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Abstract
In this paper, we introduce a new family of argument-ranking semantics which can be seen as a refinement of the classification of
arguments into skeptically accepted, credulously accepted and rejected. To this end we use so-called social ranking functions which
have been developed recently to rank individuals based on their performance in groups. We provide necessary and sufficient conditions
for a social ranking function to give rise to an argument-ranking semantics satisfying the desired refinement property. Moreover, we
analyse the properties of the argument-ranking semantics induced by the most prominent social ranking function that satisfies all of
these conditions by investigating the satisfaction of principles known from the argument-ranking literature.

Keywords
Argumentation, Social Rankings, Extension-ranking semantics, Argument-ranking semantics

1. Introduction
One of the problems of computational models of argumen-
tation is to classify the quality of arguments in the context
of the larger discussion. In abstract argumentation, this
is usually achieved by checking whether an argument is
contained in a set of arguments, called extensions, that are
acceptable according to one of several well-established se-
mantics. While these semantics provides a natural way to
rank arguments based on the larger context of the argu-
mentation framework, it only allows us to distinguish three
types of arguments: the ones that are skeptically accepted,
i. e. that are contained in every extension; the ones that are
credulously accepted, i. e. that are contained in at least one
extension; and the ones that are not contained in any exten-
sion. For this reason, more fine-grained ways of comparing
arguments have been proposed, the so called argument-
ranking semantics [1, 2, 3, 4, 5]. However, generally, these
argument-ranking semantics are technically quite distinct
from the extension-based classifications of arguments that
are more commonly used.

In this paper, we propose a new way of ranking argu-
ments which can be seen as a true refinement of the more
common classification in skeptically, credulously and not
accepted arguments. To this end, we combine two strands
of literature that have emerged recently, namely extension-
ranking semantics and social ranking functions, in a novel
way. Intuitively, social ranking functions allow us to rank
elements based on the quality of sets they are contained in.
These functions were first introduced in the economics lit-
erature [6], in order to judge the performance of individuals
based on the success of groups that they were involved in,
and has received significant attention from economists and
computer scientists [7, 8, 9, 10]. Unfortunately, extension
semantics in formal argumentation only distinguish sets
of arguments that are accepted and the ones that are not
accepted. This approach does not provide enough informa-
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tion to construct a fine-grained ranking of arguments by
applying a social ranking function.

Closer to our needs, Skiba et al. [11] recently introduced
so-called extension-ranking semantics that refine and ex-
tend classical argumentation semantics by providing a par-
tial ranking over sets of arguments.

We show that, by applying the right social ranking func-
tions to an extension-ranking semantics, we can define
argument-ranking semantics that are a refinement of the tra-
ditional skeptical/credulous acceptance of arguments, both
in spirit and in a strict technical sense. More precisely, we
show that by applying the lexicographic excellence operator
introduced by Bernardi et al. [9] to the extension-ranking
semantics of Skiba et al. [11] we generate an argument rank-
ing such that all skeptically accepted arguments are ranked
before all credulously accepted arguments, which are, in
turn, ranked before all non-accepted arguments. More gen-
erally, we show which axiomatic properties are sufficient
and necessary for a social ranking operator to give rise to
such a ranking (Section 4). We conclude by studying the
axiomatic properties of the argument-ranking semantics
induced by the lexicographic excellence operator (Section
5) and conclude that it is a well-behaved argument rank-
ing semantics even beyond the refinement properties that
motivated our work (Sections 6 and 7).

2. Preliminaries
In this section, we introduce the basics of abstract argumen-
tation literature that are necessary for our work. We will
start with the standard model of abstract argumentation, be-
fore introducing argument-ranking and extension-ranking
semantics.

Abstract Argumentation Frameworks An abstract ar-
gumentation framework (𝐴𝐹 ) is a directed graph 𝐹 =
(𝐴,𝑅) where 𝐴 is a (finite) set of arguments and 𝑅 ⊆ 𝐴×𝐴
is an attack relation among them [12]. An argument 𝑎 is said
to attack an argument 𝑏 if (𝑎, 𝑏) ∈ 𝑅. We say that an argu-
ment 𝑎 is defended by a set 𝐸 ⊆ 𝐴 if every argument 𝑏 ∈ 𝐴
that attacks 𝑎 is attacked by some 𝑐 ∈ 𝐸. For 𝑎 ∈ 𝐴 we
define 𝑎−

𝐹 = {𝑏 | (𝑏, 𝑎) ∈ 𝑅} and 𝑎+
𝐹 = {𝑏 | (𝑎, 𝑏) ∈ 𝑅}

as the sets of arguments attacking 𝑎 and the sets of argu-
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Figure 1: Argumentation framework 𝐹1 from Example 1.

ments that are attacked by 𝑎 in 𝐹 . For a set of arguments
𝐸 ⊆ 𝐴 we extend these definitions to 𝐸−

𝐹 and 𝐸+
𝐹 via

𝐸−
𝐹 =

⋃︀
𝑎∈𝐸 𝑎−

𝐹 and 𝐸+
𝐹 =

⋃︀
𝑎∈𝐸 𝑎+

𝐹 , respectively. If the
AF is clear in the context, we will omit the index.

Most semantics [13] for abstract argumentation are rely-
ing on two basic concepts: conflict-freeness and admissibility.

Definition 1. Given 𝐹 = (𝐴,𝑅), a set 𝐸 ⊆ 𝐴 is: conflict-
free iff ∀𝑎, 𝑏 ∈ 𝐸, (𝑎, 𝑏) ̸∈ 𝑅; admissible iff it is conflict-free,
and every element of 𝐸 is defended by 𝐸.

For an AF 𝐹 we use 𝑐𝑓(𝐹 ) and 𝑎𝑑(𝐹 ) to denote the sets
of conflict-free and admissible sets, respectively. In order
to define the remaining semantics proposed by Dung [12]
and in addition the semi-stable semantics [14] we use the
characteristic function.

Definition 2. For an AF 𝐹 = (𝐴,𝑅) and a set of arguments
𝐸 ⊆ 𝐴 the characteristic function ℱ𝐹 (𝐸) : 2𝐴 → 2𝐴 is
defined via:

ℱ𝐹 (𝐸) = {𝑎 ∈ 𝐴|𝐸 defends 𝑎}

An admissible set 𝐸 ⊆ 𝐴 is a complete extension (𝑐𝑜) iff
𝐸 = ℱ𝐹 (𝐸); a preferred extension (𝑝𝑟) iff it is a ⊆-maximal
complete extension; the unique grounded extension (𝑔𝑟) iff
𝐸 is the least fixed point of ℱ𝐹 ; a stable extension (𝑠𝑡𝑏) iff
𝐸+

𝐹 = 𝐴∖𝐸; a semi-stable extension (𝑠𝑠𝑡) iff it is a complete
extension, where 𝐸 ∪ 𝐸+

𝐹 is ⊆-maximal.

The sets of extensions of an AF 𝐹 for these five semantics
are denoted as (respectively) 𝑐𝑜(𝐹 ), 𝑝𝑟(𝐹 ), 𝑔𝑟(𝐹 ), 𝑠𝑡𝑏(𝐹 )
and 𝑠𝑠𝑡(𝐹 ). Based on these semantics, we can define the
status of any argument, namely skeptically accepted (be-
longing to each 𝜎-extension), credulously accepted (belong-
ing to some 𝜎-extension) and rejected (belonging to no
𝜎-extension). Given an AF 𝐹 and an extension-based se-
mantics 𝜎, we use (respectively) 𝑠𝑘𝜎(𝐹 ), 𝑐𝑟𝑒𝑑𝜎(𝐹 ) and
𝑟𝑒𝑗𝜎(𝐹 ) to denote these sets of arguments.

Example 1. Consider the AF 𝐹1 = (𝐴,𝑅) depicted as a
directed graph in Figure 1, with the nodes corresponding to
arguments 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑}, and the edges corresponding to
attacks 𝑅 = {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑), (𝑑, 𝑐)}. We see that 𝐹1

has three complete extensions {𝑎}, {𝑎, 𝑐} and {𝑎, 𝑑} only
the last two are preferred in addition. Also, we see that, 𝑎 ∈
𝑠𝑘𝑐𝑜(𝐹1), 𝑐, 𝑑 ∈ 𝑐𝑟𝑒𝑑𝑐𝑜(𝐹1), and 𝑏 ∈ 𝑟𝑒𝑗𝑐𝑜(𝐹1).

An isomorphism 𝛾 between two AFs 𝐹 = (𝐴,𝑅) and
𝐹 ′ = (𝐴′, 𝑅′) is a bijective function 𝛾 : 𝐹 → 𝐹 ′ such that
(𝑎, 𝑏) ∈ 𝑅 iff (𝛾(𝑎), 𝛾(𝑏)) ∈ 𝑅′ for all 𝑎, 𝑏 ∈ 𝐴.

Argument-ranking Semantics Instead of reasoning
based on the acceptance of sets of arguments, argument-
ranking semantics (also know as ranking-based semantics) [2]
were introduced to focus on the strength of a single argu-
ment. Note that the order returned by an argument-ranking
semantics is not necessarily total, i. e. not every pair of
arguments is comparable.

Definition 3. An argument-ranking semantics 𝜌 is a func-
tion which maps an AF 𝐹 = (𝐴,𝑅) to a preorder1 ⪰𝜌

𝐹 on
𝐴.

Intuitively 𝑎 ⪰𝜌
𝐹 𝑏 means that 𝑎 is at least as strong as 𝑏

in 𝐹 . We define the usual abbreviations as follows; 𝑎 ≻𝜌
𝐹 𝑏

denotes strictly stronger, i. e. 𝑎 ⪰𝜌
𝐹 𝑏 and 𝑏 ̸⪰𝜌

𝐹 𝑎. Moreover,
𝑎 ≃𝜌

𝐹 𝑏 denotes equally strong, i. e. 𝑎 ⪰𝜌
𝐹 𝑏 and 𝑏 ⪰𝜌

𝐹 𝑎.
𝑎 ◁▷𝜌𝐹 𝑏 denotes incomparability so neither 𝑎 ⪰𝜌

𝐹 𝑏 nor
𝑏 ⪰𝜌

𝐹 𝑎.
Traditionally the development of argument-ranking se-

mantics is guided by a principle-based approach [15]. Each
principle embodies a different property for argument rank-
ings. We recall some of the most fundamental principles [4]
as well as newer ones, which are closer to the extension-
based reasoning process [16]. Before we start, we need addi-
tional notations. Let 𝐹 = (𝐴,𝑅) be an AF with arguments
𝑎, 𝑏 ∈ 𝐴. A path of length 𝑙𝑃 = 𝑛 between two arguments
𝑎, 𝑏 is a sequence of arguments 𝑃 (𝑎, 𝑏) = (𝑎0, 𝑎1, ..., 𝑎𝑛)
with (𝑎𝑖, 𝑎𝑖+1) ∈ 𝑅 for all 𝑖 with 𝑎0 = 𝑎 and 𝑎𝑛 = 𝑏. The
connected components 𝑐𝑐(𝐹 ) of an AF 𝐹 are the maximal
subgraphs 𝐹 ′ = (𝐴′, 𝑅′), where for every pair of argu-
ments 𝑎, 𝑏 ∈ 𝐴′ there exists an undirected path 𝑃𝑢(𝑎, 𝑏) =
(𝑎 = 𝑎0, 𝑎1, ..., 𝑎𝑛−1, 𝑎𝑛 = 𝑏) s.t. for every 𝑖 there is
either (𝑎𝑖, 𝑎𝑖+1) ∈ 𝑅 or (𝑎𝑖+1, 𝑎𝑖) ∈ 𝑅. For an extension-
based semantics 𝜎, an argument 𝑎 weakly 𝜎-supports 𝑏 if
𝑏 ∈ 𝑐𝑟𝑒𝑑𝜎(𝐹 ) and for all 𝐸 ∈ 𝜎(𝐹 ), with 𝑏 ∈ 𝐸 then
𝑎 ∈ 𝐸 and 𝑎 strongly 𝜎-supports 𝑏 if 𝑏 ∈ 𝑐𝑟𝑒𝑑𝜎(𝐹 ) and for
all 𝐸 ∈ 𝜎(𝐹 ), with 𝑏 ∈ 𝐸 then there is 𝐸′ ∈ 𝜎(𝐹 ) with
𝐸′ ⊆ 𝐸, 𝑎 ∈ 𝐸′ and 𝑏 /∈ 𝐸′.

Definition 4. An argument-ranking semantics 𝜌 satisfies
the respective principle iff for all AFs 𝐹 = (𝐴,𝑅) and any
𝑎, 𝑏 ∈ 𝐴:

Abstraction (Abs). Names of arguments should not be rel-
evant. For a pair of AFs 𝐹 = (𝐴,𝑅) and 𝐹 ′ =
(𝐴′, 𝑅′) and every isomorphism 𝛾 : 𝐹 → 𝐹 ′, we
have 𝑎 ⪰𝜌

𝐹 𝑏 iff 𝛾(𝑎) ⪰𝜌
𝐹 ′ 𝛾(𝑏).

Independence (In). Unconnected arguments should not in-
fluence a ranking. For every 𝐹 ′ = (𝐴′, 𝑅′) ∈ 𝑐𝑐(𝐹 )
and for all 𝑎, 𝑏 ∈ 𝐴′: 𝑎 ⪰𝜌

𝐹 𝑏 iff 𝑎 ⪰𝜌
𝐹 ′ 𝑏.

Void Precedence (VP). Unattacked arguments should be
ranked better then attacked ones. If 𝑎−

𝐹 = ∅ and
𝑏−𝐹 ̸= ∅ then 𝑎 ≻𝜌

𝐹 𝑏.

Self-Contradiction (SC). Self-attacking arguments
should be ranked worse than any other argument. If
(𝑎, 𝑎) /∈ 𝑅 and (𝑏, 𝑏) ∈ 𝑅 then 𝑎 ≻𝜌

𝐹 𝑏.

Cardinality Precedence (CP). Two arguments are com-
pared based on the number of attackers. If |𝑎−

𝐹 | <
|𝑏−𝐹 | then 𝑎 ≻𝜌

𝐹 𝑏.

Quality Precedence (QP). Two arguments are compared
based on the strength of their attackers. If there is
𝑐 ∈ 𝑏−𝐹 s.t. for all 𝑑 ∈ 𝑎−

𝐹 it holds that 𝑐 ≻𝜌
𝐹 𝑑 then

𝑎 ≻𝜌
𝐹 𝑏.

Counter-Transitivity (CT). Two arguments are compared
based on the number and quality of their attackers. If
some injective 𝑓 : 𝑎−

𝐹 → 𝑏−𝐹 exists s.t. 𝑓(𝑥) ⪰𝜌
𝐹 𝑥

for all 𝑥 ∈ 𝑎−
𝐹 then 𝑎 ⪰𝜌

𝐹 𝑏.

1A preorder is a (binary) relation that is reflexive and transitive.



Strict Counter-Transitivity (SCT). Strict version of CT.
If some injecitve 𝑓 : 𝑎−

𝐹 → 𝑏−𝐹 exists s.t. 𝑓(𝑥) ⪰𝜌
𝐹 𝑥

for all 𝑥 ∈ 𝑎−
𝐹 and either |𝑎−

𝐹 | < |𝑏−𝐹 | or there exists
some 𝑥 ∈ 𝑎−

𝐹 with 𝑓(𝑥) ≻𝜌
𝐹 𝑥, then 𝑎 ≻𝜌

𝐹 𝑏.

Defense Precedence (DP). For two arguments with the
same number of attackers, a defended argument is
ranked better than a non-defended argument. If
|𝑎−

𝐹 | = |𝑏−𝐹 |, (𝑎
−
𝐹 )

−
𝐹 ̸= ∅ and (𝑏−𝐹 )

−
𝐹 = ∅, then

𝑎 ≻𝜌
𝐹 𝑏.

Distributed Defense precedence (DDP). The best de-
fender attacks exactly one attacker. If |𝑎−

𝐹 | = |𝑏−𝐹 |
and |(𝑎−

𝐹 )
−
𝐹 | = |(𝑏−𝐹 )

−
𝐹 |, and if defense of 𝑎 is simple

- every direct defender of 𝑎 directly attacks exactly
one direct attacker of 𝑎 - and distributed - every direct
attacker of 𝑎 is attacked by at most one argument -
and defense of 𝑏 is simple but not distributed, then
𝑎 ≻𝜌

𝐹 𝑏.

Non-attacked Equivalence (NaE) Two unattacked argu-
ments should be equally ranked. If 𝑎−

𝐹 = 𝑏−𝐹 = ∅
then 𝑎 ≃𝜌

𝐹 𝑏.

Attack vs. Full Defense (AvsFD). Arguments with-
out any unattacked indirect attackers should be
ranked better than arguments only attacked by
one unattacked argument. If 𝐹 acyclic and every
path 𝑃 (𝑢, 𝑎) in 𝐹 from unattacked 𝑢 to 𝑎 has
𝑙𝑝 = 0 mod 2 and there exists unattacked 𝑣 ∈ 𝑏−𝐹 ,
then 𝑎 ≻𝜌

𝐹 𝑏.

𝜎-Compatibility (𝜎-C). Credulously accepted arguments
should be ranked better than rejected arguments. For
an extension-based semantics 𝜎 it holds that if 𝑎 ∈
𝑐𝑟𝑒𝑑𝜎(𝐹 ) and 𝑏 ∈ 𝑟𝑒𝑗𝜎(𝐹 ), then 𝑎 ≻𝜌

𝐹 𝑏.

weak 𝜎-Support (w𝜎-S). If an argument 𝑎 is an unavoid-
able side-effect of accepting another argument 𝑏, then
𝑎 should be at least as acceptable as 𝑏. If 𝑎 weakly
𝜎-supports 𝑏, then 𝑎 ⪰𝜌

𝐹 𝑏.

strong 𝜎-Support (s𝜎-S). If an argument 𝑎 is a prerequi-
site for accepting another argument 𝑏 and 𝑏 is irrele-
vant for accepting 𝑎, then 𝑎 should be ranked better
then 𝑏. If 𝑎 strongly 𝜎-supports 𝑏, then 𝑎 ≻𝜌

𝐹 𝑏.

Note that these principles are not always compatible with
each other, especially SC and CP are not compatible [2].

Extension-ranking Semantics Extension-ranking se-
mantics defined in Skiba et al. [11] are a generalisation of
extension-based semantics. These semantics are used to
formalise whether a set 𝐸 is more plausible to be accepted
than another set 𝐸′.

Definition 5. Let 𝐹 = (𝐴,𝑅) be an AF. An extension
ranking on 𝐹 is a preorder over the powerset of arguments
2𝐴. An extension-ranking semantics 𝜏 is a function that
maps each 𝐹 to an extension ranking ⊒𝜏

𝐹 on 𝐹 .

For an AF 𝐹 = (𝐴,𝑅), an extension-ranking semantics
𝜏 and two sets 𝐸,𝐸′ ⊆ 𝐴 we say 𝐸 is at least as plausible
to be accepted as 𝐸′ with respect to 𝜏 in 𝐹 if 𝐸 ⊒𝜏

𝐹 𝐸′. We
define the usual abbreviations as follows: 𝐸 is strictly more
plausible to be accepted than 𝐸′ (denoted as 𝐸 ⊐𝜏

𝐹 𝐸′) if
𝐸 ⊒𝜏

𝐹 𝐸′ and not 𝐸′ ⊒𝜏
𝐹 𝐸; 𝐸 and 𝐸′ are equally as plau-

sible to be accepted (denoted as 𝐸 ≡𝜏
𝐹 𝐸′) if 𝐸 ⊒𝜏

𝐹 𝐸′ and

𝐸′ ⊒𝜏
𝐹 𝐸; 𝐸 and 𝐸′ are incomparable (denoted 𝐸 ≍𝜏

𝐹 𝐸′)
if neither 𝐸 ⊒𝜏

𝐹 𝐸′ nor 𝐸′ ⊒𝜏
𝐹 𝐸.

Skiba et al. [11] defined a family of approaches to de-
fine such extension-ranking semantics. Their semantics are
generalisations of the classical extension-based semantics.
Using these semantics we can state that a set is “closer” to
being admissible, than another set. Before we define the
semantics, we recall the base relations, each of them gener-
alises one aspect of extension-based reasoning.

Definition 6 (Base Relations [11]). Let 𝐹 = (𝐴,𝑅) be
an AF and 𝐸 ⊆ 𝐴 where the function ℱ*

𝐹 : 𝒫(𝐴) →
𝒫(𝐴) is defined as ℱ*

𝐹 (𝐸) =
⋃︀∞

𝑖=1 ℱ
*
𝑖,𝐹 (𝐸) over the pow-

erset 𝒫(𝐴) of 𝐴 with ℱ*
1,𝐹 (𝐸) = 𝐸 and ℱ*

𝑖,𝐹 (𝐸) =
ℱ*

𝑖−1,𝐹 (𝐸) ∪ (ℱ𝐹 (ℱ*
𝑖−1,𝐹 (𝐸)) ∖ 𝐸−

𝐹 ). Each base relation
𝛼 ∈ {𝐶𝐹,𝑈𝐷,𝐷𝑁,𝑈𝐴} is defined via:

• 𝐶𝐹𝐹 (𝐸) = {(𝑎, 𝑏) ∈ 𝑅|𝑎, 𝑏 ∈ 𝐸};
• 𝑈𝐷𝐹 (𝐸) = 𝐸 ∖ ℱ𝐹 (𝐸);
• 𝐷𝑁𝐹 (𝐸) = ℱ*

𝐹 (𝐸) ∖ 𝐸;
• 𝑈𝐴𝐹 (𝐸) = {𝑎 ∈ 𝐴 ∖ 𝐸|¬∃𝑏 ∈ 𝐸 : (𝑏, 𝑎) ∈ 𝑅};

For every base relation, the corresponding 𝛼 base exten-
sion ranking ⊒𝛼

𝐹 for 𝐸,𝐸′ ∈ 𝐴 is given by:

𝐸 ⊒𝛼
𝐹 𝐸′ iff 𝛼𝐹 (𝐸) ⊆ 𝛼𝐹 (𝐸

′)

By combining these base relations, we denote the
extension-ranking semantics.

Definition 7. Let 𝐹 = (𝐴,𝑅) be an AF and 𝐸,𝐸′ ⊆ 𝐴.
We define: Admissible extension-ranking semantics 𝑟-𝑎𝑑
via 𝐸 ⊒𝑟-𝑎𝑑

𝐹 𝐸′ iff 𝐸 ⊐𝐶𝐹
𝐹 𝐸′ or (𝐸 ≡𝐶𝐹

𝐹 𝐸′ and
𝐸 ⊒𝑈𝐷

𝐹 𝐸′). Complete extension-ranking semantics 𝑟-𝑐𝑜
via 𝐸 ⊒𝑟-𝑐𝑜

𝐹 𝐸′ iff 𝐸 ⊐𝑟-𝑎𝑑
𝐹 𝐸′ or (𝐸 ≡𝑟-𝑎𝑑

𝐹 𝐸′ and
𝐸 ⊒𝐷𝑁

𝐹 𝐸′). Preferred extension-ranking semantics 𝑟-𝑝𝑟
via 𝐸 ⊒𝑟-𝑝𝑟

𝐹 𝐸′ iff 𝐸 ⊐𝑟-𝑎𝑑
𝐹 𝐸′ or (𝐸 ≡𝑟-𝑎𝑑

𝐹 𝐸′ and
𝐸′ ⊆ 𝐸). Grounded extension-ranking semantics 𝑟-𝑔𝑟
via 𝐸 ⊒𝑟-𝑔𝑟

𝐹 𝐸′ iff 𝐸 ⊐𝑟-𝑐𝑜
𝐹 𝐸′ or (𝐸 ≡𝑟-𝑐𝑜

𝐹 𝐸′ and
𝐸 ⊆ 𝐸′). Semi-stable extension-ranking semantics 𝑟-𝑠𝑠𝑡
via 𝐸 ⊒𝑟-𝑠𝑠𝑡

𝐹 𝐸′ iff 𝐸 ⊐𝑟-𝑐𝑜
𝐹 𝐸′ or (𝐸 ≡𝑟-𝑐𝑜

𝐹 𝐸′ and
𝐸 ⊒𝑈𝐴

𝐹 𝐸′).

In words, one set 𝐸 is at least as plausible to be accepted
as 𝐸′ with respect to the admissible extension-ranking se-
mantics, if 𝐸 has less conflicts than 𝐸′ or if they have the
same conflicts, then we look at the undefended arguments.

Example 2. Continuing Example 1. Consider for instance the
sets 𝐸1 = {𝑏}, 𝐸2 = {𝑏, 𝑑} and 𝐸3 = {𝑑}. For the complete
extension-ranking semantics, we first of all have that all three
sets contain no conflicts. However, both 𝐸1 and 𝐸2 contain
the argument 𝑏 which they do not defend against 𝑎. It follows
that 𝐸3 ⊐𝑟-𝑐𝑜

𝐹1
𝐸1 and 𝐸3 ⊐𝑟-𝑐𝑜

𝐹1
𝐸2. Furthermore, both 𝐸1

and 𝐸2 defend 𝑑 from 𝑐, but 𝑑 is not contained in 𝐸1. Thus,
we have that 𝐸2 ⊐𝑟-𝑐𝑜

𝐹1
𝐸1.

The relevant excerpt of the extension-ranking for 𝑟-𝑐𝑜 can
be found in Figure 2.

Extension-ranking semantics also follow a principle-
based approach. Before we recall the principles defined
in Skiba et al. [11], we need to introduce the notion of most
plausible sets, i. e. sets for which we cannot find any other
sets ranked strictly better.

Definition 8 (Most plausible sets). Let 𝐹 = (𝐴,𝑅) be an
AF, 𝐸,𝐸′ ⊆ 𝐴 two sets of arguments and 𝜏 an extension-
ranking semantics. We denote by 𝑚𝑎𝑥𝜏 (𝐹 ) the maximal (or
most plausible) elements of the extension ranking ⊒𝜏

𝐹 , i. e.
𝑚𝑎𝑥𝜏 (𝐹 ) = {𝐸 ⊆ 𝐴 | ∄𝐸′ ⊆ 𝐴 with 𝐸′ ⊐𝜏

𝐹 𝐸}.



{𝑎}{𝑎, 𝑐} {𝑎, 𝑑}

∅ {𝑑}

{𝑏, 𝑑}{𝑐}

{𝑏}

...

...

Figure 2: Excerpt of the extension-ranking ⊒𝑟-𝑐𝑜
𝐹1

for the com-
plete semantics, where 𝐸 → 𝐸′ means 𝐸′ ⊐𝑟-𝑐𝑜

𝐹1
𝐸 and 𝐸 −𝐸′

means 𝐸′ ≡𝑟-𝑐𝑜
𝐹1

𝐸

The principle 𝜎-generalisation states, that the most plau-
sible sets should coincide with the 𝜎-extensions.

Definition 9 (𝜎-Gen). Let 𝜎 be an extension-based se-
mantics and 𝜏 an extension-ranking semantics. 𝜏 satis-
fies 𝜎-soundness iff for all 𝐴𝐹 : 𝑚𝑎𝑥𝜏 (𝐴𝐹 ) ⊆ 𝜎(𝐴𝐹 ).
𝜎-completeness iff for all 𝐴𝐹 : 𝑚𝑎𝑥𝜏 (𝐴𝐹 ) ⊇ 𝜎(𝐴𝐹 ).
𝜎-generalisation iff 𝜏 satisfies both 𝜎-soundness and 𝜎-
completeness.

Additional principles can be found in Skiba et al. [11].

3. Social Ranking
Let us now introduce the final piece of our puzzle, social
rankings. Let 𝑆 be a set of arbitrary objects like players of a
sports team, employees of a company or arguments in an
AF and 𝒫(𝑆) its powerset. A social ranking function 𝜉, as
introduced by Moretti and Öztürk [6], maps a preorder ⊒
on 𝒫(𝑆) to a partial order on 𝑆. In the context of this work,
we consider the preorder to be an extension-ranking ⊒𝑟-𝜎

𝐹

for some argumentation framework 𝐹 and a semantics 𝜎 as
defined above. The most prominent social ranking function
is the lexicographic excellence operator (lex-cel), which was
first proposed by Bernardi et al. [9]. It ranks elements based
on the best sets they appear in, proceeding lexicographically
if there are ties. However, as proposed by Bernardi et al.
[9], the lex-cel operator requires a total order of the sets as
input, while the extension ranking semantics defined above
only provide a partial ranking. To circumvent this problem,
we make use a measure of the quality of a set that allows us
to compare any two sets, the rank of a set.

Definition 10. Let 𝑋 ⊆ 𝑆 be a subset of 𝑆 and ⊒ a pre-
order on 𝒫(𝑆). Moreover, let 𝑋1, 𝑋2, . . . , 𝑋𝑘 be the longest
sequence such that 𝑋1 ⊐ 𝑋2 ⊐ · · · ⊐ 𝑋𝑘 ⊐ 𝑋 . Then, we
define the rank of 𝑋 , as rank⊒(𝑋) := 𝑘 + 1.

Moreover, for an element 𝑥 ∈ 𝑆, we define

𝑥𝑘,⊒ := |{𝑋 ∈ 𝒫(𝑆) | rank⊒(𝑋) = 𝑘, 𝑥 ∈ 𝑋}|,

as the number of rank 𝑘 subsets that contain 𝑥.

As we will see later, a rank-based approach to social rank-
ing provides many desirable properties, at least in our con-
text of ranking arguments. With the definition of a rank
at hand, we can now define our rank-based version of the
lex-cel social ranking function.

Definition 11. Let 𝑥, 𝑦 ∈ 𝑆 be two elements of 𝑆. The lex-
cel ranking ⪰𝑙𝑒𝑥-c𝑒𝑙 is defined by 𝑥 ≻𝑙𝑒𝑥-𝑐𝑒𝑙

⊒ 𝑦 if there exists
a 𝑘 such that 𝑥𝑖,⊒ = 𝑦𝑖,⊒ for all 𝑖 < 𝑘 and 𝑥𝑘,⊒ > 𝑦𝑘,⊒
and 𝑥 ∼𝑙𝑒𝑥-𝑐𝑒𝑙

⊒ 𝑦 if 𝑥𝑖,⊒ = 𝑦𝑖,⊒ for all 𝑖.

Intuitively, an object 𝑥 is ranked better than 𝑦 by the
lexicographic excellence operator if 𝑥 is contained in more
highly ranked sets than 𝑦.

Example 3. We continue Example 2 with the complete
extension-ranking as depicted in Figure 2. Then, we have
three sets with rank 1, namely the complete extensions. The
argument 𝑎 is contained in all three sets with rank 1, while 𝑐
and 𝑑 are only contained in one such set each. Consequently
𝑎 ⪰lex-cel 𝑐 and 𝑎 ⪰lex-cel 𝑑. Now, the final admissible sets ∅
and {𝑑} are dominated by all three complete extensions under
the complete extension-ranking semantics, but dominate all
non-admissible sets. Therefore, they are the only sets with
rank 2. It follows that 𝑑 ⪰lex-cel 𝑐 as both are contained in the
same number of sets with rank 1, but 𝑑 is contained in more
sets with rank 2.

Similarly to argument- and extension-ranking semantics,
social rankings have been studied axiomatically. Let us first
introduce an axiom that has been part of a characterization
of the lex-cel function under the assumption that the ranking
over sets is a total preorder [9]. As we generally do not
assume the ranking over extensions to be a total preorder,
the characterisation does not hold in our setting, but it is
straightforward to see that the lex-cel function still satisfies
this axiom.

Definition 12 (Independence from the worst set). Let ⊒
be a preorder on 𝒫 , let

𝑤 = max
𝑋∈𝒫

(rank⊒(𝑋))

and assume that ⊒* is another preorder on 𝒫 for which it
holds

• rank⊒(𝑋) = rank⊒*(𝑋) for all 𝑋 ∈ 𝒫 such that
rank⊒(𝑋) < 𝑤.

• rank⊒*(𝑋) ≥ 𝑤 for all 𝑋 ∈ 𝒫 such that
rank⊒(𝑋) = 𝑤.

Then for any social ranking function that satisfies Indepen-
dence from the worst set, we must have that 𝑥 ≻⊒ 𝑦 implies
𝑥 ≻⊒* 𝑦.

Intuitively, this axiom states that if one element is already
strictly worse than another, and we further subdivide the
worst sets, this strict preference remains. As we will see
later, this axiom will be crucial for satisfying our desired
refinement property. Next, we introduce a new, very weak
axiom inspired by the classical Pareto-efficiency concept
[17], that is satisfied by most reasonable rank-based social
ranking functions.

Definition 13 (Pareto-efficiency). Let ⊒ be a preorder on
𝒫 and let 𝑥, 𝑦 be elements such that

• rank⊒(𝑍 ∪ {𝑥}) ≤ rank⊒(𝑍 ∪ {𝑦}) for all 𝑍 ∈ 𝒫
with 𝑥, 𝑦 /∈ 𝑍 ;

• rank⊒(𝑍 ∪ {𝑥}) < rank⊒(𝑍 ∪ {𝑦}) for at least one
𝑍 ∈ 𝒫 with 𝑥, 𝑦 /∈ 𝑍 .

A social ranking function 𝜉 satisfies Pareto-efficiency, iff
𝑥 ≻𝜉

⊒ 𝑦.



Furthermore, we establish the novel Dominating set ax-
iom which captures the intuition that if there exists a set
containing the object 𝑥 that is ranked better than every set
that contains some other object 𝑦, then 𝑥 must be ranked
better than 𝑦 by the social ranking function.

Definition 14 (Dominating set). Let ⊒ be a preorder on 𝒫
and let 𝑥, 𝑦 be elements such that ∃𝑋 ⊆ 𝒫 with 𝑥 ∈ 𝑋 such
that ∀𝑌 with 𝑦 ∈ 𝑌 then 𝑋 ⊐ 𝑌 . A social ranking function
𝜉 satisfies Dominating set iff 𝑥 ≻𝜉

⊒ 𝑦.

Crucially, Independence from the Worst Set and Pareto-
efficiency together imply Dominating set.

Theorem 1. Any social ranking function that satisfies Inde-
pendence from the worst set and Pareto-efficiency also satisfies
Dominating set.

Proof. Let ⊒ be a preorder on 𝒫 and let 𝑥, 𝑦 be elements
such that ∃𝑋𝑑 ⊆ 𝒫 with 𝑥 ∈ 𝑋𝑑 such that ∀𝑋 ′ with 𝑦 ∈
𝑋 ′ then 𝑋𝑑 ⊐ 𝑋 ′. Furthermore, let 𝑤 := rank⊒(𝑋

𝑑) + 1.
We consider the preorder ⊒* that is defined as follows: For
any two sets 𝑋,𝑌 ∈ 𝒫 we have 𝑋 ⊒* 𝑌 if and only if
𝑋 ⊒ 𝑌 and either rank⊒(𝑋) < 𝑤 or rank⊒(𝑌 ) < 𝑤. We
claim that

max
𝑋∈𝒫

(rank⊒*(𝑋)) = 𝑤.

First, to see that max𝑋∈𝒫(rank⊒*(𝑋)) ≤ 𝑤 we assume
for the sake of a contradiction that there is a set 𝑋 with
rank⊒*(𝑋) = 𝑤* > 𝑤. Then, by definition, there is a
sequence 𝑋1 ⊒* 𝑋2 ⊒* · · · ⊒* 𝑋𝑤* ⊒* 𝑋 . As every
preference in ⊒* is also valid in ⊒, the same sequence exists
for ⊒, i. e. 𝑋1 ⊒ 𝑋2 ⊒ · · · ⊒ 𝑋𝑤* ⊒ 𝑋 . However, this
means rank⊒(𝑋𝑤*) ≥ 𝑤* − 1 ≥ 𝑤 and rank⊒(𝑋) ≥
𝑤* > 𝑤, which contradicts 𝑋𝑤* ⊒* 𝑋 .

To see that max𝑋∈𝒫(rank⊒*(𝑋)) ≥ 𝑤 we first ob-
serve that as rank⊒(𝑋

𝑑) = 𝑤 − 1 there is a sequence
𝑋1 ⊒ 𝑋2 ⊒ · · · ⊒ 𝑋𝑤−1 ⊒ 𝑋 . As this sequence is
maximal, rank⊒(𝑋𝑖) < 𝑤 for all elements 𝑋𝑖 of the se-
quence. Hence the same sequence exists in ⊒*. Finally,
as 𝑋𝑑 is a dominating set, we know 𝑋𝑑 ⊒ {𝑦} and as
rank⊒(𝑋

𝑑) < 𝑤, we also have 𝑋𝑑 ⊒* {𝑦}. Therefore,
𝑋1 ⊒* 𝑋2 ⊒* · · · ⊒* 𝑋𝑤−1 ⊒* 𝑋 ⊒* {𝑦} witnesses
that rank⊒*({𝑦}) ≥ 𝑤.

Next, we claim that 𝑥 ≻⊒*
𝑦 for all social rank-

ing functions that satisfy Pareto-efficiency: By definition,
rank⊒*(𝑋𝑑) = 𝑤 − 1. Furthermore, we have 𝑋𝑑 =
(𝑋𝑑 ∖ {𝑥}) ∪ {𝑥} ⊒* (𝑋𝑑 ∖ {𝑥}) ∪ {𝑦}, and thus
rank⊒*((𝑋𝑑 ∖ {𝑥}) ∪ {𝑦}) > 𝑤 − 1. This shows that
rank⊒*(𝑋𝑑) < rank⊒*((𝑋𝑑 ∖ {𝑥}) ∪ {𝑦}). On the other
hand, there can be no 𝑍 such that rank⊒*(𝑍 ∪ {𝑦}) <
rank⊒*(𝑍∪{𝑥}): As 𝑍∪{𝑦} is dominated by 𝑋𝑑, we know
rank⊒(𝑍∪{𝑦}) ≥ 𝑤 and thus rank*

⊒(𝑍∪{𝑦}) ≥ 𝑤. Thus,
the claim follows directly frommax𝑋∈𝒫(rank⊒*(𝑋)) = 𝑤

Finally, if ⪰ also satisfies Independence from the worst
set, if follows that also 𝑥 ≻⊒ 𝑦, as ⊒ is just a refinement of
the worst set of ⊒*.

4. Defining Argument-ranking
Semantics via Social Rankings

The idea of combining extension-ranking semantics with
argument-ranking semantics was briefly discussed by Skiba
et al. [11], where, based on a ranking over sets of argu-
ments, a ranking over arguments was defined. In this sec-
tion, we take a more general view on this approach and

define argument-ranking semantics based on an extension-
ranking.

4.1. The Singleton Approach
The most immediate way of ranking objects based on a
ranking over sets of objects is to restrict the ranking over
sets of objects to the singleton sets. The behaviour of these
singleton sets then gives us insight into the relationship
between the objects. If {𝑎} is ranked better than {𝑏} then
𝑎 is also ranked better than 𝑏 in the restricted ranking.

Definition 15. Let 𝐹 = (𝐴,𝑅) be an AF and 𝜏 any
extension-ranking semantics. For any two arguments 𝑎, 𝑏 ∈
𝐴, the singleton argument-ranking semantics 𝒮𝒯 𝜏 is de-
fined via 𝑎 ⪰𝒮𝒯 𝜏

𝐹 𝑏 iff {𝑎} ⊒𝜏
𝐹 {𝑏}.

Bernardi et al. [9] have already discussed that a rank-
ing based solely on singleton sets is too simplistic, as it
ignores all the information provided by rankings over sets
with cardinality larger than one. In the context of abstract
argumentation, this is also the case.

Example 4. Consider the AF 𝐹1 from Example 1. We use 𝑟-
𝑎𝑑 as the underlying extension-ranking semantics, then since
{𝑎} and {𝑑} are admissible we have 𝑎 =

𝒮𝒯 𝑟-𝑎𝑑
𝐹1

𝑑 and both
{𝑏} and {𝑐} are conflict-free and not defended, so

𝑎 =
𝒮𝒯 𝑟-𝑎𝑑
𝐹1

𝑑 ≻𝒮𝒯 𝑟-𝑎𝑑
𝐹1

𝑏 =
𝒮𝒯 𝑟-𝑎𝑑
𝐹1

𝑐

The example shows that 𝒮𝒯 𝑟-𝑎𝑑 has a limited expressive-
ness, since 𝒮𝒯 𝑟-𝑎𝑑 has at most three ranks. The first rank
contains arguments for which the singleton set is admissi-
ble and the lowest rank are all self-attacking arguments, in
between are the non-admissible sets, but conflict-free single-
ton sets. Observe also that this approach does not refine the
classical skeptical/credulous acceptance classification, as in
Example 4 the credulously accepted argument 𝑐 is ranked
the same as the rejected argument 𝑏.

4.2. Generalised Social Ranking
Argument-ranking Semantics

In the literature, a number of different social ranking func-
tions that are more complex than the singleton approach
can be found [18, 9, 8, 7]. To understand what constitutes
a good social ranking function in this context, we define a
general argument-ranking semantics using social ranking
solutions with respect to an extension ranking.

Definition 16. Let 𝐹 = (𝐴,𝑅) be an AF and 𝜉 a social
ranking function with respect to extension ranking 𝜏 . For any
𝑎, 𝑏 ∈ 𝐴 we call 𝜉𝜏 the Social ranking argument-ranking
semantics such that:

𝑎 ⪰𝜉𝜏
𝐹 𝑏 iff 𝑎 ⪰𝜉

𝜏 𝑏

In words, an argument 𝑎 is at least as strong as argument
𝑏 if the social ranking function 𝜉 applied to the extension
ranking ⊒𝜏 returns that 𝑎 is at least as strong as 𝑏.

Example 5. In Example 3 the social ranking argument rank-
ing lex-celr-co was applied to the AF 𝐹1 from Example 1 where
lex-cel is used and the underlying extension-ranking semantics
is r-co. Thus, the resulting argument ranking is:

𝑎 ≻lex-celr-co
𝐹1

𝑑 ≻lex-celr-co
𝐹1

𝑐 ≻lex-celr-co
𝐹1

𝑏



Any social ranking function can be used to rank argu-
ments. Skiba et al. [11] have used a variation of the lex-cel
social ranking function in their definitions, where an argu-
ment 𝑎 is ranked better than another argument 𝑏 if we can
find a set 𝐸 containing 𝑎 which is ranked better than any
set containing 𝑏.

Definition 17 ([11]). Let 𝐹 = (𝐴,𝑅) be an AF, 𝑎, 𝑏 ∈
𝐴, and 𝜏 be an extension-ranking semantics. We define an
argument-ranking semantics ⪰𝜏

𝐹 via 𝑎 ⪰𝜏
𝐹 𝑏 iff there is a

set 𝐸 with 𝑎 ∈ 𝐸 s.t. for all sets 𝐸′ with 𝑏 ∈ 𝐸′ we have
𝐸 ⊒𝜏

𝐹 𝐸′.

Example 6. Continuing with Example 1. Using 𝑟-𝑎𝑑 as the
underlying extension-ranking semantics, we see that {𝑎, 𝑐}
and {𝑎, 𝑑} are admissible sets, hence also among the most
plausible sets. Since 𝑟-𝑎𝑑 satisfies 𝑎𝑑-generalisation there
cannot be any set containing 𝑏 ranked strictly better, than
these two sets. This observation result in the ranking 𝑎 ≃𝑟-𝑎𝑑

𝐹1

𝑐 ≃𝑟-𝑎𝑑
𝐹1

𝑑 ≻𝑟-𝑎𝑑
𝐹1

𝑏. Since {𝑎, 𝑐}, {𝑎, 𝑑} ∈ 𝜎(𝐹1) for 𝜎 ∈
{𝑐𝑜, 𝑝𝑟, 𝑠𝑡𝑏, 𝑠𝑠𝑡} the ranking is the same for any 𝑟-𝜎. Only
for 𝑟-𝑔𝑟 the induced ranking differs:

𝑎 ≻𝑟-𝑔𝑟
𝐹1

𝑐 ≃𝑟-𝑔𝑟
𝐹1

𝑑 ≻𝑟-𝑔𝑟
𝐹1

𝑏

The previous examples show that where lex-celr-co can
differentiate 𝑎, 𝑏, 𝑐, and 𝑑, the argument ranking of Defini-
tion 17 under 𝑟-𝑐𝑜 does not allow to distinguish among 𝑎, 𝑐
and 𝑑. Indeed, lex-cel is more informative than the operator
of Skiba et al. [11].

Proposition 1. Let 𝐹 = (𝐴,𝑅) be an AF, 𝑎, 𝑏 ∈ 𝐴 and 𝜏
an extension ranking. If 𝑎 ⪰lex-cel𝜏

𝐹 𝑏, then 𝑎 ⪰𝜏
𝐹 𝑏.

Proof. Let 𝐹 = (𝐴,𝑅) be an AF, 𝑎, 𝑏 ∈ 𝐴 and 𝜏 an exten-
sion ranking. Assume 𝑎 ⪰lex-cel𝜏

𝐹 𝑏, then there is an 𝑘 s.t for
all 𝑖 < 𝑘 we have 𝑎𝑖,𝜏 = 𝑏𝑖,𝜏 and 𝑎𝑘,𝜏 ≥ 𝑏𝑘,𝜏 .

If 𝑏𝑗,𝜏 ̸= 0 for 1 ≤ 𝑗 ≤ 𝑘, then there is one 𝑌 ⊆ 𝐴 with
𝑟𝑎𝑛𝑘𝜏 (𝑌 ) = 𝑗 and 𝑏 ∈ 𝑌 . W.l.o.g. let 𝑗 be the smallest
number s.t. 𝑏𝑗,𝜏 ̸= 0. Then 𝑌 ⊒𝜏

𝐹 𝑋 for all 𝑋 ⊆ 𝐴 with
𝑎 ∈ 𝑋 , therefore 𝑏 ⪰𝜏

𝐹 𝑎. Since, 𝑏𝑗,𝜏 ≤ 𝑎𝑗,𝜏 , there has
to be an 𝑋 ′ ⊆ 𝐴 with 𝑟𝑎𝑛𝑘𝜏 (𝑋

′) = 𝑗 and 𝑎 ∈ 𝑋 ′ s.t.
𝑋 ′ ≡𝜏

𝐹 𝑌 , so 𝑎 ⪰𝜏
𝐹 𝑏.

If 𝑏𝑗,𝜏 = 0 for all 𝑗 ∈ {1, . . . , 𝑘} and 𝑎𝑘,𝜏 > 0, then
there is at least one𝑋 ⊆ 𝐴with 𝑎 ∈ 𝑋 and 𝑟𝑎𝑛𝑘𝜏 (𝑋) = 𝑘
s.t. 𝑋 ⊐𝜏

𝐹 𝑌 for all 𝑌 ⊆ 𝐴 with 𝑏 ∈ 𝑌 , and therefore
𝑎 ≻𝜏

𝐹 𝑏.

In particular, lex-celr-co allows us to distinguish among
skeptically and credulously accepted arguments (𝑎 is ranked
before 𝑐 and 𝑑). To capture this, we define a skeptical varia-
tion of 𝜎-Compatibility. Skeptical accepted arguments are
part of every 𝜎-extension, therefore they should be ranked
better than any other argument.

Definition 18. Let𝐹 = (𝐴,𝑅) be an AF, 𝑎, 𝑏 ∈ 𝐴, and let𝜎
be a extension-based semantics. Argument-ranking semantics
𝜌 satisfies 𝜎-skeptical-Compatibility (𝜎-sk-C) iff 𝑎 ∈ 𝑠𝑘𝜎(𝐹 )
and 𝑏 /∈ 𝑠𝑘𝜎(𝐹 ) then 𝑎 ≻𝜌

𝐹 𝑏.

Crucially, a well-behaved argument ranking semantics
should be able to rank skeptically accepted arguments before
all credulously accepted ones, which should be, in turn,
ranked before all non-accepted arguments. This translated
to the following refinement property.

Definition 19 (𝜎-Refinement). Argument-ranking seman-
tics 𝜌 satisfies 𝜎-Refinement if 𝜌 satisfies 𝜎-C and 𝜎-sk-C for
extension-based semantics 𝜎 for all AFs 𝐹 .

Next, we investigate principles for social ranking based
argument-ranking semantics from a general point of view.
In particular, we are interested in understanding which com-
binations of axioms for extension-ranking semantics 𝜏 and
social ranking functions 𝜉 represent necessary and sufficient
conditions for the corresponding social ranking argument-
ranking semantics 𝜉𝜏 to satisfy fundamental principles of
argument rankings, chiefly among them our desired refine-
ment property. This translates to the following research
questions:

RQ1 What properties of 𝜉 and 𝜏 are adequate to ensure
that 𝜉𝜏 satisfies a specific principle for argument-
ranking semantics?

RQ2 What properties of 𝜉𝜏 are adequate to ensure that
𝜉 satisfies a specific principle for social ranking
functions when combined with a certain extension-
ranking semantics 𝜏?

Next, we address RQ1 and RQ2 for a selected number of
principles for argument ranking semantics.

4.2.1. Sufficient Conditions for Social Ranking
Argument-ranking semantics

We start by considering 𝜎-Compatibility. For this we show
that Independence from the worst set together with the quite
weak condition Pareto-efficiency, is sufficient for satisfying
𝜎-C.

Theorem 2. Let 𝐹 = (𝐴,𝑅) be an argumentation frame-
work, 𝜏 an extension-ranking semantics, satisfying 𝜎- gen-
eralisation for extension semantics 𝜎 and 𝜉 a social ranking
function that satisfies Independence from the worst set and
Pareto-efficiency. Then 𝜉𝜏 satisfies 𝜎-C.

Proof. Consider first the extension ranking ⊒𝜎 defined by
𝑋 ⊒𝜎

𝐹 𝑌 if and only if 𝑋 ∈ 𝜎(𝐹 ) and 𝑌 ̸∈ 𝜎(𝐹 ). Fur-
thermore, let 𝑥 ∈ 𝑐𝑟𝑒𝑑𝜎(𝐹 ) and 𝑦 ∈ 𝑟𝑒𝑗𝜎(𝐹 ). Then,
we claim that 𝑥 ≻⊒𝜎

𝑦 for any social ranking function
𝜉 that satisfies Pareto-efficiency: As 𝑥 is credulously ac-
cepted, there exists a 𝑋 ∈ 𝜎(𝐹 ) with 𝑥 ∈ 𝑋 and as
𝑦 is rejected, we have 𝑌 ̸∈ 𝜎(𝐹 ) for all 𝑦 ∈ 𝑌 . It fol-
lows that rank⊒𝜎 (𝑋 ∖ {𝑥}) ∪ {𝑥}) = 1 < rank⊒𝜎 ((𝑋 ∖
{𝑥})∪{𝑦}). On the other hand, there can be no 𝑆 such that
rank⊒𝜎 (𝑆 ∪ {𝑦}) < rank⊒𝜎 (𝑆 ∪ {𝑥}) as, due to the fact
that 𝑤 = max𝑋⊆𝐴(rank⊒𝜎

𝐹
(𝑋)) = 2, this would imply

rank⊒𝜎 (𝑆 ∪ {𝑦}) = 1 and therefore 𝑆 ∪ {𝑦} ∈ 𝜎(𝐹 ).
Furthermore, as 𝜏 satisfies 𝜎-generalisation, we know that

rank⊒𝜎
𝐹
(𝑋) = 1 if and only if rank⊒𝜏

𝐹
(𝑋) = 1. There-

fore, it follows from Independence from the worst set that
𝑥 ≻𝜉⊒𝜎

𝐹 𝑦 implies 𝑥 ≻𝜉𝜏
𝐹 𝑦. Consequently, we know that

𝜉𝜏 satisfies 𝜎-C.

Next, we show that Independence from the worst set and
Pareto-efficiency together also imply that every skeptically
accepted argument is ranked before any argument that is
not skeptically accepted.

Theorem 3. Let 𝐹 = (𝐴,𝑅) be an AF, 𝜏 an
extension-ranking semantics satisfying 𝜎-generalisation for
an extension-based semantics 𝜎, then if social ranking func-
tion 𝜉 satisfies Pareto-efficiency and Independence from the
worst set then 𝜉𝜏 satisfies 𝜎-sk-C.



Proof. Let 𝐹 = (𝐴,𝑅) be an AF, 𝜏 an extension-ranking se-
mantics satisfying 𝜎-generalisation for an extension-based
semantics 𝜎, and 𝜉 a social ranking function satisfying
Pareto-efficiency and Independence from the worst set.
Since 𝜎-generalisation is satisfied by 𝜏 we can view 𝜏 as a
refinement of the extension-ranking semantics 𝜏 ′ defined
by 𝑋 ⊒𝜏 ′

𝐹 𝑌 iff 𝑋 ∈ 𝜎(𝐹 ) and 𝑌 /∈ 𝜎(𝐹 ) for 𝑋,𝑌 ⊆ 𝐴.
Now consider two arguments, 𝑎, 𝑏 ∈ 𝐴, such that 𝑎 ∈

𝑠𝑘𝜎(𝐹 ) and 𝑏 /∈ 𝑠𝑘𝜎(𝐹 ). Assume there exists a 𝑍 ⊆ 𝐴 ∖
{𝑎, 𝑏} s.t. rank⊒𝜏′

𝐹
(𝑍 ∪ {𝑏}) < rank⊒𝜏′

𝐹
(𝑍 ∪ {𝑎}). Since

𝜏 ′ only has two levels, this implies 𝑍 ∪ {𝑏} ∈ 𝑚𝑎𝑥𝜏 ′(𝐹 )
and thus 𝑍 ∪ {𝑏} ∈ 𝜎(𝐹 ). As 𝑎 ∈ 𝑠𝑘𝜎(𝐹 ), we must have
𝑎 ∈ 𝑍 ∪ {𝑏}. However, as 𝑎 /∈ 𝑍 we know that also
𝑎 /∈ 𝑍 ∪ {𝑏}. This is a contradiction and hence such a 𝑍
cannot exist.

Since 𝑏 /∈ 𝑠𝑘𝜎(𝐹 ) we know there has to exists 𝑌 ⊆ 𝐴 s.t.
𝑌 ∈ 𝑚𝑎𝑥𝜏 ′(𝐹 ) and 𝑦 /∈ 𝑌 . Then because 𝑎 ∈ 𝑠𝑘𝜎(𝐹 ) we
know that (𝑌 ∖ {𝑎}) ∪ {𝑏} /∈ 𝑚𝑎𝑥𝜏 ′(𝐹 ). Consequently,
Pareto-efficiency implies 𝑎 ≻𝜉𝜏′

𝐹 𝑏.
As 𝑎 ≻𝜉𝜏′

𝐹 𝑏 holds for 𝜏 ′, and 𝜏 is a refinement of 𝜏 ′ such
that 𝑚𝑎𝑥𝜏 ′(𝐹 ) = 𝑚𝑎𝑥𝜏 (𝐹 ) it follows from Independence
for the worst set that the same holds for 𝜏 , i. e. 𝑎 ≻𝜉𝜏

𝐹 𝑏.

Additionally, observe that Independence from the worst
set means that we might have to ignore most of the infor-
mation that is available to us. The following result shows
that, at least for the rank information, this is essentially
unavoidable if we want to satisfy 𝑐𝑓 -C. Let us first intro-
duce an axiom that encodes the idea that we cannot ignore
overwhelming, rank based evidence.

Definition 20 (Rank 𝑘-super majority). Let 𝑘 ∈ N be a
natural number. Then we say a social ranking function 𝜉
satisfies rank 𝑘-super majority if for all 𝑥 and 𝑦 such that

|{𝑍 ∈ 𝒫 | 𝑥, 𝑦 ̸∈ 𝑍∧rank(𝑍∪{𝑥}) < rank(𝑍∪{𝑦})}| >
𝑘·|{𝑍 ∈ 𝒫 | 𝑥, 𝑦 ̸∈ 𝑍∧rank(𝑍∪{𝑦}) < rank(𝑍∪{𝑥})}|.

we have 𝑥 ⪰ 𝑦.
In words, if there are 𝑘-times as many sets 𝑍 such that the

rank of 𝑍 ∪ {𝑥} is strictly better than the rank of 𝑍 ∪ {𝑦},
than the other way round, then 𝑥 must be (weakly) preferred
to 𝑦.

Proposition 2. Any social ranking function 𝜉𝑟-𝑐𝑓 satisfies
𝑐𝑓 -C and violates rank 𝑘-super majority for every 𝑘.

Proof. Let 𝑘 be an arbitrary natural number, ℓ a natural
number such that ℓ ≥ 𝑘 and ℓ ≥ 3. Furthermore con-
sider an argumentation framework 𝐹 with the arguments
𝑎, 𝑏, 𝑐1, . . . 𝑐ℓ and the attacks (𝑏, 𝑏) and (𝑐𝑖, 𝑎) for all 𝑖 ≤ ℓ.
Then, 𝑎 ∈ 𝑐𝑟𝑒𝑑𝑐𝑓 (𝐹 ), as witnessed by the conflict free set
{𝑎}, but 𝑏 ∈ 𝑟𝑒𝑗𝑐𝑓 (𝐹 ), as it is self-attacking. It follows
from the fact that 𝑎 ≻ 𝑏, because ⪯ satisfies 𝑐𝑓 -C. However,
observe that

{𝑍 ∈ 𝒫 | 𝑥, 𝑦 ̸∈ 𝑍 ∧ rank𝑟-cf(𝑍 ∪ {𝑎})}
< rank𝑟-cf(𝑍 ∪ {𝑏}) = {∅}

while

{𝑍 ∈ 𝒫 | 𝑥, 𝑦 ̸∈ 𝑍

∧ rank𝑟-cf(𝑍 ∪ {𝑎}) < rank𝑟-cf(𝑍 ∪ {𝑏})}
= {𝑍 ∈ 𝒫 | 𝑥, 𝑦 ̸∈ 𝑍 ∧ |𝑍| ≥ 2}.

However, then, by our choice of ℓ we know

|{𝑍 ∈ 𝒫 | 𝑥, 𝑦 ̸∈ 𝑍 ∧ |𝑍| ≥ 2}| > 𝑘 = 𝑘 · |{∅}|.

It follows that rank 𝑘-super majority is violated.

Next, consider the axiom SC. Here, we can find a property
of social ranking functions that guarantees that 𝜉𝜏 satis-
fies SC under the assumption that 𝜏 satisfies the following
principle:

Definition 21 (Respects Conflicts). For AF 𝐹 = (𝐴,𝑅) and
𝐸,𝐸′ ⊆ 𝐴 extension-ranking semantics 𝜏 satisfies respects
conflicts if 𝐸 ∈ 𝑐𝑓(𝐹 ) and 𝐸′ /∈ 𝑐𝑓(𝐹 ), then 𝐸 ⊐𝜏

𝐹 𝐸′.

To show that 𝜉𝜏 satisfies SC we also need the Dominating
set property from Definition 14. With these two properties
we can then show when SC is satisfied.

Theorem 4. For AF𝐹 = (𝐴,𝑅) if extension-ranking seman-
tics 𝜏 satisfies respects conflicts and social ranking function 𝜉
satisfies Dominating set, then 𝜉𝜏 satisfies SC.

Proof. For AF 𝐹 = (𝐴,𝑅), let 𝑎, 𝑏 ∈ 𝐴, (𝑏, 𝑏) ∈ 𝑅 and
(𝑎, 𝑎) /∈ 𝑅, then {𝑎} ∈ 𝑐𝑓(𝐹 ) and for all 𝐸′ with 𝑏 ∈ 𝐸′

it holds that 𝐸′ /∈ 𝑐𝑓(𝐹 ). Because of respects conflicts we
have {𝑎} ⊐ 𝐸′ and therefore because of Dominating set
we have 𝑎 ≻𝜉𝜏

𝐹 𝑏.

4.2.2. Necessary Conditions for Social Ranking
Argument-ranking semantics

Let us try to go the other way, that is finding necessary con-
ditions for the social ranking functions to satisfy desirable
properties. First observe it is not possible to formulate any
necessary conditions that also hold for any ranking that
cannot be realised by any AF, i. e., we cannot find an AF that
induces this ranking. This is because any property of the
argument-ranking only restricts the social ranking function
on realisable rankings. Therefore, we need to define the
following concept in a similar vain to Dunne et al. [19].

Definition 22. Let 𝑋 be a set and let ⊒ be a preorder on
𝒫(𝑋). Then, we say that ⊒ is 𝜏 -realisable for a extension-
ranking semantics 𝜏 if there is an AF 𝐹 with 𝐴 = 𝑋 such
that ⊒𝜏

𝐹=⊒.

For example, for a set {𝑎, 𝑏} any preorder containing
{𝑎, 𝑏} ⊒ {𝑎} is not 𝑟-𝑐𝑓 -realisable. The conflicts in {𝑎, 𝑏}
must be a strict super-set of the conflicts in {𝑎}. On the
other hand, the preorder containing exactly the relations
{𝑎} ⊒ {𝑎, 𝑏} and {𝑏} ⊒ {𝑎, 𝑏} is realised by the AF
({𝑎, 𝑏}, {(𝑎, 𝑏)}).
Theorem 5. Let 𝜉 be a social ranking function such that
𝜉𝑟-𝑐𝑓 satisfies 𝑐𝑓 -𝐶 . Then, 𝜉 satisfies Dominating set for all
𝑟-𝑐𝑓 -realisable preorders ⊒.

Proof. Let ⊒ be a 𝑐𝑓 -realisable preorder and let 𝐹 be an
𝐴𝐹 that realises it. Assume further that there are 𝑥, 𝑦 ∈ 𝐴
such that there exists a 𝑋 with 𝑥 ∈ 𝑋 for which we have
𝑋 ⊐ 𝑌 for all 𝑌 such that 𝑦 ∈ 𝑌 .

As 𝑋 contains 𝑥, its set of conflicts must be a strict super-
set of the conflicts in {𝑥}. It follows that {𝑥} ⊒ 𝑋 ⊐ 𝑌
and hence by transitivity also {𝑥} ⊐ 𝑌 for all 𝑌 such
that 𝑦 ∈ 𝑌 . In particular, it follows that {𝑥} ⊐ {𝑦}. By
definition, this means 𝐶𝐹𝐹 ({𝑥}) ⊂ 𝐶𝐹𝐹 ({𝑦}), which can
only hold if 𝑦 is self-attacking and 𝑥 is not. However, then 𝑥
is credulously accepted in the under conflict-free semantics
while 𝑦 is not. Consequently, it follows from 𝑐𝑓 -𝐶 that
𝑥 ≻ 𝑦. Hence, dominating set is satisfied.



It follows that dominating set is a necessary and sufficient
condition for a social ranking function to satisfy 𝑐𝑓 -𝐶 when
combined with 𝑟-𝑐𝑓 .

A similar result can be found for admissible semantics.

Theorem 6. Let 𝜉 be a social ranking s.t. 𝜉𝑟-𝑎𝑑 satisfies
𝑎𝑑-𝐶 . Then 𝜉 satisfies Dominating set for all 𝑟-𝑎𝑑-realisable
preorders ⊒.

Proof. Let ⊒ be a 𝑟-𝑎𝑑-realisable preorder and AF 𝐹 =
(𝐴,𝑅) induces ⊒. Assume 𝑥, 𝑦 ∈ 𝐴 such that there exists
𝑋 ⊆ 𝐴 with 𝑥 ∈ 𝑋 for which we have 𝑋 ⊐ 𝑌 for all 𝑌
such that 𝑦 ∈ 𝑌 .

Assume that the set 𝑋 is not admissible. That means one
of the following two cases must apply

(1) 𝐶𝐹𝐹 (𝑋) ̸= ∅ or, (2) 𝑈𝐷𝐹 (𝑋) ̸= ∅

to (1): Then, there is some attack (𝑎, 𝑏) ∈ 𝐶𝐹𝐹 (𝑋) for
𝑎, 𝑏 ∈ 𝑋 . From 𝑋 ⊐ 𝑌 it follows that 𝐶𝐹𝐹 (𝑋) ⊆
𝐶𝐹𝐹 (𝑌 ) and thus (𝑎, 𝑏) ∈ 𝐶𝐹𝐹 (𝑌 ). Now, if 𝑦 = 𝑎 or
𝑦 = 𝑏 it follows that 𝑦 ∈ 𝑋 which directly contradicts
our assumption because of 𝑋 ≡ 𝑌 ′ for 𝑌 ′ = 𝑋 with
𝑦 ∈ 𝑌 ′. However, if 𝑦 ̸= 𝑎 and 𝑦 ̸= 𝑏 we can con-
struct 𝑌 ′ = 𝑌 ∖ {𝑎, 𝑏}. Clearly, that means we either
have 𝐶𝐹𝐹 (𝑌

′) = ∅ which means 𝑌 ⊐ 𝑋 or we have
𝐶𝐹𝐹 (𝑌

′) ̸= ∅ which implies 𝑋 ≍ 𝑌 ′. Because of 𝑦 ∈ 𝑌 ′

both cases contradict the initial assumption, hence we must
have that 𝐶𝐹𝐹 (𝑋) = ∅, i. e. the set 𝑋 is conflict-free.

to (2): Then, there exists an argument 𝑎 ∈ 𝑈𝐷𝐹 (𝑋)
which is not defended by 𝑋 . Consider now the set 𝑌 ′ =
{𝑦} for which we either have that 𝑈𝐷𝐹 (𝑌

′) = ∅ or
𝑈𝐷𝐹 (𝑌

′) = {𝑦}. If 𝑈𝐷𝐹 (𝑌
′) = ∅, it follows directly

that 𝑌 ′ ⊐ 𝑋 , contradicting our initial assumption. On the
other hand, for 𝑈𝐷𝐹 (𝑌

′) = {𝑦} we distinguish between
two cases:

(2.1) 𝑦 = 𝑥, (2.2) 𝑦 ̸= 𝑥

Clearly, if 𝑥 = 𝑦 we contradict our initial assumption be-
cause 𝑋 ≡ 𝑌 ′′ for 𝑌 ′′ = 𝑋 . Consider now the case 𝑦 ̸= 𝑥.
That means, we have that 𝑈𝐷𝐹 (𝑋) ≍ 𝑈𝐷𝐹 (𝑌

′) and
thus 𝑋 ≍ 𝑌 ′. Therefore, it follows that we must have
𝑈𝐷𝐹 (𝑋) = ∅, i. e. 𝑋 defends all its elements.

That means 𝑋 is admissible and thus it follows directly
that 𝑥 ∈ 𝑐𝑟𝑒𝑑𝑎𝑑(𝐹 ).

From 𝑈𝐷𝐹 (𝑋) = ∅ and 𝑋 ⊐𝑈𝐷
𝐹 𝑌 for all 𝑌 it follows

that 𝑈𝐷𝐹 (𝑌 ) ̸= ∅. Since ⊒ satisfies ad-generalisation it fol-
lows that 𝑌 /∈ 𝑎𝑑(𝐹 ) for all 𝑌 and thus also 𝑦 ∈ 𝑟𝑒𝑗𝑎𝑑(𝐹 ).
Consequently, it follows from 𝑎𝑑-𝐶 that 𝑥 ≻ 𝑦. Hence,
Dominating set is satisfied.

5. Investigating Principles for
lex-cel𝜏

In the previous section, we looked at social ranking solutions
from a general perspective and were able to characterise
𝜎-C and present sufficient conditions for 𝑆𝐶 and 𝜎-sk-C,
however a number of principles are still to be investigated.
In this section, we take a closer look at lex-cel𝜏 and analyse
which principles it satisfies.

As the results from the previous section suggest we should
start with checking if lex-cel satisfies Pareto-efficiency.

Theorem 7. lex-cel satisfies Pareto-efficiency.

Proof. First, consider sets 𝑍1, . . . , 𝑍𝑛 ∈ 𝒫 for which condi-
tion (2) of Pareto-efficiency holds. Among these, take those
𝑍1, . . . , 𝑍𝑚 (with 𝑚 ≤ 𝑛) for which rank⊒(𝑍𝑗∪{𝑥}) = 𝑘
(with 1 ≤ 𝑗 ≤ 𝑚) is minimal. At this level in the ranking,
we have that rank⊒(𝑍 ∪ {𝑥}) = rank⊒(𝑍 ∪ {𝑦}) for each
𝑍 ̸= 𝑍𝑗 . Hence, for every 𝑍 ∪ {𝑥} there is exactly one
corresponding set 𝑍 ∪ {𝑦}, except for each 𝑍𝑗 ∪ {𝑥} (be-
cause rank⊒(𝑍𝑗 ∪ {𝑦}) > 𝑘). Thus, for each 𝑍 ∈ 𝒫 with
𝑥, 𝑦 /∈ 𝑍 :

|{𝑍 ∪ {𝑥} ∈ 𝒫 | rank⊒(𝑍 ∪ {𝑥}) = 𝑘}| >
|{𝑍 ∪ {𝑦} ∈ 𝒫 | rank⊒(𝑍 ∪ {𝑦}) = 𝑘}|.

At level 𝑘, there are more sets containing 𝑥 than those
containing 𝑦, i. e. 𝑥𝑘,⊒ > 𝑦𝑘,⊒ by Definition 10. To prove
𝑥 ≻lex-cel

⊒ 𝑦 it remains to show that 𝑥𝑖,⊒ = 𝑦𝑖,⊒ for all 𝑖 < 𝑘.
By construction, for all 𝑖 < 𝑘 and 𝑍 ∈ 𝒫 ∖{𝑥, 𝑦}, we know
that rank⊒(𝑍 ∪ {𝑥}) = rank⊒(𝑍 ∪ {𝑦}). Hence, for each
set containing 𝑥 there is exactly one set containing 𝑦. By
Definition 10, we obtain 𝑥𝑖,⊒ = 𝑦𝑖,⊒, as desired.

Bernardi et al. [9] have shown that lex-cel satisfies Inde-
pendent from worst set for total orders and it is straightfor-
ward to see that this also holds for our setting. By Theorem 1
this means lex-cel also satisfies Dominating set, which im-
plies that lex-cel𝜏 satisfies 𝜎-C and 𝜎-sk-C if 𝜏 satisfies
𝜎-generalisation. Since both 𝜎-C and 𝜎-sk-C are satisfied
the resulting argument ranking has a quite interesting pat-
tern. The argument ranking can be split into three groups,
first the skeptically accepted arguments wrt. 𝜎 then the
credulously accepted wrt. 𝜎 and finally the rejected argu-
ments wrt. 𝜎. Inside all these groups the arguments can still
be differentiated, so the resulting ranking is a generalisation
of the acceptance problems for abstract argumentation.

The following result summarises the compliance of lex-
cel𝜏 with the argument-ranking principles.

Theorem 8. lex-cel𝜏 satisfies the respective principles as
stated in Table 1 for 𝜏 ∈ {𝑟-𝑎𝑑, 𝑟-𝑐𝑜, 𝑟-𝑔𝑟, 𝑟-𝑝𝑟, 𝑟-𝑠𝑠𝑡}.

We want to discuss the following counterexample show-
ing that VP is violated by lex-cel𝜏 in particular.

Example 7. We examine the following AF 𝐹 =
({𝑎, 𝑏, 𝑐, 𝑑, }, {(𝑎, 𝑏), (𝑎, 𝑑), (𝑏, 𝑐), (𝑐, 𝑏)}). Consider, for in-
stance, the 𝑟-𝑎𝑑 extension-ranking for 𝐹 :

0 : {𝑎, 𝑐}, {𝑎}, {𝑐}, ∅ 1 : {𝑐, 𝑑}

The lex-cel𝑟-𝑎𝑑 argument-ranking is then:

𝑐 ≻lex-cel𝑟-𝑎𝑑
𝐹 𝑎 ≻lex-cel𝑟-𝑎𝑑

𝐹 𝑑 ≻lex-cel𝑟-𝑎𝑑
𝐹 𝑏

However, 𝑎 is unattacked, while 𝑐 is attacked and therefore VP
is violated. Since all other sets that contain 𝑎 are not conflict-
free, that means that {𝑐, 𝑑} is always ranked better than these
sets. Therefore 𝑐 is ranked better than 𝑎 wrt. lex-cel𝜏 for all
other 𝜏 ∈ {𝑟-𝑐𝑜, 𝑟-𝑔𝑟, 𝑟-𝑝𝑟, 𝑟-𝑠𝑠𝑡}

At first glance it might seem unintuitive that VP is vio-
lated. Both arguments 𝑎 and 𝑐 are skeptically accepted wrt.
complete semantics, so there is no reason to reject either ar-
gument. However, argument 𝑎 is involved in more conflicts
than 𝑐 and thus 𝑐 is compatible with more arguments than
𝑎. Therefore we reason that 𝑐 should be ranked better than
𝑎. In general, if we think back to the motivation of social
ranking functions then employees who can work together



Abs In VP SC CP QP CT SCT DP DDP NaE AvsFD w𝜎-S s𝜎-S 𝜎-C 𝜎-sk-C

lex-cel𝜏 ✓ ✓ X ✓ X X X X X X X ✓ X ✓ ✓ ✓
Cat ✓ ✓ ✓ X X X ✓ ✓ ✓ X ✓ X X X X X
ser ✓ ✓ X X X X X X X X ✓ ✓ ad ad ad X

Table 1
Principles satisfied by lex-cel𝜏 for 𝜏 ∈ {𝑟-𝑎𝑑, 𝑟-𝑐𝑜, 𝑟-𝑔𝑟, 𝑟-𝑝𝑟, 𝑟-𝑠𝑠𝑡} and other ranking semantics from the literature. Existing
results for Cat and ser are taken from Bonzon et al. [4] and Blümel and Thimm [16].

with more employees are considered better, so this ranking
of 𝑎 and 𝑐 is in line with the idea behind social ranking
functions.

The remaining proofs and counterexamples can be found
in the supplementary material2.

6. Related Work
A number of social ranking functions are discussed in the
literature. In the following, let 𝐴 be an arbitrary set of
objects and ⊒ is a preorder on the powerset 𝒫(𝐴).

A prominent social ranking function is the Ceteris Paribus
Majority Solution (CP), which was defined by Haret et al. [8]
as follows.

Definition 23. For the preorder ⊒ and for any 𝑥, 𝑦 ∈ 𝐴, we
have that 𝑥 ⪰𝐶𝑃⊒ 𝑦 if and only if

|{𝑆 ∈ 𝒫(𝐴 ∖ {𝑥, 𝑦})|𝑆 ∪ {𝑥} ⊐ 𝑆 ∪ {𝑦}}| ≥
|{𝑆 ∈ 𝒫(𝐴 ∖ {𝑥, 𝑦})|𝑆 ∪ {𝑦} ⊐ 𝑆 ∪ {𝑥}}|

Another relevant social ranking function is the Ordinal
Banzhaf Index Solution (BI) of Khani et al. [7]. For that, we
denote with 𝑈𝑖 = {𝑆 ∈ 𝒫 | 𝑖 /∈ 𝑆} the set of subsets that
do not contain 𝑖 and with 𝑈𝑖𝑗 = {𝑆 ∈ 𝒫 | 𝑖, 𝑗 /∈ 𝑆} the
set of subsets that contain neither 𝑖 nor 𝑗.

First, we define the notion of ordinal marginal contribution
as follows.

Definition 24. Let ⊒ be a preorder on 𝒫(𝐴). The ordinal
marginal contribution 𝑚𝑆

𝑖 (⊒) of element 𝑖 wrt. the set 𝑆
with 𝑖 /∈ 𝑆, for the preorder ⊒ is defined as:

𝑚𝑆
𝑖 (⊒) =

⎧⎨⎩ 1 if 𝑆 ∪ {𝑖} ⊐ 𝑆,
−1 if 𝑆 ⊐ 𝑆 ∪ {𝑖},
0 otherwise.

(1)

We denote with 𝑢+,⊒
𝑖 (𝑢−,⊒

𝑖 ) the set of subsets 𝑆 ∈ 𝑈𝑖

such that 𝑚𝑆
𝑖 (⊒) = 1 (𝑚𝑆

𝑖 (⊒) = −1) respectively. Fur-
thermore, we refer to the difference 𝑠⊒𝑖 = 𝑢+,⊒

𝑖 − 𝑢−,⊒
𝑖 as

the ordinal Banzhaf score of 𝑖 wrt. ⊒.
Finally, we define the social ranking solution based on

the ordinal Banzhaf score as follows.

Definition 25. For the preorder ⊒ and for any 𝑥, 𝑦 ∈ 𝐴, we
define that 𝑥 ⪰𝐵𝐼⊒ 𝑦 if and only if

𝑠⊒𝑖 ≥ 𝑠⊒𝑗

However, the corresponding Social ranking argument-
ranking semantics 𝐵𝐼𝜏 and 𝐶𝑃𝜏 do not generalise credu-
lous acceptance, because these two argument-ranking se-
mantics do not satisfy the principle SC, as shown by the
following examples.

𝑎 𝑏 𝑐

Figure 3: The AF 𝐹2 from Example 8.

𝑎 𝑏

Figure 4: The AF 𝐹3 from Example 9.

𝑎

𝑏

𝑐 𝑑

Figure 5: The AF 𝐹4 from Example 10.

Example 8. The argument ranking ⪰CP𝜏 violates SC for
𝜏 ∈ {𝑟-𝑎𝑑, 𝑟-𝑐𝑜, 𝑟-𝑔𝑟, 𝑟-𝑝𝑟, 𝑟-𝑠𝑠𝑡}. Consider the AF 𝐹2 in
Figure 3. Then we have that 𝑐 ⪰CP𝜏

𝐹2
𝑎, which contradicts SC.

Example 9. The argument ranking ⪰BI𝜏 violates SC for
𝜏 ∈ {𝑟-𝑎𝑑, 𝑟-𝑐𝑜, 𝑟-𝑔𝑟, 𝑟-𝑝𝑟, 𝑟-𝑠𝑠𝑡}. Consider the AF 𝐹3 in
Figure 4. Then we have that 𝑎 ⪰BI𝜏

𝐹3
𝑏, which contradicts SC.

So, self-contradicting arguments are not necessarily the
worst ranked arguments. Thus, these two social ranking
functions are not suitable to rank arguments in the context
of abstract argumentation and therefore we do not discuss
them further.

A number of other argument-ranking semantics were in-
troduced in the literature (for an overview see Bonzon et al.
[4]). However, the only known argument-ranking seman-
tics satisfying 𝑎𝑑-Compatibility is the serialisability-based
argument-ranking semantics (ser) by Blümel and Thimm [16].
The serialisability-based argument ranking semantics ranks
arguments according to the number of conflicts that need
to be resolved to include these arguments in an admissible
set. However, this semantics violates 𝑐𝑜-sk-C.

Example 10. Let 𝐹4 be the AF as depicted in Figure 5. Then
argument 𝑑 ∈ 𝑠𝑘𝑐𝑜(𝐹4). So, according to 𝑐𝑜-sk-C it should
hold that 𝑑 ≻𝐹4 𝑎, however this is not the case for 𝑠𝑒𝑟, i. e.
𝑎 ≻𝑠𝑒𝑟

𝐹4
𝑑. Thus 𝑐𝑜-sk-C is violated.

Similarly, we have that the categorizer ranking semantics
(Cat) violates 𝜎-sk-C.

2https://fernuni-hagen.sciebo.de/s/eTCZyHVIOzRtIsE



𝑎

𝑏

𝑐

𝑑

Figure 6: The AF 𝐹5 from Example 11.

Example 11. Let 𝐹5 be the AF as depicted in Figure 6.
We have that 𝑠𝑘𝑐𝑜(𝐹5) = {𝑎, 𝑑}. However, we have for
instance 𝑏 ≃𝐶𝑎𝑡

𝐹5
𝑑. Thus, 𝜎-sk-C is violated by 𝐶𝑎𝑡 for

𝜎 ∈ {𝑐𝑜, 𝑔𝑟, 𝑝𝑟, 𝑠𝑠𝑡, 𝑠𝑡}.

So lex-cel𝜏 is the only known argument-ranking seman-
tics that satisfies 𝜎-C and 𝜎-sk-C and thus satisfies 𝜎-
Refinement for extension-based semantics 𝜎. Thus, lex-
cel𝜏 is part of none of the equivalence classes of argument-
ranking semantics defined by Amgoud and Beuselinck [20].

7. Conclusion
In this paper we have combined well-known approaches
from abstract argumentation and social ranking functions
to define a new family of argument-ranking semantics. The
resulting semantics are generalisations of the acceptance
classifications for abstract argumentation. Thus, the skep-
tically accepted arguments are ranked before credulously
accepted arguments and those are ranked before rejected ar-
guments, and within each of these groupings the arguments
are also ranked. While the extension ranking methods used
are off the shelf approaches and already discussed in the lit-
erature, we needed to slightly generalise the existing social
ranking functions in order for them to work with partial
rankings. Here, our rank-based approach proved to be well
suited for our specific setting. Whether this approach to
social ranking also is appealing more generally is a very
natural and intriguing question, that, unfortunately, is out
of the scope of this paper and has to be left to future work.

The converse problem to social ranking functions are lift-
ing operators, i. e. given a ranking over objects, we want to
construct a ranking over sets of objects. These operators
have been discussed for argumentation in the past by Yun
et al. [21] and Maly and Wallner [22]. However, both theses
papers do not present a complete picture of lifting opera-
tors for abstract argumentation, since they either consider
only a subset of sets of arguments (Yun et al. [21]) or only
discuss lifting operators for 𝐴𝑆𝑃𝐼𝐶+ (Maly and Wallner
[22]). Skiba [23] discussed some shortcomings of lifting
operators for argumentation frameworks and discussed the
need to define lifting operators specifically tailored to ab-
stract argumentation to fully discuss the relationship of
argument-ranking semantics, extension-ranking semantics
and lifting operators.
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