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Abstract
Unreliable outputs of machine learning (ML) models are a significant concern, particularly for safety-critical applications
such as autonomous driving. ML models are susceptible to out-of-distribution samples, distribution shifts, hardware transient
faults, and even malicious attacks. To address the concerns, the N-version ML system gives a general solution to enhance the
reliability of ML system outputs by employing diversification on ML models and their inputs. However, the existing studies
of N-version ML systems mainly focused on classification errors and did not consider their impacts in a practical application
scenario. In this paper, we investigate the applicability of N-version ML approach in an autonomous vehicle (AV) scenario
within the AV simulator CARLA. We deploy two-version and three-version perception systems in an AV implemented in
CARLA, using healthy ML models and compromised ML models, which are generated using fault-injection techniques and
analyze the behavior of the AV in the simulator. Our findings reveal the critical impacts of compromised models on AV
collision rates and show the potential of three-version perception systems in mitigating the risk. Our three-version perception
system improves driving safety by tolerating one compromised model and delaying collisions when having at least one
healthy model.
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1. Introduction
Rapid machine learning (ML) advancements have led to
widespread applications across various domains. ML-
based intelligent software systems, including face recog-
nition, medical diagnosis, and autonomous robots, have
become integral parts of our daily lives [1, 2]. However,
ML models cannot guarantee a correct output in the appli-
cation context due to ML models’ uncertainties in dealing
with real samples [3]. Additionally, transient faults (e.g.,
leading to bit-flip errors [4]) and malicious attacks such
as adversarial attacks [5] may affect the system’s capabil-
ity to provide correct outputs, especially when a single
ML model is in the software stack [6, 7]. When ML-based
applications are incorporated into safety-critical systems,
incorrect outputs can cause undesirable consequences.
For example, the misrecognition of traffic signs by ML-
based classifiers could result in accidents in autonomous
driving scenarios. By using this example, we should agree
that ensuring the correctness of ML-based system out-
puts has become a critical concern, especially for systems
in safety-critical domains.

Various approaches have been proposed to enhance
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the robustness of ML systems. ML testing is one of these
approaches that focuses on detecting differences between
existing and required behaviors of machine learning sys-
tems [8]. However, the existing works mainly focus on
offline testing rather than runtime monitoring. To im-
prove correctness during runtime, additional safety mech-
anisms such as data validation [9], safety monitors [10],
and redundant architecture [11, 12] must be deployed.
Current ML data validation techniques pose operational
challenges, including an abundance of false positive warn-
ings and the necessity for manual adjustments. Similarly,
safety monitors, while crucial, lack adaptability due to
their simultaneous training with the ML model. Model
enhancement and specialization led to the generation of
large Deep Neural Networks (DNNs), capable of model-
ing more complex patterns and data relationships, which,
consequently, present improved results as output [13].
However, large DNNs should require more computational
resources to be executed, which specific systems, such as
autonomous vehicles (AVs), may not afford as it would
incur extra resource costs (e.g., energy). Although fea-
sible and sometimes suitable, adopting a large DNN in
limited-resource systems would incur the use of a single
DNN, offering the system a single point of failure, which
could cause malfunction of the entire system in the case
of hardware or software failures or malicious attacks.

In contrast, adopting redundant architectures offers a
more straightforward approach by utilizing diverse ML
models and data inputs. Using multiple and diverse ML
models, an ML-based system can avoid a single point

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:wen.qiang@sd.cs.tsukuba.ac.jp
mailto:julio.mendonca@uni.lu
mailto:machida@cs.tsukuba.ac.jp
mailto:marcus.voelp@uni.lu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


of failure since replicated models can execute the same
tasks, masking failures or misclassifications. Also, adopt-
ing model diversity can help the system mitigate prob-
lems such as overfitting and adversarial attacks, as differ-
ent models could have a distinct structure and training
data. Leveraging the idea of a traditional software fault
tolerant technique, N-version programming (NVP) [14],
the N -version ML system approach uses replication and
diversification to improve the output reliability of ML sys-
tems [12]. By integrating multiple, independently func-
tioning ML models, the N-version system is designed to
maintain operation and accurate decision-making even
when one or more components are compromised or
faulty. The multiple versions of ML models and input
data sources are used to generate multiple inference re-
sults, which may differ from each other. These results are
subsequently analyzed using decision logic (e.g., a voter
employing a majority voting rule [15]) or a protocol to
agree on a single value (e.g., consensus protocols [16])
to determine the final output. This approach enables the
system to detect and mitigate incorrect outputs arising
from individual ML models. More recent studies have
analyzed the adoption of N-version ML systems and pre-
sented their benefits for output reliability [11, 17, 15, 18].
However, none of these works have examined the safety
impact in a practical application scenario.

Therefore, this paper leverages N-version ML system
architectures for the perception module of AVs, aiming to
investigate the impact of such architectures on the safety
of autonomous driving scenarios using the CARLA sim-
ulator [19]. Specifically, we consider two-version and
three-version perception systems, each comprising two
or three independent ML modules, respectively, for object
detection tasks in AVs. We incorporate multiple versions
of ML models within the systems by deploying different
versions of the YOLOv5 model. In addition, to simulate
failures and errors, caused by transient faults or mali-
cious attacks, we create compromised ML models using
the fault-injection tool PyTorchFI [20]. The tool intention-
ally changes ML model parameters, which can introduce
errors into the ML models, representing situations where
ML systems may be affected by different types of faults
(e.g., radiation, induced memory corruption). Then, we
combine healthy and compromised ML models, following
an N-version system architecture, and deploy it into an
AV running on the CARLA simulator. The results show
that single compromised models can significantly impact
the AV collision rate in up to 90% of the analyzed scenar-
ios. We also find that the three-version system has the
potential to tolerate one compromised model efficiently
and delay collisions caused by incorrect object detection
when having at least one healthy model. We make the
following contributions in this paper:

• We propose the application of N-version ML sys-

tems to the perception module of an AV to en-
hance autonomous driving safety.

• We conduct fault injection experiments to reveal
the impact of compromised ML models in the
perception module on the safety of AVs simulated
in CARLA.

• Through the experiment, we demonstrate the en-
hanced driving safety achieved by a three-version
perception system that can mitigate incorrect out-
puts from compromised ML models and delay
possible AV collisions.

The remainder of the paper is organized as follows.
Section 2 presents background and related work. Sec-
tion 3 details the system and fault model adopted in this
work. Section 4 clarifies the research questions addressed
in the following experiment and describes the experiment
settings. Section 5 discusses the achieved results, focus-
ing on answering the defined research questions. Finally,
Section 6 concludes the paper and briefly presents future
work.

2. Background and Related Works

2.1. N-version Machine Learning
N-version ML architecture, based on NVP, comprises N
(≥2) diverse versions of ML components operating in
parallel for the same task [12]. The ML components gen-
erate multiple inference results individually, and the final
output can be determined using a voting mechanism. Un-
like ensemble learning [21], which aims to build a better
model by combining weak learners, the N-version ML ar-
chitecture is configured with pre-trained black-box mod-
els and designed for ML system operation. Recent studies
have investigated N-version ML approaches to improve
system reliability. Xu et al. [22] proposed the NV-DNN,
a framework aimed at enhancing the fault tolerance of
deep learning systems comprising N independently devel-
oped models and decision-making procedures. NV-DNN
assumes processing a single input at a time, whereas
N-version ML can also consider different inputs to ex-
ploit input diversity. Furthermore, diversifying input data
can contribute to improving the reliability of N-version
ML systems, as demonstrated in works from Machida
and Wen [11, 15, 23]. Hong et al. [24] proposed a multi-
modal deep-learning approach to improve the classifica-
tion accuracy of remote-sensing imagery, outperforming
single-model or single-modality approaches. Mendonça
et al. [18] investigated the improvement of output reliabil-
ity in perception systems through a modeling approach
when integrating N-version programming with rejuve-
nation techniques. Nevertheless, none of the existing
studies have shown the effectiveness of the N-version



ML approach in AV safety against the risk of faulty ML
models.

2.2. Fault-injection for ML Models
Fault injection is a testing technique used to analyze
systems under the presence of faults [25]. This method
entails intentionally introducing faults behavior into a
system to examine its function under abnormal condi-
tions. The objective is to evaluate whether the system
can tolerate faults and continue to operate correctly or
will misbehave. Recent studies have investigated fault
injection techniques in deep neural networks (DNNs).
For example, single bias attack and Gradient descent at-
tack are two types of fault injection attacks proposed
to misclassify a specified input pattern into an adversar-
ial class by modifying the parameters used in DNNs by
Liu et al. [26]. Tools such as PyTorchFI [20] have been
proposed for disturbing DNNs on the PyTorch platform,
allowing users to induce perturbations in the weights or
neurons of DNNs at runtime. Piazzesi et al. [27] used
fault-injection tools to evaluate autonomous agents un-
der the presence of artificial faults and attacks. In this
study, we leverage a fault injection tool to evaluate an
N-version perception system for AV.

2.3. Autonomous Driving Simulation
CARLA [19] is a well-known and adopted open-source
simulator designed for autonomous driving research. The
simulation platform supports flexible specification of sen-
sor suites and environmental conditions. CARLA has
been extensively used to assess various aspects of au-
tonomous driving. For instance, simulations enable the
verification of whether a driving system, trained using
data from a simulator, can be effectively deployed on
a real car [28]. Besides, works developed by Gao et
al. [29] and Piazzesi et al. [27] leverage CARLA to de-
velop and evaluate object detection algorithms tailored
for autonomous driving applications. By utilizing the
simulation environment, the detection models can be
tested under various conditions. In this work, we shall
focus on object detection tasks within the perception
system, particularly in analyzing N-version architectures
for perception systems running in the CARLA simulator.

3. Fault and System Model
We focus on an ML-based perception module running
in an AV. A perception module is an essential compo-
nent of AVs. The perception module leverages inputs
from advanced sensors present in an AV. It serves as
the vehicle’s sensory hub, collecting and processing vast
amounts of data to create a detailed understanding of

its surroundings. It can integrate inputs from cameras,
LiDAR, radar, and ultrasonic sensors, each contributing
unique capabilities for detecting and classifying objects
such as other vehicles, pedestrians, and road signs, as
well as identifying lane markings and traffic signals [30].
The comprehensive sensory data is then forwarded to
the planning and prediction modules to form a dynamic
3D map of the environment, enabling the AV to navigate
safely and efficiently.

Perception modules heavily rely on ML models to de-
tect obstacles, pedestrians, traffic signs, signals, lanes,
and other vehicles from the input captured by cameras
and other sensors. Therefore, a failure or simple mis-
classification of objects in the environment may impact
the safe driving behavior of the AV, which may lead to
dangerous traffic situations and cause accidents.

Next, we detail the fault model adopted in this work
and then present an N-version perception system for
AVs, which aims to mitigate the impact of faulty and
compromised ML models to enhance AV safety driving.

3.1. Fault Model
The fault model focuses on transient faults and malicious
attacks related to ML models’ output correctness. Thus,
we assume sensors produce correct data and they, as well
as other components outside the perception system, are
not subject to failures or attacks. On the other hand,
we consider vulnerabilities in deep learning frameworks
(e.g., PyTorch, TensorFlow, or Caffe) could allow attack-
ers to (1) launch denial-of-service attacks, (2) crash deep
learning applications due to memory exhaustion, (3) gen-
erate wrong classification outputs by corrupting the clas-
sifier’s memory, or (4) hijack the control flow to remote
control the deep learning application hosting system [31].
The latest CVE reports on Tensorflow (CVE-2023-27506,
CVE-2023-25668), PyTorch (CVE-2022-45907), and Caffe
(CVE-2021-39158) confirm the presence of such vulnera-
bilities. Besides, ML models shall be subject to transient
faults such as radiation, which are capable of causing
bit-flips.

In this way, we assume an ML model can have three
possible states: healthy (H), compromised but operational
(C), or non-operational (N). When in a healthy state (H),
the ML model performs normally, but it intrinsically in-
cludes producing incorrect outputs according to its ac-
curacy. When faults or malicious attacks (e.g., radiation,
induced memory corruption) affect the ML model, it may
cause errors, which could lead to a subsequent failure.
When faults or attacks cause errors in the ML model, it
reaches a compromised but functional state (C). Com-
promised ML models can still perform object detection
tasks but have a reduced probability of producing correct
perception outputs. However, when the errors lead to
failures, the ML model completely stops, entering a non-



operational state (N), incapable of executing perception
tasks.

In this work, we shall focus on how vulnerability ex-
ploitation and fault effects could be mitigated by using
N-version ML models. In this way, we assume that er-
rors or failures could harm all (or none) N ML models
at the same time. This allows us to generalize N-version
architecture to consider situations where ML models are
executed isolated (e.g., in different cores) and are not sub-
ject to the same failures and situations where ML models
are affected equally by a single failure. In practice, we
demonstrate how artificially injected faults affect distinct
ML models’ output differently by generating different
compromised ML models, as well as the overall effect
when the system only has different compromised ML
models executing.

3.2. An N-version Perception System
To mitigate the impact of failed and compromised ML
models on AV safety, we present an N-version perception
system for enhancing perception outputs. Figure 1 shows
the architecture of an N-version perception system. We
assume a perception system of an AV composed of N
ML models capable of executing object detection tasks,
which aim to avoid AV collisions. We shall focus in this
work on situations where data input variation is not em-
ployed. It means that all N ML models should receive the
same data input from the AV sensors (e.g., cameras) to
perform object detection. Note that in some systems, it
is also possible that different sensor data could be com-
bined through a sensor fusion component before being
forwarded to the ML models [32]. After executing the ob-
ject detection task, each model shall forward its output to
a voter, which decides the final perception output based
on a pre-defined voting rule. In the adopted system, we
consider the voter implementing a majority-based voting
rule for simplicity, while other rules can be implemented
later. Besides, we assume the voter is implemented in
a trustworthy component and shall not be susceptible
to malicious attacks or faults. Such mechanism imple-
mentation has been demonstrated in practice by previous
works, such as Gouveia et al. [33].

Assuming the mentioned architecture, an N -version
ML perception system can be represented in a set of
reachable states 𝑆 in which (ℎ, 𝑐, 𝑛) ∈ 𝑆 and h, c, and
n represent the numbers of ML models in the healthy,
compromised, and non-operational state, respectively.
Additionally, we assume the voter can automatically de-
tect when an ML model is in a non-operational state (N).
Usually, failure detection tools can be easily adopted to
verify whether a component is operational. This would be
necessary to prevent the voter from waiting indefinitely
for the output of non-operational models and for it to be
able to reconfigure itself with different pre-determined
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Figure 1: An example of an N-version perception system
architecture, containing N ML models. ML models can assume
one of the states in a given moment: healthy (H), compromised
but operational (C), or non-operational (N).

voting rules automatically.

4. Experiments

4.1. Objective
The objective of this study is to investigate the applica-
bility of an N-version perception system architecture
for AV safety. We aim to answer the following research
questions throughout experiments using CARLA.

RQ1: How does a compromised ML model of a perception
system impact AV driving safety?

RQ2: How efficiently can an N-version perception
system (N=2,3) tolerate compromised and non-operational
models?

To address RQ1, we set up a simulation environment
deploying different compromised ML models into the AV
perception system to evaluate its driving behavior. We
simulate compromised ML models using PyTorchFI to
generate artificial faults in the ML models. We also com-
pare the driving behavior of the compromised ML mod-
els against the healthy ML models. To answer RQ2, we
implement two-version and three-version perception sys-
tems, incorporating various combinations of healthy and
compromised models. Then, we investigate the driving
behavior across all the possible configurations, including
entirely healthy, mixed (healthy and compromised), and
entirely compromised models. This analysis allows us to
evaluate how the N-version ML approach influences the
driving behavior of the AV’s perception system under
various conditions.

4.2. Testbed Setup
We utilize the CARLA AV simulator and a cooperative
driving co-simulation framework OpenCDA [34] to simu-
late a single-lane driving scenario. During the simulation
process in OpenCDA, sensors installed on each AV collect
the surrounding environment as well as the ego vehicle



information (e.g., 3D LiDAR points and Global Naviga-
tion Satellite System (GNSS) data). The collected sensors’
data are used by the perception and localization systems
for object detection and localization. Subsequently, the
perception output, including object 3D pose and ego po-
sition, is delivered to the downstream planning system
to generate the AV trajectory and, consequently, update
the AV’s acceleration, speed, and wheel turning. Finally,
the planned trajectory and commands are passed to the
control system, which generates the final control com-
mands. In this paper, we choose Town03 in CARLA as
the map shown in Figure 2. The yellow oval marks the
starting point, and the yellow star marks the endpoint of
the simulation run that an AV must execute. Towards this
path, the AV relies on its perception system to accurately
detect other vehicles and road obstacles.

Figure 2: Adopted scenario in Town03 of the CARLA simula-
tor.

Next, we define two-version and three-version sys-
tems using different object detection models in the
architecture. We employ unmodified versions of the
YOLOv5 model [35], including YOLOv5s6, YOLOv5m6,
and YOLOv5l6 as healthy models to deploy them into the
AV perception system. Then, we generate compromised
versions of these models using PyTorchFI [20]. More
specifically, adopting PyTorchFI’s runtime perturbation
feature for weights and neurons in DNNs. Those func-
tionalities are crucial for simulating real-world scenarios
where models may encounter unexpected disruptions.
Thus, we employ PyTorchFI’s random_weight_inj func-
tion with a weight range of (-100, 300) to mimic the condi-
tions compromised models may encounter. The injection
function randomly alters parameters within a randomly
selected layer of the neural network, thereby introducing
variability into the YOLO image detection algorithm. The
degree to which the ego vehicle’s perception is impacted
(i.e., whether it causes an error) depends on the sensibil-
ity of the model layer for the randomly injected weight.

After injecting artificial faults in the healthy models, we
generate new models, renaming them to YOLOv5s6_FI,
YOLOv5m6_FI, and YOLOv5l6_FI. Each one of these mod-
els shall represent the ML models when in a compromised
state (C). Note that the weight perturbations injected on
these compromised models affect all input data (e.g., im-
age frames) during the entire period.

In our three-version perception system, we employ a
majority voting rule. When three models are operational
(i.e., in the states H or C), the voter provides a perception
output when 2-out-of-3 models agree on the same output.
The agreement is defined based on the criterion that
the bounding boxes (bboxes) have an Intersection over
Union (IoU) exceeding 0.8, and the labels are identical.
When the majority cannot be reached, the voter provides
no perception output. Consequently, the AV does not
update its driving properties (e.g., speed and acceleration).
When one model stops completely (i.e., entering a non-
operational (N) state), the system degrades to a 2-version.
In those cases, the voting rule implemented in the voter
is that the two models must agree on the same output.
Otherwise, it should not provide any perception output.
Therefore, the AV can only update its trajectory and
driving properties if the voter receives equal output from
the two models.

Evaluation Metric: We measure the collision rate of
the AV as the number of collision frames over the total
number of frames in a run. We also give the first colli-
sion frame number and total frame number as evaluation
metrics. The metrics measure the driving behavior of the
AV under different system configurations that a three-
version system could assume. We conduct ten runs for
each system configuration and report the average of the
metrics.

5. Results
In this section, we discuss the experiment results to an-
swer research questions related to the N-version percep-
tion systems. We focus on the impact of compromised
models and the effectiveness of an N-version perception
system to answer the defined research questions.

5.1. Evaluation of Compromised ML
Models

First, we investigate the effects of compromised models
on object detection with an AV adopting a single-version
perception system. We compare the object detection
results between ML models in the healthy (i.e., in state
H ) and compromised (i.e., in state C) states. Recall that
an ML model in a non-operational state (i.e., state N )
cannot produce any output. Thus, the AV cannot afford
a single-version architecture with only one model in this



state. Figure 3 illustrates an object detection case of (a) a
healthy YOLOv5m model, which accurately detects the
vehicle in front, whereas (b) its fault-injected variant,
YOLOv5m_FI, produces numerous erroneous bounding
boxes, which has more probability of leading the AV to
potential collisions.

(a) Using a healthy YOLOv5m model.

(b) Using a compromised YOLOv5m_FI model.

Figure 3: Example of object detection using a healthy and
compromised model during AV driving.

Table 1 presents the average values for three metrics
across ten runs, including the first collision frame, to-
tal number of frames, and collision rate. System state
represents (ℎ, 𝑐, 𝑛), where h, c, and n represent the num-
bers of ML models in the healthy, compromised, and
non-operational state, respectively. The upper part dis-
plays the results for single-version perception systems.
Notably, the healthy models consistently exhibited a 0%
average collision rate, while the compromised models
showed significantly higher average collision rates (more
than 70%). The AV had a collision in 90% runs when driv-
ing with different versions of compromised models. The
numbers demonstrated that the AV using compromised
models tends to experience collisions from the very onset
of the simulation. Figure 4 illustrates the collision and
no collision cases in the simulated scenario. In our study,
we primarily focus on vehicle-to-vehicle collisions. Even
though there is a curve in the lane, other collisions such
as vehicle-to-infrastructure collisions will not happen.
Answer to RQ1: Compromised models of an AV percep-
tion system demonstrate a high average collision rate of
more than 70%, adversely affecting AV driving safety.

(a) No collision case.

(b) Collision case.

Figure 4: Fault injection effect example on the AV for the
scenario adopted.

5.2. Evaluation of N-version Perception
Systems

Next, we present the results achieved when adopting
two- and three-version perception systems. The middle
part of Table 1 presents the experimental results for two-
version systems. The results indicate that no collisions
occurred in all runs when both healthy models were exe-
cuted (i.e., state (2,0,1)). In contrast, configurations (1,1,1)
and (0,2,1) experienced collisions. Notably, the number of
collisions in the (1,1,1) configurations was lower than in
the (0,1,2) configurations, suggesting that a two-version
system with one compromised model can still mitigate
some collisions. The average collision rates for the AV
under the system state (1,1,1) and (0,2,1) were more than
50%. Additionally, the results demonstrate that the first
collision frame, when considering compromised models,
was at around frame 64, which is at a very early stage of
the simulation. It is an important observation related to
the layout of the vehicles during the simulation scenario,
in which the ego vehicle starts the simulation in move-
ment and is relatively close to the vehicle in front of it.
When two ML models disagree, and the detection of the
vehicle in front is abnormal, the ego vehicle tends to have
a rear collision with the vehicle in front of it. Thus, when
adopting a two-version perception system, the AV would
have a short time before entering a critical erroneous
state, generating wrong object detection outputs after
having at least one ML model compromised.

The bottom part of Table 1 presents the computed
results for the three-version perception system. When
the system had the majority of models in a healthy state
(i.e., (3,0,0) and (2,1,0)), no collisions were observed.



Table 1
Collision data of the experiments over different states in a single, two, and three-version system.

System state YOLO Model 1st collision frame Total frames Collision rate% # Collisions

Single-version
(1,0,2) v5s NA 687 0 0/10
(1,0,2) v5m NA 685 0 0/10
(1,0,2) v5l NA 682 0 0/10
(0,1,2) v5s_FI 119 628 71.40 9/10
(0,1,2) v5m_FI 103 622 74.33 9/10
(0,1,2) v5l_FI 89 644 76.72 9/10

Two-version
(2,0,1) v5s,v5m NA 685 0 0/10
(1,1,1) v5s,v5m_FI 64 704 54.63 6/10
(1,1,1) v5l,v5m_FI 66 690 63.27 7/10
(0,2,1) v5s_FI,v5m_FI 64 667 81.22 9/10

Three-version
(3,0,0) v5s, v5m, v5l NA 682 0 0/10
(2,1,0) v5s, v5m, v5m_FI NA 693 0 0/10
(2,1,0) v5s, v5m, v5s_FI NA 682 0 0/10
(1,2,0) v5s, v5s_FI, v5m_FI 272 666 28.82 5/10
(1,2,0) v5m, v5s_FI, v5m_FI 335 654 33.08 7/10
(0,3,0) v5s_FI, v5m_FI, v5l_FI 187 643 57.00 8/10

The result indicates that a three-version perception
system can effectively tolerate at least one compromised
model and mask its failures when adopting the majority
voting rule. For the configuration (1,2,0), where a
majority of the models were compromised, collisions
occurred in most runs. However, there were instances
where the system successfully avoided collisions. The
average collision rates for this configuration were about
30%, significantly lower than those of single-version
compromised models. This observation suggests
that even a system with more compromised models
has the potential to prevent collisions under certain
circumstances. Notably, the average first collision frame
in the (1,2,0) configurations was much later compared to
single-version compromised models. This is a significant
observation as it demonstrates that the system can
delay the onset of erroneous outputs. This delay could
provide critical additional time for the AV to take evasive
action, thereby possibly avoiding a collision. Finally,
for the configuration (0,3,0), where all models were
compromised, most runs ended in collisions, as expected
due to the lack of healthy models to correct the errors.
However, two out of ten runs did not result in a collision,
suggesting that even with all models compromised,
specific conditions within the scenario might prevent
failures temporarily.

Answer to RQ2: A three-version perception system
can efficiently tolerate one compromised model. Even

when the majority of the models are compromised, the
system has the potential to prevent some collisions or
delay erroneous perception outputs.

5.3. Discussion
The findings from three-version perception systems
demonstrate the application of the N-version ML ap-
proach in improving the safety of AV. Specifically, the
configurations did not result in a collision when most
models were in healthy states, showing the three-version
perception system’s ability to mitigate disruptions. Al-
though collisions still occur in some configurations with
the majority of compromised models, the system shows
the potential to delay erroneous perception outputs that
could lead to collisions. This capability is crucial in envi-
ronments where even a minor delay in failure onset can
provide essential time for initiating corrective actions,
thereby preventing potentially catastrophic outcomes.
Limitations. In this experiment, we did not consider
the cost and performance overhead imposed by the re-
dundant modules. The use of multiple ML models in
the N-version perception system introduces additional
computational overheads and may be costly to imple-
ment in a real vehicle. The overhead and cost can be
mitigated by adjusting the number of modules activated
and/or the frame rates. The perception output can also
be enhanced by diversifying the input data without using
multiple models [36]. Such a design optimization under
resource constraints needs to be investigated further in



future work. Besides, our current evaluation is limited
to a short run on one specific map. Further experiments
with more diverse driving scenarios are needed to make
more general conclusions.

6. Conclusions and Future Work
In this study, we explored the practical application of
N-version ML system architectures through experiments
conducted in the autonomous vehicle simulator CARLA.
By deploying two-version and three-version perception
systems for object detection tasks, we investigated the
effectiveness of incorporating multiple versions of both
healthy and compromised ML models within the sys-
tems. Our findings demonstrate that compromised mod-
els within the perception system significantly impact the
AV collision rate, with rates exceeding 70%. In addition,
we observed that three-version perception systems have
the potential to mitigate object detection misclassifica-
tions, tolerating one compromised model and delaying
collisions when at least one healthy model remains op-
erational. In future work, we consider evaluating other
system architectures and exploring alternative decision-
making mechanisms beyond simple majority voting rules
that could improve N-version ML systems’ output cor-
rectness.
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