
A Bag of Tricks for Scaling CPU-based Deep FFMs to
more than 300m Predictions per Second
Blaž Škrlj1,∗, Benjamin Ben-Shalom1, Grega Gašperšič1, Adi Schwartz1, Ramzi Hoseisi1,
Naama Ziporin1, Davorin Kopič1 and Andraž Tori1

1Outbrain Inc.

Abstract
Field-aware Factorization Machines (FFMs) have emerged as a powerful model for click-through rate prediction, particularly excelling
in capturing complex feature interactions. In this work, we present an in-depth analysis of our in-house, Rust-based Deep FFM
implementation, and detail its deployment on a CPU-only, multi-data-center scale. We overview key optimizations devised for both
training and inference, demonstrated by previously unpublished benchmark results in efficient model search and online training. Further,
we detail an in-house weight quantization that resulted in more than an order of magnitude reduction in bandwidth footprint related to
weight transfers across data-centres. We disclose the engine and associated techniques under an open-source license to contribute to
the broader machine learning community. This paper showcases one of the first successful CPU-only deployments of Deep FFMs at
such scale, marking a significant stride in practical, low-footprint click-through rate prediction methodologies.

Keywords
Data Stream Mining, Factorization Machines, Online Learning, Scalable Machine Learning

AutoML Model

search

Incremental (Online) Model training

Path to production

Model Transfer

and storage

Model serving

Figure 1: Overview of the key topics discussed in this paper.
Performance optimizations that span model search (AutoML),
online model training, storage, transfer and serving are discussed.

1. Introduction
Design and development of machine learning approaches
for the domain of recommendation systems revolves around
the interplay between scalability and approximation capa-
bility of classification and regression algorithms. Currently,
many deployed recommendation engines rely on factoriza-
tion machine-based approaches; this is mostly due to good
trade-offs when it comes to scalability, maintainability and
data scientists’ involvement in building such models. Even
though contemporary recommenders started to increasingly
rely on language model-based techniques [1], utilizing fac-
torization machines remains de facto solution for large-scale
”screening” of candidates that are to be served. Such candi-
dates can include from unseen items (online stores), tomovie
recommendations, to ads [2, 3]. Scalability of factorization
machines enables creation of real-time systems that handle
hundreds of millions of requests in predictable andmaintain-
able manner. In recent years, two main branches of methods
have emerged. Approaches based on frameworks such as

AdKDD Workshop 2024
∗Corresponding author.
Envelope-Open bskrlj@outbrain.com (B. Škrlj)
Orcid 0000-0002-9916-8756 (B. Škrlj)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

TensorFlow [4] and PyTorch [5] enabled construction of
highly expressive architectures that often require special-
ized hardware for efficient productization [6, 7, 8, 9]. CPU-
only, single instance – single pass alternatives are fewer,
and revolve around highly optimized C++ or Rust-based
approaches that exploit consumer hardware as much as pos-
sible. The latter is the main focus of this paper (overview in
Figure 1).

2. Fwumious Wabbit (FW) - an
overview

We proceed with a discussion of Fwumious Wabbit (FW), an
in-house, Rust-based factorization machine-based system
currently used in production for large-scale recommenda-
tion1.

2.1. Origins of FW and Vowpal Wabbit (VW)
The FW derives from Vowpal Wabbit (VW) [10], a high-
performance, scalable open-source ML system recognized
for its efficiency on large datasets 2. While VW primar-
ily uses logistic regression for tasks like click-through rate
prediction, it lacks readily available advanced extensions
found in the domain of factorization machines. One of the
more expressive variations of factorization machines are
the Field-aware Factorization Machines (FFMs), described
in detail in the works of Juan et al. [11, 12]. Building on this
foundation, we enhanced the FFM architecture by integrat-
ing elements of deep learning. Specifically, a multi-layer
perceptron (MLP)-like structure in conjunction with the tra-
ditional FFM (and logistic regression) components. The ar-
chitecture’s computational complexity, a notable challenge,
contributes to its rarity in existing benchmarks. When im-
plemented in standard frameworks like TensorFlow, the
architecture struggles to scale effectively for practical use.

Despite these challenges, our deep learning-extended
FFM method demonstrated significant performance gains
over other tested algorithms in internal assessments. How-
ever, scaling this method was not straightforward. It was
1The engine with main implementations discussed in this paper is freely
available as https://github.com/outbrain/fwumious_wabbit.

2https://vowpalwabbit.org/

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:bskrlj@outbrain.com
https://orcid.org/0000-0002-9916-8756
https://creativecommons.org/licenses/by/4.0/deed.en
https://github.com/outbrain/fwumious_wabbit
https://vowpalwabbit.org/


LR

FFM

DiagMask

Embeddings

MergeNormLayer

ActivationsDNN

Figure 2: Architecture of implemented CPU-based DeepFFMs.
Main blocks are the neural network (gray), logistic (yellow) and
FFM (red) ones.

only through invoking BLAS [13], that we achieved critical
performance enhancements, allowing for practical full-scale
deployment3. An overview of the architecture is shown in
Figure 2. . Key parts of the architecture are

lr(𝑤, 𝑥) =
𝑛
∑
𝑗
𝑤𝑗 ⋅ 𝑥𝑗 + 𝑏; ffm(𝑤, 𝑥) =

𝑛
∑
𝑗𝑖=1

𝑛
∑

𝑗2=𝑗1+1
(𝑤𝑗1,𝑓2 ⋅ 𝑤𝑗2,𝑓1)

⋅ 𝑥𝑗1𝑥𝑗2 .

Neural part (matrix form),

ffnn(W1,2,…,𝑛,X) = 𝑎𝑛(… 𝑎2(𝑎1(X ⋅W1) ⋅W2) … ) ⋅W𝑛,

takes as input both FFM and LR’s outputs, i.e.

dffm(W1,2,…,𝑛,w𝑏,w𝑐,x) =ffnn(W1,2,…,𝑛, 𝑀𝑒𝑟𝑔𝑒𝑁 𝑜𝑟𝑚𝐿𝑎𝑦𝑒𝑟
(lr(w𝑏, 𝑥), 𝐷𝑖𝑎𝑔𝑀𝑎𝑠𝑘(ffm(w𝑐, 𝑥))).

Here, MergeNormLayer represents the operator that com-
bines outputs of FFM and LR parts and applies normalization.
Further, DiagMask represents diagonal mask of FFM space,
inducing half smaller number of combinations requiring
down-stream processing4.

2.2. Criteo, Avazu and KDD2012 - a
benchmark and stability analysis

Even though we evaluated FW extensively on internal data
sets (and online, in A/B tests), where it showed consistent
dominance, results on published data sets such as Criteo are
also of relevance for dissemination of engines’ behavior and
overall performance. In this section we overview a bench-
mark we conducted to assess general behavior of VW and
FW. We also implemented DCNv2 [14, 15], a Tensorflow-
based strong baseline5. For considered data sets (Criteo6,
Avazu7 and KDD20128), log transform of continuous fea-
tures was conducted and no additional data pruning (rare
values etc.) was conducted (as is done in our system)9. The

3https://github.com/outbrain/fwumious_wabbit/blob/main/src/block_
neural.rs

4See https://github.com/outbrain/fwumious_wabbit/blob/main/src/
regressor.rs for more details.

5Unique hash was assigned to each value for this baseline for ease of
implementation.

6https://www.kaggle.com/c/criteo-display-ad-challenge
7https://www.kaggle.com/c/avazu-ctr-prediction/data
8https://www.kaggle.com/c/kddcup2012-track2
9Such minimal pre-processing is within reach of a regular production.

hyperparameters considered include power of t, learning
rates for different types of blocks (ffm, lr), regularization
amount (L2 norm, VW). For DCNv2 we considered different
learning rates, cross layer numbers, dropout rates and beta
parameters. Results of the benchmark are summarized in
Figure 3. For each data set, algorithms considered are visu-
alized as AUC scores computed in a rolling window of 30k
instances10.

The trace in each plot represents the average performance
(95% CI), and light-gray regions represent model evaluations
that were out-of-distribution – this aspect is particularly
relevant for understanding stability of different approaches
and their sensitivity to hyperparameter configurations. For
example, we observed that adding deep layers to VW mod-
els in most cases resulted in worse performance. Carefully
tuned VW hyperparameters yielded sufficient performance,
however, indicate potentially cumbersome model search
(when considering new use cases/data) in practice. Simi-
lar behavior was observed for DCNv2. The dotted black
lines represent the overall best single-window performance,
and performance on a given data set’s test set11 Overall,
initial phases of learning revealed VW’s capability to adapt
with less data, the DeepFFMs dominate after enough data is
seen by the engines. Superior performance was observed
by DCNv2 on Criteo, yet not other data sets (all features
considered). The benchmark demonstrates that progres-
sively more complex architectures tend to result in better
modeling capabilities, and with them, better AUCs in this
benchmark. In terms of runtime, on the same hardware,
Criteo data set could be processed on average in 32min by
VW, and 31min by FW (linear model vs. DeepFFM). Deep
VW variations took substantially longer, around 65min on
average (batch size of 2k). This result indicates that FW
enables more powerful models with same time bounds for
training. The DCNv2 (CPU) baseline was 30%-50% slower
compared to DeepFFM runs. These tatistics were obtained
based on tens of thousands of runs that represented different
algorithm configurations (both hyperparameters and field
specifications). Being CPU-based, the described approaches
enable seamless scaling to commodity hardware, resulting
in lower training and inference costs in practice.

3. FW in practice: Service
Architecture overview

This section aims to facilitate understanding of subsequently
discussed optimizations that were put in place to enable
scaling of Deep FFMs. The implemented FW contains both
training and inference logic. The training logic is relevant
for incrementally training more than a hundred models,
online, every 𝑛 minutes (depends on the model). Training
jobs are separate deployments that automatically query for
relevant chunks of data, download, update based on existing
weights and send the weights to the serving layer. Serv-
ing layer on-the-fly reconstructs the final inference weights
via a patching mechanism discussed in Section 6, and ex-
poses the weights as part of the serving service that handles
millions of requests with new data. Based on the effect of
predictions, data is streamed back to the system as training

10RIG and Log-loss scores are aligned with AUC-based results, hence
only these are reported for readability purposes

11for KDD, we took last 2m instances to capture apparent variability
in data better, other data sets are split as reported in their origin
publications.

https://github.com/outbrain/fwumious_wabbit/blob/main/src/block_neural.rs
https://github.com/outbrain/fwumious_wabbit/blob/main/src/block_neural.rs
https://github.com/outbrain/fwumious_wabbit/blob/main/src/regressor.rs
https://github.com/outbrain/fwumious_wabbit/blob/main/src/regressor.rs
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/kddcup2012-track2


0 2 4

#inst. (VW-linear) ×10
7

0.5

0.6

0.7

0.8
A

U
C

(w
s
=

3
0
k
)

0 2 4

#inst. (VW-mlp) ×10
7

0.5

0.6

0.7

0.8

0 2 4

#inst. (FW-DeepFFM)×10
7

0.5

0.6

0.7

0.8

0 2 4

#inst. (FW-FFM) ×10
7

0.5

0.6

0.7

0.8

0 2 4

#inst. (DCNv2) ×10
7

0.5

0.6

0.7

0.8

0 2 4

#inst. (VW-linear) ×10
7

0.5

0.6

0.7

0.8

A
U

C
(w

s
=

3
0
k
)

0 2 4

#inst. (VW-mlp) ×10
7

0.5

0.6

0.7

0.8

0 2 4

#inst. (FW-DeepFFM)×10
7

0.5

0.6

0.7

0.8

0 2 4

#inst. (FW-FFM) ×10
7

0.5

0.6

0.7

0.8

0 2 4

#inst. (DCNv2) ×10
7

0.5

0.6

0.7

0.8

0 1 2

#inst. (VW-linear) ×10
7

0.5

0.6

0.7

0.8

A
U

C
(w

s
=

3
0
k
)

0 1 2

#inst. (VW-mlp) ×10
7

0.5

0.6

0.7

0.8

0 1 2

#inst. (FW-DeepFFM)×10
7

0.5

0.6

0.7

0.8

0 1 2

#inst. (FW-FFM) ×10
7

0.5

0.6

0.7

0.8

0 1 2

#inst. (DCNv2) ×10
7

0.5

0.6

0.7

0.8

Figure 3: Visualization of overall performance of different algorithms (single-pass) across different benchmark data sets
(top-down: Criteo, Avazu, kddcup2012. Visualizations show traces of all trained models (per engine).

Table 1
Stability analysis and overall performance. Rows with max test
set performance highlighted.

Avazu (window=30k)
algo avg median max std min test

VW-linear 0.6832 0.7016 0.8200 0.0668 0.4664 0.7596
VW-mlp 0.6755 0.6984 0.8200 0.0748 0.4664 0.7596
FW-DeepFFM 0.7648 0.7654 0.8507 0.0243 0.4764 0.7916
FW-FFM 0.7524 0.7524 0.8234 0.0227 0.4816 0.7693
DCNv2 0.7750 0.7745 0.8326 0.0202 0.5005 0.7763

Criteo (window=30k)
algo avg median max std min test

VW-linear 0.7340 0.7460 0.8219 0.0556 0.4768 0.7920
VW-mlp 0.7247 0.7425 0.8211 0.0670 0.4768 0.7920
FW-DeepFFM 0.7655 0.7689 0.8053 0.0179 0.4796 0.7803
FW-FFM 0.7578 0.7621 0.8020 0.0198 0.4682 0.7742
DCNv2 0.8042 0.8052 0.8370 0.0118 0.4958 0.8085

KDDCup2012 (window=30k)
algo avg median max std min test

VW-linear 0.6333 0.6419 0.8336 0.0807 0.3430 0.7688
VW-mlp 0.6309 0.6402 0.8336 0.0869 0.3759 0.7688
FW-DeepFFM 0.7323 0.7400 0.8781 0.0414 0.3687 0.7967
FW-FFM 0.7228 0.7318 0.8382 0.0391 0.3651 0.7641
DCNv2 0.7589 0.7610 0.8718 0.0301 0.4792 0.7734

data (a feedback loop). The training jobs are Python-based
services that interact with the binary via process invocations.
Serving binds the inference capabilities with the serving
(Java) service directly via a foreign function interface (ffi)12.
The architecture enables separation of concerns – training
jobs are separate to inference jobs, albeit at the cost of need-
ing to send the updated weight data between services; this is
one of the key performance bottlenecks that was addressed
in this work. An overview of the scope of this paper is
shown in Figure 1.

4. Model training improvements
We next discuss main improvements implemented at the
level of training jobs and offline research.

12https://github.com/outbrain/fwumious_wabbit/blob/main/src/lib.rs

4.1. Speeding up model warm-up phase
Model warm-up corresponds to a phase in model training
where model starts with past data, and ”catches up” with
present data as fast as possible. We identified efficient data
pre-fetching as a crucial optimization for speeding up this
process. By implementing async learning cycles, multiple
rounds of ”future” data can be downloaded upfront, mak-
ing sure the learning engine has constant influx of data.
Data pre-fetch in practice results in up to 4x faster pre-
warming. Within the cloud environment where the jobs
are deployed, we can control machine ”taints”, i.e. signa-
tures that determine their hardware profile. Pre-warm jobs
have dedicated taints, which in practice results in machines
that are newer and stronger.

4.2. Hogwild-based training
An optimization that significantly improved model pre-
warm time is the previously reported Hogwild-based model
training[16], implemented also for Fwumious framework
(as part of this work). Here, weight overlaps/overrides are
allowed as the trade off for multi-threaded updates. By
tuning Hogwild capacity to tainted machines, we observed
multi-fold speedups in model warm-up. In practice, the
times for bigger models went from multiple weeks to days,
and in most cases around a day of training (to catch up).
Weight degradation due to Hogwild was A/B tested and
does not appear to cause any noticeable RPM drops. Sum-
mary of Howgild-based training compared to control (no
such training) is shown in Table 2. Utilization of hogwild
has shown substantial benefits also when utilized during
online training (e.g., every 5min), and enabled of scaling of
100% bigger models. To the best of our knowledge, this is
one of the first demonstrations of consistent Hogwild-based
training improvements for Deep FFMs.

https://github.com/outbrain/fwumious_wabbit/blob/main/src/lib.rs


Table 2
Impact of Hogwild-based training.

Implementation Warmup time (same period)
FW-deepFFM-control 8d
FW-deepFFM-hogwild 23h (48 threads)

Implementation Online training (same period)
FW-deepFFM-control 20m
FW-deepFFM-hogwild 4m (4 threads)

4.3. Sparse weight updates
The next discussed optimization is related to how gradi-
ents are accounted for during model optimization itself.
We observed that deep layers, albeit being parameter-wise
in minority compared to FFM part, take up considerable
amount of time during optimization. To remedy this short-
coming, we identified an optimization opportunity that is
a combination of activation function used in most models,
𝑓 (𝑥) = max(𝑥, 0), and the specific implementation of FW.
By realizing that we can identify zero global gradient scenar-
ios upfront, prior to updating any weights, we could skip
whole branches of computation with no impact on learning.
The performance (speed) of training however, was across-
the-board improved by 30% for most models, and for deeper
ones by up to 3x, see Table 3 for more details. We observed
that at most two hidden layers were feasible for production,
hence any further speedups than observed 30% were not
feasible in practice. This optimization was possible due to
ReLU’s nature; this activation maps weights to zeros, effec-
tively enabling identification of compute branches that need
to be skipped during updates.

5. Model serving improvements
We proceed our discussion with an overview of CPU-based
model inference via context caching. A considerable op-
timization we observed could take place in our system is
context caching. Each request can be separated into context
and candidates. For all candidates in the request, the con-
text is the same, even though the recommended content’s
features differ – this implies part of the feature space is very
consistent for each candidate batch. To exploit this prop-
erty, a dedicated serving-level caching scheme was put in
place. FW at this point does an additional pass only with the
context part, where it identifies and caches frequent parts
of the context. On subsequent candidate passes it reuses
this information on-the fly instead of re-calculating it for
each context-candidate pair. Deployment impact of context
caching is shown in Figure 413. We next discuss (SIMD)
Instruction-aware forward pass. Another optimization
that is particular to inference is proper exploitation of SIMD
intrinsics. These hardware instruction level optimizations,
however, needed to be carefully implemented as the space
of serving hardware is not homogeneous, meaning that on-
the-fly instruction detection, and subsequent utilization of
appropriate binary needed to be put in place. SIMD in-
trinsics were successfully used to speed up forward pass

13https://github.com/outbrain/fwumious_wabbit/blob/main/src/radix_
tree.rs

Table 3
Speedups observed due to sparse weight updates.

#Hidden layers 1 2 3 4
Speedup (sparse updates) 1.3x 1.8x 2.4x 3.5x

Figure 4: Impact of context caching on inference time.

Figure 5: Relative impact of SIMD-enabled (blue, after drop) vs.
SIMD-disabled (purple) FW in production (inference).

(inference) with no loss in RPM performance, and resulted
in a consistent 20% speedup for all serving14. Real-life exam-
ple of deployed SIMD-based FW vs. the control (no SIMD)
is shown in Figure 5. Up to 25% faster inference (and with
it lower resource utilization) were observed.

6. Storage and transfer optimization
As discussed in previous sections, training and serving jobs
are separated. This separation of concerns, albeit easier to
maintain, contributes to a major drawback: weight sending
across the network. Model weights need to be constantly
updated, which incurs substantial bandwidth costs. For
example, hundreds of live models that take up to 10G of
memory (per update) are constantly transferred across the
network, resulting in a substantial bandwidth overhead to
ensure low-latency online serving.
Model patching. The first improvement we imple-

mented is the concept of model patching. This process is
inspired by application of software patches (in general), al-
beit tailored to internal structure of FW’s weights. Each
trained model consists of training weights and the opti-
mizer’s weights. The latter are not required for actual in-
ference, which immediately reduces the required space by
half. Further, each subsequent inference weights update
(inference weights can be multiple GB) first computesmodel
diff – byte-level difference between old and new weights.
This is possible due to a consistent memory-level structure
of weight files. The diffs are compressed, sent to the serv-
ing layer, unpacked and applied to previous weights file
to obtain the new set of weights (inference). This process
takes tens of seconds, however, further reduces memory
footprint on the network by more than 100% (less than a
GB of updates per model after patching Deep FFMs).

First, instead of storing absolute indices of bytes that

14https://github.com/outbrain/fwumious_wabbit/blob/main/src/block_
ffm.rs

https://github.com/outbrain/fwumious_wabbit/blob/main/src/radix_tree.rs
https://github.com/outbrain/fwumious_wabbit/blob/main/src/radix_tree.rs
https://github.com/outbrain/fwumious_wabbit/blob/main/src/block_ffm.rs
https://github.com/outbrain/fwumious_wabbit/blob/main/src/block_ffm.rs


change, relative locations are stored, resulting in a consid-
erable storage saving. Next, small integers denoting these
differences are stored as a custom integer type – instead
of storing whole ints, compressed versions (small ints are
impacted the most) are stored, leading to further improve-
ments15. As patcher works at the level of bytes, we also
successfully tested it for internal Tensorflow-based flows
(reduced bandwidth for sending models). Weight Quan-
tization. Inspired by recent weight quantization advance-
ments in the field of large language models [17, 18], we
implemented a variation of 16b weight quantization
that, when combined with the byte-level patching mecha-
nism, offered considerable bandwidth and model storage
improvements. The quantization algorithm was designed to
account for the following use-case specific properties. First,
by ensuring consistently small weight patches, the quantiza-
tion ensures consistently smaller network load. Second, the
quantization and dequantization procedures must be fast,
as they need to happen within a designated time window
after each training round (procedure has tens of seconds at
most at its disposal for full weight space). Finally, the algo-
rithm needs to be able to dynamically select viable weight
ranges, as we observed considerable variation in weight up-
date sizes based on e.g., time of the day (traffic amount). The
final version of the algorithm can be summarized as follows.
For each online model update (e.g., 5min window), weights
are first traversed to obtain the minimum and maximum val-
ues (weights). These statistics are required to dynamically
determine the range of relevant weight bins, as the amount
of possible values for 16b representation is small (around
65k). Let 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛|𝑤𝑖 ∈ ℝ} denote the set of all
(𝑛) weights and 𝑏max denote the number of possible weight
buckets. Once the minimum and maximum are obtained,
the bucket size is computed as

bucket𝑠 =
max(𝑊 ).round(𝛼) −min(𝑊 ).round(𝛽)

𝑏max
.

Note that minimum and maximum are rounded to 𝛼 and
𝛽 decimals. This consideration stems from empirical re-
sults that indicated that considering full precision bounds
results in less stable patch sizes 16. When constraining mini-
mum and maximum to certain precision, behavior stabilized
whilst preserving performance and online behavior. In the
second pass, weights are quantized – for each weight, its
16b representation is computed and stored. This results in
computing

((𝑤𝑖 −min(𝑊 )/bucket𝑠).round().castTo16b().convertToBytes(),

i.e. a set of bytes that represent a certain weight bucket.
Bytes are stored in FW weight format and re-used during
inference. An important detail also concerns metadata re-
quired to perform this type of quantization; the original
weights file is enriched with a header that contains the
bucket size and weight minimum – these two properties are
sufficient for efficient weight reconstruction when/where
relevant17. Results on a representative CTR model are
shown in Table 4. Metrics of interest are time to produce
patch and the final patch/weight update’s size. Patching
and quantization result in up to 30x smaller model updates.

15https://github.com/outbrain/fwumious_wabbit/blob/main/weight_
patcher

16(quantization output tended to fluctuate more)
17https://github.com/outbrain/fwumious_wabbit/blob/main/src/
quantization.rs

Figure 6: Speedup observed when jointly using quantization and
model patching (as opposed to just patching).

Table 4
Impact of model quantization on the global production CTR
model.

Weight processing Avg. time spent Update file size
no procecssing (baseline) / 100%

fw-quantization 2s 50%
fw-patcher 45s 30±5%

fw-patcher + fw-quantization 8s 3±2%

Note that weight patching and quantization on their own
already at least halve the size of weights that are used in
serving and production. Further, by combining the two ap-
proaches, we observed a non-linear improvement in patch
sizes – around 10x smaller updates are regularly produced.
The quantized patches-based model showed small lifts in
and online A/B against control with no quantization applied,
considerably reducing network bandwidth required with
a small positive business impact (+0.15% RPM). Speedup
in a real-life production system due to compound effect
of quantization and patching can be observed in Figure 6.
Rightmost part of the plot represents total time spent patch-
ing and computing quantized weights.

7. Conclusions and open problems
In this paper, we presented a collection of implementation
details for scaling CPU-based DeepFFMs to operate at a
multi-data-center scale, capable of handling hundreds of
millions of predictions per second. We delved into both the
offline and online components of our system. In the offline
phase, we covered the complete workflow, including model
architecture, enhancements to system warm-up processes,
and bandwidth optimization strategies. Within the online
phase, we describe two novel modifications to the inference
layer that have yielded significant speed improvements. Our
main algorithms, concepts, and performance benchmarks
were discussed in detail, open-source implementations of
key components were made freely available. The imple-
mentation is extensible to other FFM-based variants. As
further work, on the inference side, implementing quantiza-
tion techniques could accelerate the forward pass by using
integer-based operations [19]. Improved weight sharing
and memory mapping could offer training improvements.

References
[1] J. Zhang, K. Bao, Y. Zhang, W. Wang, F. Feng, X. He, Is

chatgpt fair for recommendation? evaluating fairness
in large language model recommendation, in: Proceed-

https://github.com/outbrain/fwumious_wabbit/blob/main/weight_patcher
https://github.com/outbrain/fwumious_wabbit/blob/main/weight_patcher
https://github.com/outbrain/fwumious_wabbit/blob/main/src/quantization.rs
https://github.com/outbrain/fwumious_wabbit/blob/main/src/quantization.rs


ings of the 17th ACM Conference on Recommender
Systems, 2023, pp. 993–999.

[2] S. Zhang, Y. Tay, L. Yao, A. Sun, C. Zhang, Deep
learning for recommender systems, in: Recommender
Systems Handbook, Springer, 2021, pp. 173–210.

[3] Y. Deldjoo, M. Schedl, P. Cremonesi, G. Pasi, Recom-
mender systems leveraging multimedia content, ACM
Computing Surveys (CSUR) 53 (2020) 1–38.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015.
URL: https://www.tensorflow.org/, software available
from tensorflow.org.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, S. Chintala, Pytorch: An im-
perative style, high-performance deep learning
library, in: Advances in Neural Information Pro-
cessing Systems 32, Curran Associates, Inc., 2019,
pp. 8024–8035. URL: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[6] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang,
J. Tang, Autoint: Automatic feature interaction learn-
ing via self-attentive neural networks, in: Proceedings
of the 28th ACM international conference on informa-
tion and knowledge management, 2019, pp. 1161–1170.

[7] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, G. Sun,
xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems, in: Proceed-
ings of the 24th ACM SIGKDD international confer-
ence on knowledge discovery & data mining, 2018, pp.
1754–1763.

[8] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chan-
dra, H. Aradhye, G. Anderson, G. Corrado, W. Chai,
M. Ispir, et al., Wide & deep learning for recommender
systems, in: Proceedings of the 1st workshop on deep
learning for recommender systems, 2016, pp. 7–10.

[9] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, Deepfm: a
factorization-machine based neural network for ctr
prediction, arXiv preprint arXiv:1703.04247 (2017).

[10] A. Bietti, A. Agarwal, J. Langford, A contextual
bandit bake-off, arXiv:1802.04064v3 [stat.ML], 2018.
URL: https://www.microsoft.com/en-us/research/
publication/a-contextual-bandit-bake-off-2/.

[11] Y. Juan, D. Lefortier, O. Chapelle, Field-aware factor-
ization machines in a real-world online advertising
system, in: Proceedings of the 26th International Con-
ference on World Wide Web Companion, 2017, pp.
680–688.

[12] Y. Juan, Y. Zhuang, W.-S. Chin, C.-J. Lin, Field-aware
factorization machines for ctr prediction, in: Proceed-
ings of the 10th ACM conference on recommender
systems, 2016, pp. 43–50.

[13] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C.
Whaley, J. Demmel, J. Dongarra, I. Duff, S. Hammar-

ling, G. Henry, et al., An updated set of basic linear
algebra subprograms (blas), ACM Transactions on
Mathematical Software 28 (2002) 135–151.

[14] R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin,
L. Hong, E. Chi, Dcn v2: Improved deep & cross net-
work and practical lessons for web-scale learning to
rank systems, in: Proceedings of the web conference
2021, 2021, pp. 1785–1797.

[15] W. Shen, Deepctr: Easy-to-use,modular and extendible
package of deep-learning based ctr models, https://
github.com/shenweichen/deepctr, 2017.

[16] B. Recht, C. Re, S.Wright, F. Niu, Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,
Advances in neural information processing systems
24 (2011).

[17] B. Rokh, A. Azarpeyvand, A. Khanteymoori, A compre-
hensive survey on model quantization for deep neural
networks, arXiv preprint arXiv:2205.07877 (2022).

[18] H. Bai, L. Hou, L. Shang, X. Jiang, I. King, M. R. Lyu,
Towards efficient post-training quantization of pre-
trained language models, Advances in Neural Infor-
mation Processing Systems 35 (2022) 1405–1418.

[19] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,
A. Howard, H. Adam, D. Kalenichenko, Quantization
and training of neural networks for efficient integer-
arithmetic-only inference, in: Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, 2018, pp. 2704–2713.

https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.microsoft.com/en-us/research/publication/a-contextual-bandit-bake-off-2/
https://www.microsoft.com/en-us/research/publication/a-contextual-bandit-bake-off-2/
https://github.com/shenweichen/deepctr
https://github.com/shenweichen/deepctr

	1 Introduction
	2 Fwumious Wabbit (FW) - an overview
	2.1 Origins of FW and Vowpal Wabbit (VW)
	2.2 Criteo, Avazu and KDD2012 - a benchmark and stability analysis

	3 FW in practice: Service Architecture overview
	4 Model training improvements
	4.1 Speeding up model warm-up phase
	4.2 Hogwild-based training
	4.3 Sparse weight updates

	5 Model serving improvements
	6 Storage and transfer optimization
	7 Conclusions and open problems

