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Abstract
Search Engine marketing teams in the e-commerce industry manage global search engine traffic to their websites with the aim to
optimize long-term profitability by delivering the best possible customer experience on Search Engine Results Pages (SERPs). In order to
do so, they need to run continuous and rapid Search Marketing A/B tests to continuously evolve and improve their products. However,
unlike typical e-commerce A/B tests that can randomize based on customer identification, their tests face the challenge of anonymized
users on search engines. On the other hand, simply randomizing on products violates Stable Unit Treatment Value Assumption for most
treatments of interest. In this work, we propose leveraging censored observational data to construct bipartite (Search Query to Product
Ad or Text Ad) SERP interference networks. Using a novel weighting function, we create weighted projections to form unipartite graphs
which can then be use to create clusters to randomized on. We demonstrate this experimental design’s application in evaluating a
new bidding algorithm for Paid Search. Additionally, we provide a blueprint of a novel system architecture utilizing SageMaker which
enables polyglot programming to implement each component of the experimental framework.
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1. Introduction
Search Engine marketing teams in the e-commerce industry
manage global search engine traffic with the aim of optimiz-
ing long-term profitability by delivering the best possible
customer experience on the most important web pages on
the internet - Search Engine Results Pages (SERPs). Figure
1 shows the prominent parts of SERP. Search Engines con-
tinue to evolve their customer experience and features due
to social, technological and economic forces, including pri-
vacy concerns, and further monetization of their properties
(SERPs). In anticipation of opportunities and risks that come
with a shifting landscape advertisers continuously innovate
with new bidding algorithms, improved paid and free search
creatives, landing pages etc. Randomized experiments, or
A/B tests, are the standard approach for evaluating causal
effects of new features [1]. However, Search Marketing
experiments are unlike conventional A/B tests in industry
that can randomize on customers as advertisers don’t iden-
tify their customers when they are on a search engine i.e.
the ad publisher. Instead, advertisers may run A/B tests
randomized by geographic locations [2] using search en-
gine’s geo-targeting capabilities but due to ad publisher’s
API limitations they are unable to do so without having to
clone entire advertisement campaigns. The cloning of entire
accounts is operationally expensive and time consuming
restricting the velocity at which they can run such trials.

The next obvious choice for unit of randomization is usu-
ally products or search queries. However for any A/B test,
splits of the unit of randomization should satisfy the assump-
tions of the Neyman - Rubin causal framework [3], that is,
no interference, unconfoundness, overlap and no hidden
treatment variations. For example, if we simply randomly
select products into control and treatment groups, it should
hold the unconfoundness and the overlap assumption given
a large sample size but we still need to check if the "no
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interference" assumption holds. We observe that for most
treatments of interest (e.g. new bidding algorithms for paid
search programs or improved title headlines for free search
snippets), the SERP page leads to interference between treat-
ment and control units causing the Stable Unit Treatment
Value Assumption (SUTVA) to fail, and consequently in-
duces bias in the standard estimators used to evaluate the
value generated by the treatment. A standard answer [4, 5]
to this problem is to replace the “product-split” experiment
design with a “time-split” (or “switchback”) design, where
the entire market switches repeatedly between treatment
and control. In practice, such designs turn out to be equally
time consuming as geo-based splits since we need to account
for long lengths of adjustment period between switches due
to the presence of an intermediary i.e. search engine that ap-
plies the treatment and takes its own time which advertisers
cannot control.

Figure 1: Components of interest on a Search Engine Results
Page.
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Another approach to dealing with spillovers or interfer-
ence is given by clustered experiments [6, 7] or in social
network settings, by network bucketing testing [8] where
nodes that are relatively clustered together are given the
same assignment of treatment or control [9]. Our work is in-
spired by similar clustered experiments methods that have
been applied to estimate and reduce bias in marketplace
experiments [10]. Specifically, one such example involves
experimentation in internet ad auctions, where each auction
consists of a keyword along with a set of advertisers who
submit competing bids in order for their ads to be displayed
when the keyword is queried by a user. There is cross-unit
interference because the same advertiser or keyword may
appear in multiple auctions. Basse et al. [11] and Ostrovsky
and Schwarz [12] make the observation that the auction
type used for one keyword does not meaningfully affect
how advertisers bid for other keywords. They then consider
experiments that group auctions into clusters by their key-
words and randomize auction formats across these keyword
clusters, rather than across advertisers, as a means to avoid
problems with interference. More broadly, in our context of
Search Marketing, this idea of cluster-level randomization
corresponds to identifying product or search query clusters
that are relatively isolated from each other and randomizing
the interventions across product-clusters rather than across
products. Our primary contribution lies in leveraging obser-
vational data to build bipartite (Search Query - Product) and
tripartite (Search Query - Paid Search Product - Free Search
URL) SERP interference networks. We introduce an inno-
vative weight function to generate weighted projections,
transforming these networks into unipartite graphs. These
graphs facilitate the clustering of products that co-appear
on SERPs through Paid Search Shopping Ads, Text Ads, or
Free Product Listings. The resultant clusters can then be
randomized during A/B tests to generate insights.

Note that more recently, Johari et al. [13] and Bajari et al.
[14] have proposed newer experiment designs where both
search query and product units are randomized simultane-
ously. While having a similar flavor, neither framework
applies easily to our problem of interest. To begin with, we
cannot control "search-query" assignment as that is deter-
mined by the search engine i.e. the ad publisher. Johari et al.
[13] use a choice model to capture spillovers, which captures
a different kind of market than the one we consider, where
interference is mediated by a matching algorithm. Bajari
et al. [14] imposes a local interaction assumption, which
does not hold in our setting. However, when the graph is
a bi-partite graph it holds some similarity which we plan
to explore in future work for measuring the magnitude of
spillovers.

The rest of this paper proceeds as follows. In Section 2,
we use the two-population search query - product case as a
motivation to build SERP interference network to test out
new bidding algorithms. In Section 3, we describe in greater
detail our experiment design. In Section 4, we further share
details on testing a new bidding model using this experimen-
tation design. Section 5 provides an overview of a system
architecture blueprint for deploying such experimentation
frameworks. Finally, we discuss our findings and future
extensions in Section 6.

2. Setting and Motivation
Shopping Ads is one of the ad formats supported on SERPs.
To place ads within the shopping ad carousel advertisers
need to participate in an auction competing with other ad-
vertisers. The format of the auction is considered close to
second price Vickrey–Clarke–Groves (VCG) [15, 16, 17], al-
though the exact ad publisher implementation is a blackbox
for us. As such to maximize long term profitability, it is im-
portant to constantly develop, test and launch new bidding
algorithms responsible for valuating products worldwide.
Let’s say, to test out a new bidding algorithm we simply
split on products. The Stable Unit Treatment Value As-
sumption (SUTVA) presumes that the valuation assigned to
one product by the new algorithm does not influence the
profitability of other products. However, in the context of
shopping advertisements, this assumption may be violated
due to potential between-product interference. This inter-
ference occurs when both a product with a treatment bid
from the new model and another with a control bid from
the current model participate in the same auction triggered
by a search query, deemed relevant by the ad publisher for
both products. See figure 2 for an example. Such scenarios
clearly breach SUTVA, challenging the validity of our eval-
uation method. If one product happens to be assigned to
treatment group and the other one to control, then the dif-
ference in financial performance between the two products
will be resulted from the combined effect of treatment and
between-product spillover effect, thus making the treatment
effect indistinguishable from the product spillover effect.

Figure 2: Note the two Shopping Ad advertisements shown in
the same carousel. If these two products have bids from different
bidders (i.e. control and treatment) then Stable Unit Treatment
Value Assumption is violated.

3. Product-Cluster Randomized
Control Trial Design

To address the challenge of interference in experimental
designs, we propose a preemptive modeling strategy that
incorporates interference networks during the design phase.
This approach allows us to shift the unit of randomization
from individual products to clusters of products, as illus-



Table 1
Mock row in a Search Engine’s Query Report shared with the advertiser.

Search Query Impressions Product/Keyword Clicks Metric Day Ad Campaign
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trated in Figure 3. Importantly, traditional constrained ran-
domization methods [18], such as segmenting by product
categories, prove ineffective. This is because search engines
can associate broad upper funnel search queries (e.g., "Harry
Potter") with a diverse range of products across multiple cat-
egories (e.g., a book, toy, or blanket related to Harry Potter).
By leveraging interference networks, our method ensures
more robust and accurate experimental outcomes.

Modeling Network Interference The notion of inter-
ference in the network [19] we construct has to be aligned
with the notion of interference we are trying to estimate.
Since the relevance of products to a user search query is
determined by the search engine and ranking algorithm,
an advertiser cannot use its internal datasets that provide
product to keyword mapping e.g. e-commerce website’s
own search to product results. Instead, we use daily reports
provided by the ad publisher itself. These reports have in-
formation on which actual user search query on the search
engine was mapped to which shopping ads product by the
ad publisher. A sample mock row from such a report is
shown in Table 1. We use these search query reports to
construct an undirected bipartite search query - product
graph using the number of impressions as edge weight.

Unipartite Projection To apply one mode projection of
the bipartite graph onto the product nodes in order to model
the between-network interference, we needed a scoring
function to attribute weights to the resulting graph edges.
Since, we start with large number of products ( 200M+),
we could not directly use the edge weighting functions pro-
posed by Stram et al. [20] due to the computational complex-
ity. Instead we propose the following edge weight function
that requires significantly less computation:

𝑊uni(𝑎, 𝑏) =

𝑛∑︁
𝑖=1

1

log𝑒(𝑓𝑠𝑞𝑖)

min(𝑊bi(𝑠𝑞𝑖, 𝑎),𝑊bi(𝑠𝑞𝑖, 𝑏))

max(𝑊bi(𝑠𝑞𝑖, 𝑎),𝑊bi(𝑠𝑞𝑖, 𝑏))
𝐼[𝑠𝑞𝑖, 𝑎, 𝑏] (1)

where:

1. 𝑊uni(𝑎, 𝑏) is the edge weight in the unipartite graph
(one-mode projection) between product a and b.

2. 𝑊bi(𝑠𝑞𝑖, 𝑎) is edge weight between search query 𝑖
and 𝑎 in the original bi-partite graph.

3. 𝑓𝑠𝑞𝑖 is the number of distinct products that a par-
ticular search query drives impressions to. Since
the distribution is right-skewed i.e. few upper fun-
nel queries drive impressions to only a few dis-
tinct products, weighing down by the log of fre-
quency of search query helped us to weigh down
edge weight contributions between two products
from very generic queries.

4. 𝐼[𝑠𝑞𝑖, 𝑎, 𝑏] is 1 if search query 𝑠𝑞𝑖 trigger an impres-
sion for both product 𝑎 and 𝑏 as represented by the

presence of an edge in the original bipartite graph,
otherwise 0.

Using the above approach to take a weighted one-mode
projection of the bipartite graph leads to an increase in the
number of edges, since if a search query links to 𝑛 products,
we need to consider

(︀
𝑛
2

)︀
pairs of edges.

Figure 3: Birds-eye view of our experiment design. First, we
fetch the search query reports from the ad publisher and create a
search-query, product bipartite graph. Then we take a weighted
one mode projection and finally use a clustering algorithm to
cluster products. We then do a stratified random split of product
clusters.

Graph PartitioningMethodology Constructing a prod-
uct graph following the above approach then allows us to use
network dismantling algorithms [21] as oppose to naive con-
nected components approach to creating product clusters.
Historically, the community identification problem is a well
studied problem in computer science literature [22, 23, 24].
However, a lot of the proposed methods wouldn’t scale
up since we are dealing with graphs that are as large as



200M+ nodes and 400M+ edges. Thus, anything that runs
in 𝑂(|𝑉 |2) or 𝑂(|𝐸|2) is not practical. Moreover during
the graph partitioning phase, we needed to find a balance
between two objectives:

1. Maximize the number of product clusters as they
translate to randomization units. More clusters
equal more power for our test.

2. Minimize the between clusters edge weights.

Since, the more clusters we create, the less isolated they
are, these two objectives are conflicting. For example, if
we want to have zero connections across clusters, then the
obvious solution is to have one cluster only. This, of course,
would not lend itself to an A/B test. To balance the above
two objectives, first we look at the percentage edge weight
across 𝑘 clusters (𝐶1, ..., 𝐶𝑘) i.e. leakage as 𝐿:

𝐿 =

∑︀𝑘
𝑖=1

∑︀
𝑗∈𝐶𝑖,𝑘/∈𝐶𝑖

𝑊uni(𝑗, 𝑘)∑︀
𝑗,𝑘 𝑊uni(𝑗, 𝑘)

Secondly, we use a clustering algorithm that is designed
for balanced clustering, that is, all clusters should have
roughly equal size. We evaluated naive connected compo-
nents, power iteration clustering (PIC) [25], and METIS [26].
Connected components minimizes leakage, but suffers from
extreme imbalance. PIC improves cluster imbalance, but
suffers from high leakage. We choose to use METIS parti-
tioning algorithm which is an extremely efficient and fast
implementation of graph partitioning algorithm for undi-
rected weighted graph. METIS adopts an objective function
to minimize the number of weighted edges whose vertices
belong to different partitions. The METIS graph partitioning
consists of three phases: (i) In the graph coarsening phase,
a series of successively smaller graphs is derived from the
input graph. This process continues until the size of the
graph has been reduced to just a few hundred vertices, (ii) In
the initial partitioning phase, a partitioning of the coarsest
and hence, smallest, graph is computed and finally (iii) in
the un-coarsening phase, the partitioning of the smallest
graph is projected to the successively larger graphs by as-
signing the pairs of vertices that were collapsed together to
the same partition. After each projection step, the partition-
ing is refined using heuristics to iteratively move vertices
between partitions as long as such moves improve the qual-
ity of the partitioning. The advantages of this methodology
are threefold:

1. It runs in 𝑂(|𝐸|) time, which is extremely efficient
for large graphs.

2. It is the only algorithm that allows precise control
of both the number partitions and the balances of
the overall split.

3. It is the only algorithm that is specifically trying to
minimize the edgecut (defined as weighted sum of
edges that straddle between different clusters).

Optimal number of clusters: We want to be able to
identify as many nearly independent clusters as possible
with leakage controlled within the tolerance. We plot leak-
age against various choice of 𝑘 (number of partitions), and
identify a 𝑘 that is as large as possible where the leakage is
as small as possible (i.e. identifying the elbow point). For the

new shopping ad bidder experiment, we ended up having
10,000 clusters and 36% edge weight across clusters. Note,
the above measure (𝐿) overstates the spillover effects as
they consider spillover between clusters that may end up
being in the same group (C or T).

Magnitude of Spillover: The search query - product
bipartite graph we construct usually has a clustering coef-
ficient [20] of around ∼ 0.6 for most marketplaces which
indicates tightly knit groups in the network suggesting high
spillover. However, to empirically provide a lower bound
on the magnitude of bias due to interference we need to
conduct a meta-experiment that randomizes over two ex-
periment designs: one Bernoulli randomized, one cluster
randomized. We can then check for a statistically significant
difference between the total average treatment effect esti-
mates obtained with the two designs [27]. In the absence of
business approval to run such a meta-experiment, the next
best directional data point we have is from our previous
attempt to run simple product-split A/B test. The impact
measured from that experiment had been largely overstated
(∼ 44% lift) when compared to the actual lift (∼ 24% lift)
observed.

4. Application

In this section, we discuss the use-case motivated in Section
2 to show an application of the product-cluster random-
ized control trial design. We had developed a new machine
learning based product valuation model for our shopping
ads program to improve over the current in production
heuristic bidding algorithm and we wanted to run an online
experiment to understand the impact on the long term profit.
We used the methodology described in Section 3 to create
product clusters based on search query reports from the ad
publisher for the past one year.

Constrained Randomization Once we had the clusters,
we created strata of clusters with similar characteristics
instead of randomizing them in a simple bernoulli fashion.
We measure the net impressions, clicks, cost and profit of
each of the product cluster and stratify clusters on those
axis.

Experiment Setup The goal of this experiment was ver-
ifying the null hypothesis that the new bidding strategy is
better than the current bidding strategy in term of bidding
efficiency i.e. increase of net long term profitability while
maintaining the total ad spend. We matched the spend be-
tween control and treatment groups to control for elasticity
as well as to comply with spend constraints at account level.
Finally, we run a simulation based power analysis for cluster
randomized designs using difference-in-differences (DID)
estimation [28].

Measurement To measure the impact of the proposed
valuation method, a DID analysis for cluster randomized de-
signs is performed for two weeks of periods where spends
are closely matched. The results from the DID analysis
showed a lift in click-through-rate for the treatment group
which was consistent with the lift observed post roll out of
the new bidding model. Note that since model errors can be
correlated within cluster, failure to control for within-cluster



error correlation can lead to misleading small standard er-
ror and consequently low p-values. Although we do not
control for within-cluster error correlation in the model,
post-estimation we obtain cluster-robust standard errors as
proposed by White [29].

5. System Architecture

Our product-cluster randomized control methodology as
detailed in Section 3 asks for a highly scalable and flexible
infrastructure with very different compute requirements
and library support for each step. To address these chal-
lenges we propose the "Search Marketing Lab" using AWS
SageMaker [30] pipelines which allows to define a series of
interconnected processing steps where each step (i) can be
provided its own docker image that has our code in preferred
language and (ii) can have its own compute environment.
This allows for polyglot programming. Here, we briefly
focus on the split generation component. In particular, we
break the approach into 3 modules:

Figure 4: Birds-eye view of Product-cluster split generation sys-
tem.

1. Graph Generation which requires parsing >1 year
of daily search query report data and Keyword data
to build a graph edge list - thus requiring spark’s
distributed compute. We use a cluster of memory-
optimized instances for this step.

2. Graph Partitioning In this step we use the METIS
graph partitioning algorithm. METIS is written en-
tirely in ANSI C (no distributed implementation) but
there is a python wrapper for the METIS library [26]
that we use. We use a single compute-optimized
instance for this step.

3. Power Analysis In this module we obtain cluster-
robust standard errors after fitting a linear mixed
effect model, using R’s cluster.vcov [31] implemen-
tation to return a multi-way cluster-robust variance-
covariance matrix and perform inference for esti-
mated coefficients using R’s coeftest.

SageMaker Pipeline executions can be scheduled using
Amazon EventBridge passing run-time parameters. This
allows to define a single pipeline with multiple executions
(e.g. one per marketplace) based on input parameters. The
serves as a blueprint for a large scale production system
combining multiple languages (R, Python on Spark) utilizing
each to their respective strengths (R for statistical analysis
modules, python on Spark for ETL) triggering SageMaker
processing jobs orchestrated via SageMaker Pipelines.

6. Conclusion and Future Work

In this paper, we present a cluster-based randomized con-
trol test design which enables search marketing e-commerce
teams to do fast online experiment launch while minimizing
interference between experimental groups. Our key idea
is to use observational data to construct bipartite (Search
Query - Product) SERP interference networks and use a
novel weight function to take weighted projections to form
unipartite graphs which can be use to create clusters of prod-
ucts appearing together on SERP (via Paid Search shopping
ads, text ads or Free Search listings), and then using those
clusters to randomize on. Online A/B testing results for the
treatment group are consistent with the lift observed post
roll out of a new bidding model thereby showing that the
A/B test design gives a good estimate of the actual lift. In our
previous attempts to run simple product-split A/B test the
impact measured from experiments had been largely over-
stated because of spillover effects. Lastly, we present a novel
simplified system architecture using SageMaker which al-
lows scientist to do polyglot programming using compute
and language suitable for each scientific module.

One downside of inferring interference network from
search query report data is that such observational data is
censored, that is, we only have data when we win the auc-
tion. In future, we are investigating using SERP page data
from platforms like seoClarity to get better visibility into
SERP interference networks and allow us to incorporate not
just shopping ad products but also Text Ads keyword and
Free Search URLs to build comprehensive ad units spanning
across all Search channels - Text Ads, Shopping Ads and
Free Search. More recently, this also includes large language
models powered results like shown in Appendix. We can
than use these ad units to design cross-channel substitution
experiments. We are also working on investigating further
into the stability of these clusters over time and that they
can be updated in real time as more data flow in from search
engines. Finally, we are exploring recent proposed exper-
iment designs by Bajari et al. [14] to measure the actual
magnitude of spillovers.
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