for random forests and XGBoost were the
same as in [9]. For the readers convenience, we also report the used hyperparameter spaces in
Appendix 6.2.

We also ran the method of [12] for some datasets. As in the Introduction, we refer to their
approach as the formula-size method. This method is computationally resource consuming, so
we only ran it for the seven UCI repository datasets. The high-dimensional biological data and
benchmark data would be too difficult for the method.

For the formula-size method we used the openly available implementation from https://
github.com/asptools/benchmarks. The runs were conducted on a Linux cluster featuring Intel
Xeon 2.40 GHz CPUs with 8 CPU cores per run, employing a timeout of 72 hours per instance
and a memory limit of 64 GB.

4.2. Results

Figure 1 contains the average test accuracies and standard deviations that were obtained by
using our new method, random forests and XGBoost using ten-fold cross-validation. The left
side of Figure 1 also contains results obtained with the formula-size method of [12]. We also

https://github.com/asptools/benchmarks
https://github.com/asptools/benchmarks


report accuracies that we found in the literature for these datasets. For the left side of Figure 1,
we include the accuracies that were reported for these datasets in the UCI machine learning
repository. For the right side of Figure 1, for the case of Colon, we used the result reported in
[22], while for remaining datasets we reported the accuries given in the full-version of [9].

We emphasize that the accuracies found from the literature are not directly comparable to the
accuracies that we obtained with our method. For example, in some cases a single 70/30-split
was used instead of our ten-fold cross-validation. The conventions concerning the handling of
missing values could also differ from ours. Furthermore, the accuracies in [9] are given to the
nearest percentage point.

From Figure 1 we see that our method produces classifiers that mostly have accuracies
similar to the ones obtained by the alternative methods. In particular, on medical data such as
BreastCancer and Hepatitis, our method compares well to the reference methods. Perhaps the
biggest gaps are found in the cases of CoverType and Electricity, two of the benchmark datasets.
However, we emphasize that in [9], it was mentioned that all of the benchmark datasets were
specifically selected to be “not too easy”. Hence, one should not perhaps expect that “simple”
classifiers with focus on interpretability will perform too well with these datasets.

We list the average runtime of our method on a single split of the data in the Appendix 6.3.
For six of the datasets, the average runtime was less than 30 seconds. Of the remaining datasets,
four had runtimes of less than 12 minutes. Even for the two largest datasets, Covertype and
RoadSafety, the runtime is still less than an hour and, notably, systematically less than that of
the hyperparameter optimizations of random forests and XGBoost. The experiments on our
method, random forests and XBGoost were run on a laptop.

We turn our attention to our main goal of interpretability. In Table 1 we report the average of
the smallest number of features sufficient to reach the reported accuracy. Table 1 also gives the
number of rows and attributes in the Booleanized datasets as well as the original datasets. We
see from Table 1 that for eight out of 12 datasets, the best accuracy was reached already with
on average less than four features, leading to very short formulas. Such short DNF-formulas
are globally interpretable as follows. To interpret a short DNF-formula, one looks at each of the
few conjunctions in the formula individually to determine their meaning. This is easy as each
conjunction has very few attributes. The meaning of the entire formula is then given by the
fact that it accepts only the cases given by the conjunctions and rejects everything else.

Next we discuss the results obtained using the formula-size method of [12]. By the size of a
propositional formula they mean the number of proposition symbols, conjunctions, disjunctions
and negations in the formula. The results are given in Figure 1.

We see that for most datasets on the left side in Figure 1, the accuracies obtained by the
formula-size method are similar to our method. A meaningful difference can be seen in the
HeartDisease dataset, where both the accuracy of 73.6 percent and standard deviation of 12.2
percent are significantly behind other methods. The formulas obtained are short, with formula
size mostly less than 10.

The downside of the formula-size method is computational resources. As described in the
previous subsection, we used a Linux cluster featuring Intel Xeon 2.40 GHz CPUs with 8
CPU cores per run, employing a timeout of 72 hours per instance and a memory limit of 64
GB. For all but one dataset we ran the formula-size method on, the computation took more
than 24 hours per split of the data with this high efficiency setup. Even for the easiest one,



Table 1
The average number of features used by the final formulas for each dataset. We also report the total
numbers of features in the Booleanized and original datasets for comparison as well as the numbers of
data points.

Data set
Selected
features

Boolean
features

Original
features

Data
points

BankMarketing 1.3 51 51 4521
BreastCancer 3.8 9 9 683
CongressionalVoting 1.0 48 16 435
GermanCredit 3.9 61 20 1000
HeartDisease 3.9 25 13 303
Hepatitis 2.7 74 17 155
StudentDropout 5.8 112 36 4424
Covertype 2.5 54 54 423680
Electricity 7.5 14 8 38474
EyeMovement 5.5 26 23 7608
RoadSafety 5.4 324 32 111762
Colon 2.1 5997 2000 63

BreastCancer, the computation time was in the order of 12 hours per split. Furthermore, for
the benchmark datasets and the high-dimensional biological dataset Colon, the formula-size
method is unfeasible already for very small formula sizes and thus we do not report any results
for those datasets.

In contrast to the formula-size method, for all but the two largest datasets, the runs of our
method took less than 12 minutes per split, and in six cases only seconds. More detailed runtimes
are reported in Appendix 6.3. We conclude that our method obtains similar or better results
than the formula-size method with a fraction of the computational resources on datasets where
both methods are feasible. Our method is also usable on larger datasets, where the formula-size
method is is not.

4.3. Examples of obtained formulas

Here we present selected examples of formulas that were generated by our method. Firstly, we
refer the reader back to the example formulas concerning the BreastCancer and Colon datasets
presented in the Introduction. Both of these formulas were very short and had high accuracies.

Another example formula is from the HeartDisease dataset, where the task is to determine,
whether a patient has a heart disease. We obtain the formula

(𝑝1 ∧ 𝑝2) ∨ (𝑝1 ∧ ¬𝑝3) ∨ (𝑝2 ∧ ¬𝑝3),

where the attributes 𝑝1, 𝑝2 and 𝑝3 relate to a color test of blood vessels, fixed thallium defects
and chest pain, respectively. This formula is obtained from two different splits of the data and
the respective accuracies are 76.7 percent and 86.7 percent. The average accuracy of our method



on this dataset is 81.2 percent. Random forests average at 81.8 percent, XGBoost at 80.8 percent
and the formula size method at 73.6 percent.

The Hepatitis dataset concerns the mortality of patients with hepatitis. The formula

𝑝1 ∨ ¬𝑝2 ∨ ¬𝑝3

is obtained from five of the ten splits of the data. Here 𝑝1, 𝑝2 and 𝑝3 relate to albumin, bilirubin
and a histology test respectively. The accuracies of this formula on the five different test datasets
range from 61.5 percent to 92.3 percent. The average accuracy of our method on the Hepatitis
dataset is 80.7 while random forests get 78.2 percent and XGBoost 79.0 percent. The high
variance seems to be due to the data only consisting of 155 data points. This is supported by the
fact that all of the tested methods obtain a high standard deviation of accuracy on this dataset.

In the Appendix 6.4, there are further examples of formulas obtained as outputs of our
method. For each dataset, we list the formula obtained for the first 90/10 split of our ten-fold
cross-validation. While some of these formulas are quite long, they should still be rather fast to
use for local explanations explicating why a particular input was classified in a particular way
(cf. the Introduction for details on local explanations). For these experiments, we used the same
maximum number 10 of features and the same limit of 1 percentage point to choose an accurate
enough formula. These are hyperparameters that one could optimize to obtain a better balance
of interpretability and accuracy on any specific dataset. For some datasets, raising the number
of maximum features could lead to more accurate, but longer, formulas. Raising the percentage
threshold on the other hand would lead to shorter, more interpretable formulas at the cost of
some accuracy.

5. Conclusions

We have introduced a new method to compute immediately interpretable Boolean classifiers
for tabular data. While the main point is interpretability, even the accuracy of our formulas is
similar to the ones obtained via widely recognized current methods. We have also established a
theoretical result for estimating if the obtained formulas actually correspond to ideally accurate
ones in relation to the background distribution. In the future, we will especially consider
more custom-made procedures of discretization in the context of our method, as this time
discretization was carried out in a very rough way to demonstrate the effectiveness and potential
of our approach. We expect this to significantly improve our method over a notable class of
tabular datasets.

Our approach need not limit to Boolean formulas only, as we can naturally extend our work to
general relational data. We can use, e.g., description logics and compute concepts 𝐶1, … , 𝐶𝑘 and
then perform our procedure using 𝐶1, … , 𝐶𝑘, finding short Boolean combinations of concepts.
This of course differs from the approach of computing empirical ideal classifiers in the original
description logic, but can nevertheless be fruitful and interesting. We leave this for future work.
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6. Appendix.

6.1. Proof of Theorem 3.1

Let 𝜏 be a propositional vocabulary and 𝑞 ∉ 𝜏 the proposition symbol that we need to explain. Let
𝜏+ ∶= 𝜏 ∪ {𝑞} and fix a probability distribution 𝜇 ∶ 𝑇𝜏+ → [0, 1]. In what follows, for notational
simplicity we will assume that 𝜇(𝑡 ∧ 𝑞) > 𝜇(𝑡 ∧ ¬𝑞), for every 𝜏-type 𝑡.
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Let𝑀 be a sample of size 𝑛, i.e., a 𝜏+-model of size 𝑛. For each 𝜏+-type 𝑡 we use J𝑡K𝑀 to denote
the number of times 𝑡 is realized in 𝑀. The main idea of the proof is to show that if

𝑛 ≥
2 ln(2|𝜏 |+1/𝛿)

𝜀2
,

then

Pr [for every 𝜏-type 𝑡 for which 𝜇(𝑡 ∧ 𝑞) − 𝜇(𝑡 ∧ ¬𝑞) ≥ 𝜀 we have that J𝑡∧𝑞K𝑀 > J𝑡∧¬𝑞K𝑀] ≥ 1−𝛿.

Indeed, the above clearly implies that also with probability at least 1 − 𝛿 we have that the
empirical ideal classifier with respect to 𝑀 agrees with the ideal classifier with respect to all
𝜏-types 𝑡 with 𝜇(𝑡 ∧ 𝑞) − 𝜇(𝑡 ∧ ¬𝑞) ≥ 𝜀.

Consider first a fixed 𝜏-type 𝑡 such that 𝜇(𝑡 ∧ 𝑞) − 𝜇(𝑡 ∧ ¬𝑞) ≥ 𝜀. Now, observe that if

𝑛(𝜇(𝑡 ∧ 𝑞) − 𝜃) < J𝑡 ∧ 𝑞K𝑀 and J𝑡 ∧ ¬𝑞K𝑀 < 𝑛(𝜇(𝑡 ∧ ¬𝑞) + 𝜃),

then
J𝑡 ∧ 𝑞K𝑀 > J𝑡 ∧ ¬𝑞K𝑀

holds provided that
𝜇(𝑡 ∧ 𝑞) − 𝜇(𝑡 ∧ ¬𝑞) ≥ 2𝜃.

Setting 𝜃 ∶= 𝜀/2, we have by assumption that

Pr[J𝑡 ∧ 𝑞K𝑀 ≥ J𝑡 ∧ ¬𝑞K𝑀]
≥ Pr[𝑛(𝜇(𝑡 ∧ 𝑞) − 𝜃) < J𝑡 ∧ 𝑞K𝑀 and J𝑡 ∧ ¬𝑞K𝑀 < 𝑛(𝜇(𝑡 ∧ ¬𝑞) + 𝜃)]
≥ 1 − (Pr[𝑛(𝜇(𝑡 ∧ 𝑞) − 𝜃) ≥ J𝑡 ∧ 𝑞K𝑀] + Pr[J𝑡 ∧ ¬𝑞K𝑀 ≥ 𝑛(𝜇(𝑡 ∧ ¬𝑞) + 𝜃)])

For the second inequality we used the union bound. To get a lower bound of 1 − 𝛿 on the latter
probability, it suffices to show that

Pr[𝑛(𝜇(𝑡 ∧ 𝑞) − 𝜃) ≥ J𝑡 ∧ 𝑞K𝑀] ≤
𝛿
2

and
Pr[J𝑡 ∧ ¬𝑞K𝑀 ≥ 𝑛(𝜇(𝑡 ∧ ¬𝑞) + 𝜃)] ≤ 𝛿

2
Hoeffding’s inequalities [23] imply that these bounds hold provided that

𝑛 ≥
ln(2/𝛿)
2𝜃2

=
2 ln(2/𝛿)

𝜀2
.

Thus, if we take sample 𝑀 of at least size

2 ln(2/𝛿)
𝜀2

,

then with probability at least 1 − 𝛿 we have that J𝑡 ∧ 𝑞K𝑀 > J𝑡 ∧ ¬𝑞K𝑀.



So far we focused on a single 𝜏-type 𝑡. Using union bound again we see that

Pr [for every 𝜏-type 𝑡 for which 𝜇(𝑡 ∧ 𝑞) − 𝜇(𝑡 ∧ ¬𝑞) ≥ 𝜀 we have that J𝑡 ∧ 𝑞K𝑀 > J𝑡 ∧ ¬𝑞K𝑀]

≥ 1 −∑ Pr[J𝑡 ∧ 𝑞K𝑀 ≤ J𝑡 ∧ 𝑞K𝑀],

where the sum is performed with respect to 𝜏-types 𝑡 for which 𝜇(𝑡 ∧ 𝑞) − 𝜇(𝑡 ∧ ¬𝑞) ≥ 𝜀. Setting
again 𝜃 ∶= 𝜀/2 it follows from our previous calculations that for every 𝜏 ∈ 𝑇𝜏 for which
𝜇(𝑡 ∧ 𝑞) − 𝜇(𝑡 ∧ ¬𝑞) ≥ 𝜀 we have that

Pr[J𝑡 ∧ 𝑞K𝑀 ≤ J𝑡 ∧ 𝑞K𝑀] ≤ 𝛿/2|𝜏 |,

provided that

𝑛 ≥
ln(2|𝜏 |+1/𝛿)

2𝜃2
=

2 ln(2|𝜏 |+1/𝛿)
𝜀2

.

In particular, we will then have that

Pr [for every 𝜏-type 𝑡 for which 𝜇(𝑡 ∧ 𝑞) − 𝜇(𝑡 ∧ ¬𝑞) ≥ 𝜀 we have that J𝑡∧𝑞K𝑀 > J𝑡∧¬𝑞K𝑀] ≥ 1−𝛿,

which is what we wanted to show.

6.2. Hyperparameter spaces for Random Forest and XGBoost

Hyperparameters not listed here were kept at their default values.

6.2.1. Random Forest

• max_depth: None, 2, 3, 4

• n_estimators: Integer sampled from [9.5, 3000.5] using log domain

• criterion: gini, entropy

• max_features: sqrt, log2, None, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

• min_samples_split: 2, 3

• min_samples_leaf: Integer sampled from [1.5, 50.5]

• bootstrap: True, False

• min_impurity_decrease: 0.0, 0.01, 0.02, 0.05



6.2.2. XGBoost

• max_depth: Integer sampled from [1,11]

• n_estimators: Integer sampled from [100,5900] with step-size being 200.

• min_child_weight: Float sampled from [1.0, 100.0] using log domain

• subsample: Float sampled from [0.5, 1.0]

• learning_rate: Float sampled from [1e-5, 0.7] using log domain

• colsample_bylevel: Float sampled from [0.5, 1.0]

• gamma: Float sampled from [1e-8, 7.0] using log domain

• reg_lambda: Float sampled from [1.0, 4.0] using log domain

• reg_alpha: Float sampled from [1e-8, 100.0] using log domain

6.3. Runtimes

We report the average runtime of our method over the different splits of the ten-fold (or in the
case of Colon leave-one-out) cross-validation. The experiments were run on a standard laptop.

Data set Runtime of our method
BankMarketing 1 minute 30 seconds
BreastCancer 13 seconds
CongressionalVoting 10 seconds
GermanCredit 26 seconds
HeartDisease 11 seconds
Hepatitis 2 seconds
StudentDropout 1 minute 26 seconds
Covertype 45 minutes 10 seconds
Electricity 11 minutes 54 seconds
EyeMovement 3 minutes 0 seconds
RoadSafety 28 minutes 37 seconds
Colon 19 seconds

6.4. Example formula for each dataset

Here we report for each dataset the formula given by the first of the ten splits in our ten-fold
cross-validation.

6.4.1. BankMarketing

𝑝𝑜𝑢𝑡𝑐𝑜𝑚𝑒_𝑠𝑢𝑐𝑐𝑒𝑠𝑠



6.4.2. BreastCancer

(¬𝑏𝑎𝑟𝑒_𝑛𝑢𝑐𝑙𝑒𝑖_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑏𝑙𝑎𝑛𝑑_𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑛_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (¬𝑏𝑙𝑎𝑛𝑑_𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑛_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑠𝑖𝑛𝑔𝑙𝑒_𝑒𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙_𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (¬𝑏𝑙𝑎𝑛𝑑_𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑛_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑢𝑛𝑖𝑓 𝑜𝑟𝑚𝑖𝑡𝑦_𝑜𝑓_𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑏𝑎𝑟𝑒_𝑛𝑢𝑐𝑙𝑒𝑖_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑠𝑖𝑛𝑔𝑙𝑒_𝑒𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙_𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑢𝑛𝑖𝑓 𝑜𝑟𝑚𝑖𝑡𝑦_𝑜𝑓_𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑠𝑖𝑛𝑔𝑙𝑒_𝑒𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙_𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑏𝑎𝑟𝑒_𝑛𝑢𝑐𝑙𝑒𝑖_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑢𝑛𝑖𝑓 𝑜𝑟𝑚𝑖𝑡𝑦_𝑜𝑓_𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑢𝑛𝑖𝑓 𝑜𝑟𝑚𝑖𝑡𝑦_𝑜𝑓_𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑏𝑎𝑟𝑒_𝑛𝑢𝑐𝑙𝑒𝑖_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑠𝑖𝑛𝑔𝑙𝑒_𝑒𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙_𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)

6.4.3. CongressionalVoting

𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛_𝑓 𝑒𝑒_𝑓 𝑟𝑒𝑒𝑧𝑒_𝑦

6.4.4. GermanCredit

(𝐴1_𝐴14 ∧ ¬𝐴1_𝐴11 ∧ ¬𝐴3_𝐴30)
∨ (𝐴1_𝐴14 ∧ ¬𝐴1_𝐴11 ∧ ¬𝐴3_𝐴31)
∨ (𝐴6_𝐴65 ∧ ¬𝐴1_𝐴11 ∧ ¬𝐴3_𝐴30)
∨ (¬𝐴1_𝐴14 ∧ ¬𝐴3_𝐴30 ∧ ¬𝐴3_𝐴31)
∨ (𝐴1_𝐴11 ∧ 𝐴6_𝐴65 ∧ ¬𝐴1_𝐴14 ∧ ¬𝐴3_𝐴31)

6.4.5. HeartDisease

(𝑐𝑎𝑎_0 ∧ 𝑡ℎ𝑎𝑙𝑙_2) ∨ (𝑐𝑎𝑎_0 ∧ ¬𝑜𝑙𝑑𝑝𝑒𝑎𝑘_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛) ∨ (𝑡ℎ𝑎𝑙𝑙_2 ∧ ¬𝑜𝑙𝑑𝑝𝑒𝑎𝑘_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)

6.4.6. Hepatitis

𝑎𝑙𝑏𝑢𝑚𝑖𝑛_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∨ ¬𝑏𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∨ ¬ℎ𝑖𝑠𝑡𝑜𝑙𝑜𝑔𝑦

6.4.7. StudentDropout

(¬𝐶𝑢𝑟𝑟 𝑖𝑐𝑢𝑙𝑎𝑟_𝑢𝑛𝑖𝑡𝑠_1𝑠𝑡_𝑠𝑒𝑚_𝑔𝑟𝑎𝑑𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑇𝑢𝑖𝑡𝑖𝑜𝑛_𝑓 𝑒𝑒𝑠_𝑢𝑝_𝑡𝑜_𝑑𝑎𝑡𝑒)
∨ (¬𝐶𝑢𝑟𝑟 𝑖𝑐𝑢𝑙𝑎𝑟_𝑢𝑛𝑖𝑡𝑠_2𝑛𝑑_𝑠𝑒𝑚_𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑇𝑢𝑖𝑡𝑖𝑜𝑛_𝑓 𝑒𝑒𝑠_𝑢𝑝_𝑡𝑜_𝑑𝑎𝑡𝑒)
∨ (¬𝐶𝑢𝑟𝑟 𝑖𝑐𝑢𝑙𝑎𝑟_𝑢𝑛𝑖𝑡𝑠_1𝑠𝑡_𝑠𝑒𝑚_𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝐶𝑢𝑟𝑟 𝑖𝑐𝑢𝑙𝑎𝑟_𝑢𝑛𝑖𝑡𝑠_1𝑠𝑡_𝑠𝑒𝑚_𝑔𝑟𝑎𝑑𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛

∧ ¬𝐶𝑢𝑟𝑟 𝑖𝑐𝑢𝑙𝑎𝑟_𝑢𝑛𝑖𝑡𝑠_2𝑛𝑑_𝑠𝑒𝑚_𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝐶𝑢𝑟𝑟 𝑖𝑐𝑢𝑙𝑎𝑟_𝑢𝑛𝑖𝑡𝑠_2𝑛𝑑_𝑠𝑒𝑚_𝑔𝑟𝑎𝑑𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)

6.4.8. Covertype

(𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑆𝑜𝑖𝑙_𝑇𝑦𝑝𝑒12) ∨ (𝑆𝑜𝑖𝑙_𝑇𝑦𝑝𝑒22 ∧ ¬𝑆𝑜𝑖𝑙_𝑇𝑦𝑝𝑒12)



6.4.9. Electricity

(𝑛𝑠𝑤𝑝𝑟𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑣 𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑛𝑠𝑤𝑝𝑟𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑣 𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑑𝑎𝑦_0 ∧ 𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑣 𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑛𝑠𝑤𝑝𝑟𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑑𝑎𝑦_0 ∧ ¬𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑛𝑠𝑤𝑝𝑟𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑛𝑠𝑤𝑝𝑟𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑑𝑎𝑦_0 ∧ ¬𝑣𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑛𝑠𝑤𝑝𝑟𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑣 𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑑𝑎𝑦_0 ∧ ¬𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑑𝑎𝑦_0 ∧ 𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑣 𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑣 𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑑𝑎𝑦_0)
∨ (𝑑𝑎𝑦_0 ∧ 𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑛𝑠𝑤𝑝𝑟𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑣 𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑣 𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑑𝑎𝑦_0 ∧ ¬𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑑𝑎𝑦_0 ∧ 𝑛𝑠𝑤𝑝𝑟𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑑𝑎𝑦_0 ∧ 𝑛𝑠𝑤𝑝𝑟𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑑𝑎𝑦_0 ∧ 𝑣𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ 𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑣 𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑑𝑎𝑦_0 ∧ ¬𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑝𝑒𝑟 𝑖𝑜𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑑𝑎𝑦_0 ∧ 𝑣𝑖𝑐𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑛𝑠𝑤𝑑𝑒𝑚𝑎𝑛𝑑_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑛𝑠𝑤𝑝𝑟𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑣𝑖𝑐𝑝𝑟 𝑖𝑐𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)

6.4.10. EyeMovement

(𝑛𝑒𝑥𝑡𝑊 𝑜𝑟𝑑𝑅𝑒𝑔𝑟𝑒𝑠𝑠_0 ∧ ¬𝑛𝑒𝑥𝑡𝑊 𝑜𝑟𝑑𝑅𝑒𝑔𝑟𝑒𝑠𝑠_1 ∧ ¬𝑤𝑜𝑟𝑑𝑁 𝑜_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑛𝑒𝑥𝑡𝑊 𝑜𝑟𝑑𝑅𝑒𝑔𝑟𝑒𝑠𝑠_0 ∧ 𝑝𝑟𝑒𝑣𝐹 𝑖𝑥𝑃𝑜𝑠_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑛𝑒𝑥𝑡𝑊 𝑜𝑟𝑑𝑅𝑒𝑔𝑟𝑒𝑠𝑠_1 ∧ ¬𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝐷𝑢𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)
∨ (𝑛𝑒𝑥𝑡𝑊 𝑜𝑟𝑑𝑅𝑒𝑔𝑟𝑒𝑠𝑠_1 ∧ ¬𝑛𝑒𝑥𝑡𝑊 𝑜𝑟𝑑𝑅𝑒𝑔𝑟𝑒𝑠𝑠_0 ∧ ¬𝑝𝑟𝑒𝑣𝐹 𝑖𝑥𝑃𝑜𝑠_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝐷𝑢𝑟_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛

∧ ¬𝑤𝑜𝑟𝑑𝑁 𝑜_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛)

6.4.11. RoadSafety

(𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_𝑇𝑦𝑝𝑒_9 ∧ 𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_1 ∧ 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒_𝑇𝑦𝑝𝑒_9 ∧ ¬𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_0)
∨ (𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛_𝐶𝑜𝑑𝑒_1 ∧ 𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_1 ∧ 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒_𝑇𝑦𝑝𝑒_9 ∧ ¬𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_0)
∨ (𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_1 ∧ 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒_𝑇𝑦𝑝𝑒_9 ∧ ¬𝐸𝑛𝑔𝑖𝑛𝑒_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝐶𝐶_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_0)
∨ (𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛_𝐶𝑜𝑑𝑒_1 ∧ 𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_0 ∧ 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒_𝑇𝑦𝑝𝑒_9 ∧ ¬𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_𝑇𝑦𝑝𝑒_9 ∧ ¬𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_1)
∨ (𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛_𝐶𝑜𝑑𝑒_1 ∧ 𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_1 ∧ ¬𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_𝑇𝑦𝑝𝑒_9 ∧ ¬𝐸𝑛𝑔𝑖𝑛𝑒_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝐶𝐶_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_0)
∨ (𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_0 ∧ 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒_𝑇𝑦𝑝𝑒_9 ∧ ¬𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_𝑇𝑦𝑝𝑒_9 ∧ ¬𝐸𝑛𝑔𝑖𝑛𝑒_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝐶𝐶_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑑𝑖𝑎𝑛 ∧ ¬𝑆𝑒𝑥_𝑜𝑓_𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦_1)

6.4.12. Colon

For the high-dimensional dataset Colon we used leave-one-out cross-validation; we report the
formula obtained from leaving the first datapoint out.

𝑣765_𝑡𝑤𝑜
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