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Abstract
Tuning filters to refine Ads eligibility to surface in search results emerges as a pivotal problem. It often necessitates a nuanced approach
to cater to diverse requirements from the customers. Adjusting these filters must judiciously balance the preferences of both advertisers
and users in the online marketplace. Hence, it requires a multi-objective optimization which often turns out to be hard due to the
conflicting nature of the objectives from these customers. In this paper we present AFA:Auto-tuning Filters forAds - a novel application
of Bayesian Optimization for auto-tuning these filters. We specifically develop AFA to employ a probabilistic model to navigate the
intricate trade-offs between multiple objectives. It iterates over a feasible solution space and quickly converges to an operating point
which ensures showing well performing ads while increasing their scale. This offers a substantial advancement in the automation for
digital advertising campaigns. Our approach significantly reduces the reliance on manual adjustments and expensive A/B testing, as
demonstrated by empirical results from a large-scale e-commerce platform.
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1. Introduction
Sponsored search is an advertising model used by search
engines to display paid advertisements alongside organic
search results. When a user enters a query, the search en-
gine runs an auction among advertisers who have bid on
keywords relevant to the user’s search terms. The win-
ners of this auction have their ads displayed in prominent
positions on the search results page, typically marked as
”Sponsored” or ”Ad” to distinguish them from other content.

While these advertisements (a.k.a. ads) benefit advertisers
by increasing the visibility of their products to potential
users, maintaining user satisfaction is also important for the
e-commerce platform to monetize the search from showing
ads. Thereby, it is crucial to ensure that the participating
ads are of high quality to comply with user’s desirability.
Generally, ad platform employs a variety of quality filters
controlled by hyperparameters 1. Its core purpose is to
efficiently navigate through extensive datasets, find content
that aligns closely with the user’s search intent and personal
preferences by providing more relevant outcomes.

The paper presents a innovative approach for automat-
ically tuning quality filters in the search monetization do-
main using Bayesian Optimization. The approach aims to
optimize the quality threshold to balance scale improvement
and ad performance. An automated pipeline was developed
to minimize human effort, time, and errors in this process.

1.1. Challenges
E-commerce platforms face the challenge of setting the right
quality threshold for ads while ensuring sufficient ad expo-
sure to increase scale. This issue arises from the differing
needs of two main stakeholders: advertiser and user

1.1.1. Advertiser’s preferences

Advertisers enlist their items on e-commerce marketplace to
sell and expect greater visibility of their product in exchange
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Figure 1: A visual overview of AFA pipeline to auto tune the
quality filter: (1) Observed data points consist of thresholds and
metrics lift (set of values for each objective function on that given
threshold) denoted as < 𝑇 , 𝑃𝑒𝑟𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐿𝑖𝑓 𝑡(𝑇 ), 𝑆𝑐𝑎𝑙𝑒𝐿𝑖𝑓 𝑡(𝑇 ) >
respectively, initial data points collected based on random thresh-
olds from a feasible solution space. (2) Optimizer fits surrogate
function on the observed data points and produce 𝑇 ∗ as the next
threshold (T*) to be evaluated (3) Evaluator measures the im-
pact of the new threshold 𝑇 ∗ on the objective value and produce
another triple < 𝑇 ∗, 𝑃𝑒𝑟𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐿𝑖𝑓 𝑡(𝑇 ∗), 𝑆𝑐𝑎𝑙𝑒𝐿𝑖𝑓 𝑡(𝑇 ∗) > to be
appended to the stored observed data points so that we can ex-
plore next point based on that

for paying more to the platform. As they often prioritize vis-
ibility over the quality of their product, the platform needs
to maintain a quality filter that strikes a balance between
their need for exposure for the product (measured by scale)
and its relevance to the user’s preferences.

1.1.2. User’s preferences

The e-commerce platform is also committed to meeting the
essential needs of user who uses this platform to find high
quality product based on their search queries as input. It is
the platform’s responsibility to provide them with relevant
and high quality search results for their queries. To achieve
this, an appropriate quality filter is required to surface prod-
ucts in the search results that are most relevant to the user’s
query. User’s preference is calculated as the ratio of the
click over number of impressions they have (to measure
filter’s performance).

This dilemma between the preferences of users and ad-
vertisers presents a challenging problem in e-commerce
platforms. On one hand, they need to increase the quality
threshold to meet users’ expectations of obtaining more
relevant items. On the other hand, they must keep the
quality filter to a degree where the platform can accommo-
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date advertisers’ appetite for increased visibility. Therefore
they aim to enhance ad scales without compromising the
performance.

1.2. Motivation
The dynamic nature of the marketplace, characterized by
continuous growth, frequent updates, and new feature roll
outs, further complicates the task by rendering the static
thresholds obsolete in short order. Manual tuning of filters
is not only time-intensive but also lacks efficiency, under-
scoring the need for an automated, scalable solution. Main
inspirations for this work are:

1.2.1. Need for a Formal Definition

Capturing and quantifying the intricate correlations be-
tween two different objectives (Scale and Performance),
which often exhibit complex interactions, is a hard task.
The absence of a formal function to encompass both the
objectives, exacerbates this issue and hinders the system-
atic exploration of the trade-offs inherent to the objectives.
Consequently, without a clear mathematical framework to
navigate the multi-dimensional objective space, manual op-
timization becomes not only cumbersome but also prone to
sub-optimal decision-making, as it relies on intuition rather
than analytical precision. This emphasize the necessity for
a structured approach that can effectively balance these
competing goals and facilitate the discovery of an optimal
solution that results in a desired outcomes.

1.2.2. Opportunity Cost

As a common practice, multiple experiments covering var-
ious operating points and parameters via grid or random
search [1] are utilized to find a proper thresholds for fil-
ters. This manual process is expensive and time-consuming
which often needs to be repeated whenever there is a change
in the environment. On an e-commerce platform, the vast
number of advertisements and transactions necessitates that
modifications are made with accuracy and speed to stay at-
tuned in the market. As the customer tastes and industry
tendencies shift quickly, it leaves only a brief time window
to detect and react to these developments successfully. De-
layed tuning can lead to outdated search results, diminishing
user experience and potentially leading to a loss in sales,
customer trust and platform’s reputation.

1.3. System Overview
Our proposed system employs a probabilistic model that cap-
tures the complex relationship between the quality thresh-
old and the multi-objective function, which includes both
performance and scale lift. By utilizing Bayesian optimiza-
tion, we iteratively update the quality filter settings, effi-
ciently navigating the search space to identify the optimal
threshold that satisfies the dual objectives as demonstrated
in Figure 1. This approach not only accounts for the inher-
ent uncertainty in user behavior but also reduces the need
for extensive manual tuning and A/B testing.

To this end, we introduce AFA as an auto filter tuning
pipeline for ads to tune the quality filter. AFA consists of
three major steps that we illustrated in the figure 1 and we
introduce them here.

1.3.1. Initializer

is a process to collect and store data points observed over
the course of running our system. We store a triplet
(𝑇 , 𝑉𝑂𝑏𝑗1(𝑇 ), 𝑉𝑂𝑏𝑗2(𝑇 )) for each filter threshold 𝑇 that we ex-
plore. This triplet has a threshold along with two corre-
sponding objective values, i.e., scale lift and performance
lift. The pipeline starts with some initial data points which
are collected via running A/B tests over various thresholds
within the exploration range to give the process a warm
start.

1.3.2. Optimizer

utilizes a Bayesian optimizer to solve multiple objectives
consisting of scale and performance. This optimizer will
read initial data points i.e (𝑇 , 𝑉𝑂𝑏𝑗1(𝑇 ), 𝑉𝑂𝑏𝑗2(𝑇 )) and build a
surrogate model based on those data points. Then it utilizes
an acquisition function [2] to suggest a new threshold 𝑇 ∗
which is the next optimal point to be evaluated by Evaluator.

1.3.3. Evaluator

is the component which runs an A/B test to evaluate the
objective function with respect to the suggested threshold.
Then, we compute a new triple as (𝑇 ∗, 𝑉𝑂𝑏𝑗1(𝑇

∗), 𝑉𝑂𝑏𝑗2(𝑇
∗))

which consists of the suggested threshold 𝑇 ∗ by the opti-
mizer and corresponding objectives values evaluated by the
evaluator. This newly explored data point is then feedback
to the initilizer.

Thus, the pipeline constantly updates the quality thresh-
old to respond to new changes, ensuring that search results
remain relevant.

1.4. Contributions
This paper presents several key contributions:

• We formalize the process of general filter tuning
problem by leveraging a Bayesian optimization
method in AFA, considering the need of multiple
competing stakeholders.

• AFA provides a fast-converging approach that sig-
nificantly reduces human effort and time for tuning
quality threshold.

• AFA has been successfully deployed within an e-
commerce platform, demonstrating its effectiveness
in refining quality filters for the search engine and
attesting to its scalability in large-scale industry set-
tings.

The structure of the paper is as follows: Section 2 de-
scribes implementation details in the optimization process
and evaluation metrics. Section 3 analyzes the results of
AFA. Section 4 reviews related literature. Section 5 con-
cludes with a summary and future research directions.

2. Implementation Details
In the pipeline presented in Figure 1, there are three com-
ponents as we explained in section 1.3. In this section, we
focus on the Optimizer and provide more details regarding
its implementation and evaluation.



2.1. Optimization Process
In this section, we describe our objective function and its
formulation.
Objective function In AFA, we aim to find a threshold

value for quality filter that satisfies two objectives related to
advertisers and users needs: maintaining performance lift
and a positive scale lift in ads. The lift amounts calculated
for this purpose are all relative differences between the
suggested value and the current value in the system as AFA
updates the threshold in each iteration. (more detail in
section 3 and equation 14).

We formulate these objectives as follows:
Increasing scale: AFA looks for quality thresholds

which increase the ad scale in search result by:

̄𝑡 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡∈Thresholds

𝛿𝑠(𝑡) (1)

where 𝛿𝑠(𝑡) represents ad scale changes.
Maintaining performance: AFA also looks for that

quality thresholds to minimize performance lift via:

̄𝑡 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡∈Thresholds

− |𝛿𝑝(𝑡)| (2)

subject to the constraint |𝛿𝑝(𝑡)| < 𝐶. where 𝛿𝑝(𝑡) represents
performance changes.

We combine these two objective in one as follows:

̄𝑡 = argmax
𝑡∈Thresholds

(𝛿𝑠(𝑡) − |𝛿𝑝(𝑡)|) (3)

subject to the constraint |𝛿𝑝(𝑡)| < 𝐶. In this function, we
apply the same weight to both objectives, although these
weights may vary in different scenarios.

To impose the constraint 𝐶 on the objective function we
employ a penalty and reward mechanism. We penalize and
reward the objective function when the explored thresholds
fails and succeeds to maintain the constraint respectively.
Thereby, we formulate the optimization problem as follows:

𝑓 (𝑡) = ̄𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡∈Thresholds

(𝛿𝑠(𝑡) − 𝛿𝑝∗(𝑡)) (4)

where the modified performance will be defined as:

𝛿𝑝∗(𝑡) = {
𝑅(𝑡) ∗ 𝛿𝑝(𝑡) −𝐶 ≤ 𝛿𝑝(𝑡) < 𝐶
𝑃(𝑡) ∗ 𝛿𝑝(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

Here, 𝑃(𝑡) and 𝑅(𝑡) are the amount of penalty and reward
we apply on the 𝑃𝑒𝑟𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐿𝑖𝑓 𝑡.

This generic formulation can accommodate additional ob-
jectives and constraints, as well as custom-defined penalty
and reward values, according to business requirements. Al-
though we have defined the constraint in closed-form, we
have not devised a closed-form definition for the objec-
tive components that would allow us to use the Lagrange
multiplier method. However, we discuss related work and
alternative approaches in Section 4.

In our pipeline, at each iteration, the Optimizer solves
for the objective function defined in Equation 4 by using a
Bayesian optimization approach, as we describe below.
Bayesian Optimization employs a probabilistic model

to represent the uncertainty about the objective function’s
behavior, and it updates this model iteratively using Bayes’
Theorem as new data points are observed.

Bayes’ Theorem is formulated as follows:

𝑃(𝜃|data) =
𝑃(data|𝜃)𝑃(𝜃)

𝑃(data)
(6)

where: 𝑃(𝜃) is the prior probability of the hypothesis be-
fore seeing the data. 𝑃(data|𝜃) is the likelihood of the data
under the hypothesis. 𝑃(data) is the marginal likelihood
or evidence, the probability of the data under all possible
hypotheses. 𝑃(𝜃|data) is the posterior probability of the hy-
pothesis after seeing the data. In our case, 𝜃 is representing
the threshold

Based on this Bayes’ Theorem, we build a surrogate model
which will rely on the observed data points (thresholds) and
make a prediction for unobserved data points. The surrogate
model is as follows:
a) Surrogate model is a probabilistic model used to ap-

proximate the unknown objective function 𝑓 (𝑥) that we
wish to optimize. The surrogate model, denoted as ̂𝑓 (𝑥), is
used to predict the output of 𝑓 (𝑥) given new inputs 𝑥, and
to estimate the uncertainty of that prediction.

The surrogate model we used is a Gaussian Process (GP),
which is defined by a mean function 𝜇(𝑥) and a covariance
function (kernel) 𝑘(𝑥, 𝑥′). The GP surrogate model for any
input point 𝑥 is:

̂𝑓 (𝑥) ∼ 𝒢𝒫 (𝜇(𝑥), 𝑘(𝑥, 𝑥′)) (7)

This formulation allows the Bayesian optimization algo-
rithm to not only predict the function value at unobserved
points but also quantify the prediction uncertainty, which
is crucial for balancing exploration and exploitation during
the optimization process. In our GP, we used a White Noise
as a kernel function in Bayesian optimization[3], This kernel
function is defined to represent the idea that observations
have some amount of uncorrelated noise.

The White Noise kernel is defined as:

𝑘(𝑥, 𝑥′) = 𝜎2𝑛Δ(𝑥, 𝑥′) (8)

where 𝜎2𝑛 is the noise variance, a hyper-parameter that repre-
sents the variance of the noise in the observations. Δ(𝑥, 𝑥′)
is the Kronecker delta function, which equals 1 if ( x = x’
) (i.e., the points are identical) and 0 otherwise [3]. The
White Noise kernel is just one possible choice among many
kernels for GPs
b) Acquisition function is a function that guides the

optimization process by determining where to sample next.
The acquisition function balances exploration of the search
space (sampling where the model is uncertain) with exploita-
tion (sampling where the model predicts high performance).

Two common acquisition functions which we used in
AFA are:

1) Expected Improvement (EI): This function measures
the expected amount of improvement over the current best
observation 𝑓 (𝑥+) at a new point 𝑥.

𝐸𝐼 (𝑥) = 𝔼 [max(𝑓 (𝑥) − 𝑓 (𝑥+), 0)] (9)

where 𝑓 (𝑥) is the objective function and 𝑓 (𝑥+) is the best
observed value so far.

2) Probability of Improvement (PI): This functionmea-
sures the probability that sampling at a new point 𝑥 will
lead to an improvement over the current best observation
𝑓 (𝑥+).

𝑃𝐼 (𝑥) = 𝑃(𝑓 (𝑥) > 𝑓 (𝑥+)) (10)



The selected acquisition function will generate a new
threshold, which will be passed to the evaluator for testing
in the next step. To ensure fast convergence we adopted
PI . We explain the evaluation process in Section 2.2.

2.2. Evaluation Metrics
We need to evaluate the optimizer’s efficiency using the
Evaluator through an A/B test. We execute this phase of
the pipeline at the conclusion of each iteration, which, in our
case, spans a period of six days. We set the recommended
threshold by AFA as a treatment in an A/B test and get the
real-time impact on both the scale and performance since
metrics like performance are dependent to user behaviour
and is not possible to be computed offline precisely. The
objectives calculated by AFA are:
Scale is calculated as the ratio of the total number of

times ads are displayed to the number of qualified queries
(i.e. buyer searches) that trigger the ads, expressed by the
formula:

𝑆𝑐𝑎𝑙𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝐴𝑑 𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑒𝑑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑢𝑎𝑙𝑖𝑓 𝑖𝑒𝑑 𝑄𝑢𝑒𝑟 𝑖𝑒𝑠

. (11)

Performance is measured as the proportion of clicks an
advertisement receives relative to the number of times it is
shown (impressions), represented by the formula:

𝑃𝑒𝑟𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑇 𝑜𝑡𝑎𝑙 𝐶𝑙𝑖𝑐𝑘𝑠
𝑇 𝑜𝑡𝑎𝑙 𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

. (12)

We introduce quality and revenue here as additional out-
put metrics in order to track business impacts.

Revenue is the income earned from displaying ads on a
platform. It can be calculated as:

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = Buyers’ action (i.e clicks) × Revenue per action
(13)

Quality is the indicator of the relevance of the ads with
respect to query.

The amount of lift in an A/B test is calculated by compar-
ing the evaluation metric (e.g., scale) between the treatment
group (T), 𝑀𝑒𝑡𝑟 𝑖𝑐𝑇, and the control group (C), 𝑀𝑒𝑡𝑟 𝑖𝑐𝐶, using
the formula

𝐿𝑖𝑓 𝑡 =
(𝑀𝑒𝑡𝑟 𝑖𝑐𝑇 − 𝑀𝑒𝑡𝑟 𝑖𝑐𝐶)

𝑀𝑒𝑡𝑟 𝑖𝑐𝐶
× 100% (14)

The amount of lifts will be used by the Optimizer and also
stored in the table introduced at Section 2 for the ongoing
exploration.

3. Experiment Results
Analyzing the outcomes of filter tuning to meet multiple
objectives simultaneously, is not a trivial task. It requires
a deep and precise understanding of the interplay between
different objectives. However, in our algorithm, we have
formalized this relationship in a robust manner, allowing
measurable and accurate improvements. In this section, we
discuss our experimental results.

3.1. Execution Efficiency
Our experiments demonstrate that AFA could achieve the
defined objectives within three iterations through our tun-
ing pipeline. Figure 2 illustrates how the model evolved
over multiple iterations.

One of the standout results of using AFA for automatic
filter tuning is its marked efficiency in both time and human
effort. In a comparative analysis between manual tuning
and AFA-assisted tuning, we observed a significant reduc-
tion in the number of iterations required to optimize the
quality filter. Manual efforts necessitated 12 iterations to
achieve satisfactory results, whereas AFA achieves compa-
rable improvements in the ad scale metric and maintained
performance within just 3 iterations.

Moreover, the total number of data points needed for
AFA was halved, with only 6 data points (including 3 initial
data points) compared to the 12 required for manual tuning.
This reduction in data points translates directly into savings
extensive AB testing spanning for multiple weeks as well
as post test analysis efforts. AFA autonomously computes
the next threshold to test, minimizing the need for manual
evaluation.

Time efficiency was also significantly improved. Each
data point in the AFA corresponded to outcome of one week
of experimentation using our A/B testing platform, leading
to an optimization timeline of just 4 weeks. This consisted
of a week of initial data collection followed by 3 weeks of
iterations. Conversely, the manual approach spanned over
12 weeks, with each iteration taking one week - yet resulting
in a sub-optimal solution for the problem.

In summary, the deployment of AFA for quality filter
tuning within our experimental framework yielded a 4X
increase in efficiency in terms of both time and human
effort. This demonstrates AFA’s potential to accelerate the
tuning process, ultimately reducing the laborious and time-
intensive nature of manual filter tuning.

3.2. Business Targets
In this section, we present the amount of improvement
achieved by employing AFA in our real world production
platform, targeting a large online user population over a
two-week experiment period.

We compared two thresholds: the recommended thresh-
old from AFA, which converged after three iterations via
an automated pipeline, and the best threshold suggested
by manual tuning, which required human adjustment over
twelve iterations. As indicated in Table 1, both methods
improved the scale, but AFA showed a higher impact on busi-
ness metrics. AFA not only improves the quality score 80%
but also we achieved a 0.72% higher performance compared
to manual tuning, resulting in a mere 0.18% performance
loss when using AFA, as opposed to a 0.66% performance
loss with the manual approach. Considering that perfor-
mance was our constraint during the optimization phase, a
smaller loss signifies a better operating point. Moreover, we
observed a 44% improvement in ad revenue with AFA; man-
ual tuning resulted in a 0.22% loss in revenue, while AFA
managed a 0.01% gain. We also observed a startling gain
of 80% quality as well. In summary, our approach enabled
the display of more ads without sacrificing performance.
Furthermore, it improved quality and revenue which are
key business metrics.

In Figure 3, we provide an empirical example illustrating
the search results page for a buyer query ”leather jacket”.
Using the threshold recommended by AFA, we were able
to display more sponsored ads compared to the threshold
determined by manual tuning. Specifically, AFA enabled
the presentation of four sponsored ads, whereas the manual
tuning approach yielded only two. This empirical evidence



(a) Surrogate model and acquisition function after
feeding initial data points

(b) Surrogate model and acquisition function after
second iteration

(c) Surrogate model and acquisition function after
third iteration

Figure 2: Changes in the surrogate model and acquisition function over three iterations. The dashed green line represents the
surrogate model fitted to the red dot observations. The green shade indicates the uncertainty for each threshold based on the
surrogate function. The blue line represents the acquisition function, and the blue dot marks the next point suggested for
testing, based on the maximum value of the acquisition function that optimizes the defined objective.

(a) An example of items retrieved for a query using suggested threshold
by AFA

(b) An example of items retrieved for a query using suggested threshold
by a manual approach

Figure 3: Comparing the retrieved items for a query ”leather jacket” in our search engine using thresholds suggested by
AFA and the manual tuning approach, we observe notable differences. Figure 3(a) demonstrates that using the threshold
recommended by AFA, we retrieved four high-quality sponsored items. In contrast, Figure 3(b) shows that with the manually
tuned threshold, only two sponsored items were retrieved.

Table 1
Comparing business metrics lift results between manual filter
tuning vs AFA tuning approach

Method Scale Performance Quality Revenue

Manual Tuning 0.79% -0.66% 0.05% -0.22%
AFA 0.88% -0.18% 0.09% 0.01%

AFA vs Manual Tuning 11% 72% 80% 44.0%

supports our claim that AFA fine-tunes the threshold more
precisely than manual methods, thereby improving ad scale.
Additionally, we observed that all sponsored items were rele-
vant and of high quality, which correlates with the improved
performance and ad revenue as detailed in Table 1.

4. Related Work
There is limited research on automatic filter tuning in ads
industry, and even fewer studies on pipelines to facilitate
the process. Prior works can be categorized in the following
categories.
Black box optimization (BBO) methods are essential

for optimizing functions without closed-form expressions,
which are often encountered in real-world scenarios involv-
ing complex systems. Evolutionary algorithms (EAs) and ge-
netic algorithms (GAs), such as those described by [4], have
been fundamental in exploring search spaces in a gradient-
free manner. While effective, these methods can require
a prohibitively large number of evaluations to converge,
which is not always practical [5].

To overcome the limitations of traditional EAs and GAs,



surrogate-based optimization (SBO) techniques have been
developed. Bayesian optimization was introduced by [2]
as Efficient Global Optimization (EGO), utilizing surrogate
models to approximate objective functions. Bayesian Opti-
mization (BO), a subset of SBO, has gained traction for its
sample efficiency and effectiveness in noisy evaluations, as
highlighted by [6].

The incorporation of Bayesian optimization into multi-
objective optimization (MOO) has been an area of active
research. [7] presented a framework for efficiently optimiz-
ing black-box functions with multiple objectives. Bayesian
optimization and MOO used to improve their recommenda-
tion models in feeds and notification [8].
Multi-objective optimization (MOO) addresses com-

plex problems where multiple, often conflicting, objectives
must be optimized simultaneously. Researchers like [9]
have significantly contributed to this field with algorithms
such as NSGA-II, which efficiently guide the search towards
Pareto-optimal solutions under constraints such as limited
evaluations. The extension of BBO principles to MOO has
enabled the application of these techniques in various do-
mains, including e-commerce, where balancing trade-offs is
crucial.

Recent work in MOO has focused on improving the ef-
ficiency and scalability of these algorithms. For instance,
[10] offers a robust approach for handling many-objective
problems by introducing NSGA-III. Additionally, the inte-
gration of machine learning models, as seen in work on the
SPEA2 algorithm, has improved the handling of complex
objective landscapes [11]. However, most of these works
focus on the closed form of objective functions.
Hyper-parameter tuning: Hyper-parameter tuning is

a critical step in machine learning that involves selecting
the optimal set of hyper-parameter for a learning algorithm
to maximize its performance. Hyper-parameter are the con-
figuration settings used to structure the learning process, as
opposed to model parameters that are learned from the data.
There are several work focusing on search mechanism like
grid and random search which are the simplest and most
commonly used approaches [1]. There are other efforts on
Gradient-Based Optimization which uses gradient informa-
tion to guide the search for optimal hyper-parameters [12].
There are bandit based approaches which dynamically allo-
cates resources to a set of hyper-parameter configurations
and rapidly eliminates poor-performing options [13].

Our research introduces an automated pipeline that ap-
plies new advancements to automatically tune thresholds
for advertising systems, a problem not previously solved.
It combines Bayesian Belief Optimization (BBO) and Multi-
Objective Optimization (MOO) in a novel way, providing a
practical solution to a real-world challenge.

5. Conclusion
Our study conclusively demonstrates that AFA can au-
tonomously and effectively tune quality filters in adver-
tising programs, outperforming manual tuning methods in
terms of both speed and precision. AFA significantly re-
duces the number of necessary evaluations, enabling faster
convergence towards optimal settings. This automated ap-
proach streamlines the optimization process and mitigates
the potential for human error and bias. The implications of
our findings are suggesting that AFA could be instrumental
in various optimization tasks across the digital advertising

domain and potentially in other fields.
Looking forward, our future plans involve (a) extending

the application of the proposed pipeline to other facets of
our e-commerce platform and (b) incorporating additional
dimensions into the optimization approach, thereby broad-
ening the scope and impact of AFA.

References
[1] J. Bergstra, Y. Bengio, Random search for hyper-

parameter optimization, Journal of Machine Learning
Research 13 (2012) 281–305.

[2] D. R. Jones, M. Schonlau, W. J. Welch, Efficient global
optimization of expensive black-box functions, Journal
of Global Optimization 13 (1998) 455–492. URL: https:
//api.semanticscholar.org/CorpusID:263864014.

[3] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes
for Machine Learning, The MIT Press, 2006.

[4] D. E. Goldberg, J. H. Holland, Genetic algorithms and
machine learning, Machine Learning 3 (1988) 95–99.
URL: https://api.semanticscholar.org/CorpusID:
2043246.

[5] M. Jaderberg, V. Dalibard, S. Osindero, W. M.
Czarnecki, J. Donahue, A. Razavi, O. Vinyals,
T. Green, I. Dunning, K. Simonyan, C. Fernando,
K. Kavukcuoglu, Population based training of neural
networks, 2017. arXiv:1711.09846.

[6] E. Brochu, V. M. Cora, N. de Freitas, A tutorial on
bayesian optimization of expensive cost functions,
with application to active user modeling and hierar-
chical reinforcement learning, ArXiv abs/1012.2599
(2010). URL: https://api.semanticscholar.org/CorpusID:
1640103.

[7] S. Daulton, M. Balandat, E. Bakshy, Differentiable ex-
pected hypervolume improvement for parallel multi-
objective bayesian optimization, in: Advances in Neu-
ral Information Processing Systems, 2020.

[8] LinkedIn Engineering, Using bayesian optimization
for balancing metrics in recommendation systems,
LinkedIn Engineering Blog, n.d. URL: https://www.li
nkedin.com/blog/engineering/recommendations/usin
g-bayesian-optimization-for-balancing-metrics-in-r
ecommendat, [Online; accessed 20-April-2023].

[9] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and
elitist multiobjective genetic algorithm: Nsga-ii, IEEE
Transactions on Evolutionary Computation 6 (2002)
182–197.

[10] H. Seada, K. Deb, U-nsga-iii : A unified evolutionary
algorithm for single , multiple , and many-objective
optimization, 2014. URL: https://api.semanticscholar.
org/CorpusID:9620515.

[11] E. Zitzler, M. Laumanns, L. Thiele, Spea2: Improving
the strength pareto evolutionary algorithm, 2001. URL:
https://api.semanticscholar.org/CorpusID:16584254.

[12] D. Maclaurin, D. Duvenaud, R. Adams, Gradient-based
hyperparameter optimization through reversible learn-
ing, in: International Conference on Machine Learn-
ing, 2015, pp. 2113–2122.

[13] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Tal-
walkar, Hyperband: A novel bandit-based approach
to hyperparameter optimization, in: International
Conference on Learning Representations, 2017.

https://api.semanticscholar.org/CorpusID:263864014
https://api.semanticscholar.org/CorpusID:263864014
https://api.semanticscholar.org/CorpusID:2043246
https://api.semanticscholar.org/CorpusID:2043246
http://arxiv.org/abs/1711.09846
https://api.semanticscholar.org/CorpusID:1640103
https://api.semanticscholar.org/CorpusID:1640103
https://www.linkedin.com/blog/engineering/recommendations/using-bayesian-optimization-for-balancing-metrics-in-recommendat
https://www.linkedin.com/blog/engineering/recommendations/using-bayesian-optimization-for-balancing-metrics-in-recommendat
https://www.linkedin.com/blog/engineering/recommendations/using-bayesian-optimization-for-balancing-metrics-in-recommendat
https://www.linkedin.com/blog/engineering/recommendations/using-bayesian-optimization-for-balancing-metrics-in-recommendat
https://api.semanticscholar.org/CorpusID:9620515
https://api.semanticscholar.org/CorpusID:9620515
https://api.semanticscholar.org/CorpusID:16584254

	1 Introduction
	1.1 Challenges
	1.1.1 Advertiser's preferences
	1.1.2 User's preferences

	1.2 Motivation
	1.2.1 Need for a Formal Definition
	1.2.2 Opportunity Cost

	1.3 System Overview
	1.3.1 Initializer
	1.3.2 Optimizer
	1.3.3 Evaluator

	1.4 Contributions

	2 Implementation Details
	2.1 Optimization Process
	2.2 Evaluation Metrics

	3 Experiment Results
	3.1 Execution Efficiency
	3.2 Business Targets

	4 Related Work
	5 Conclusion

