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Abstract 
This paper presents a novel method for generating automated test scripts for Domain-Specific Languages 
(DSLs) in software testing, particularly for the automotive industry. It emphasizes the growing importance 
of software testing in ensuring product quality amid IT advancements. The paper reviews software testing's 
evolution, modern processes, and the role of Large Language Models (LLMs). It highlights DSLs' significance 
and uses the automotive sector to show how LLMs can automate test script generation. Tests indicate that 
in cases with a small sample size, the effectiveness of prompt engineering is superior to model fine-tuning. 
The proposed method thus relies on well-designed prompts to direct LLMs to produce accurate scripts. The 
generation system's overview is discussed, along with an evaluation of the scripts' quality using metrics 
like Levenshtein Distance. Results indicate that LLMs boost test automation, defect detection, and software 
reliability. Future work will optimize these tools for higher testing automation levels. 
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1. Introduction
Software testing is a key component in ensuring the 
quality and reliability of software products. In the 
rapidly developing information technology era, software 
has become an indispensable part of our daily life and 
work. With the increasing complexity and 
diversification of software functions, the importance of 
software testing has become increasingly prominent. 
Software testing is a series of processes designed to 
check that a software product meets specified 
requirements and ensures its quality. It not only helps 
developers to find and fix defects, but also greatly 
enhances system security, especially in fields with high 
software safety requirements such as automotive and 
aviation [1]. 

1.1. A Brief History of Software Testing 

The origins of software testing date back to the 1950s, 
focusing initially on debugging to identify and rectify 
software faults [2][3][4]. As software complexity grew, 
the need for independent testing organizations became 
apparent. In 1957, Charles Baker first defined program 
testing, in his review of the book Digital Computer 
Programming by Dan McCracken, separating it from 
debugging. Bill Hetzel formalized software testing as a 
concept at the University of North Carolina in 1972, 
establishing it to ensure a program performs as intended 
[5]. Glenford J. Myers further refined this in 1979, 

QuASoQ 2024：12th International Workshop on Quantitative Approaches 
to Software Quality，3rd December 2024，Chongqing, China, 
∗ Corresponding author. 

j.sun@cqu.edu.cn (J. Sun) 

describing testing as executing a program to uncover 
errors [6]. 

By 1983, IEEE had standardized software testing, 
defining it as a process -manual or automated- to verify 
system requirements [7]. The 1990s brought agile 
methodologies, integrating testing and development and 
encouraging tester involvement from the earliest 
development stages [8]. In the 21st century, testing has 
advanced, with a focus on exploratory testing that 
highlights the tester initiative. The era of AI and big data 
has intensified scrutiny of software testing. Despite still 
leveraging 20th-century methods, the field anticipates 
future innovations, potentially revolutionizing testing 
practices [9]. 

1.2. Modern Approaches 

The modern software testing process is crucial for 
ensuring software quality and functionality. It starts 
with requirement analysis, followed by developing a test 
plan, designing test cases, and preparing test data 
(Figure 1). The test environment is set up, tests are 
executed and recorded, and defects are tracked. 
Regression and performance testing are conducted, 

Figure 1: Modern software testing process. 
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along with security and system testing. Acceptance 
testing confirms business requirements are met. Test 
reports summarize results, and evaluations identify 
process improvements. 

Techniques like automated testing, Continuous 
Integration (CI), and Continuous Delivery (CD) enhance 
testing efficiency. Agile testing fosters collaboration 
between testers and developers. Performance, security, 
and mobile application testing ensure software 
reliability across different aspects. Cloud testing 
leverages cloud resources for extensive testing. 
 

 

Figure 2: CI/CD is a software development practice 
in which code changes are automatically integrated, 
built, and tested, with successful builds being deployed 
to production. 

AI-based testing leverages machine learning to 
automate software testing processes, enhancing 
efficiency and accuracy. It encompasses exploratory 
testing to identify issues without fixed test cases, 
ensuring broader coverage. Model-driven testing and 
testability design optimize test case generation and 
software sustainability. Additionally, managing test data 
and implementing strategies such as Test Left Shift and 
Test Right Shift further refine the development cycle. 
These dynamic approaches adapt to different 
methodologies, ensuring consistent software quality 
throughout the testing process. 

1.3. Large Language Models 

Large Language Models (LLMs) are cutting-edge AI 
specialized in natural language understanding and 
generation. Trained on extensive datasets and 
employing neural networks like Transformers, they 
capture linguistic subtleties and perform a variety of 
language tasks such as categorization, analysis, 
translation, and Q&A systems. They discern nuances, 
generate realistic text, and continuously adapt to 
linguistic evolution, raising concerns over data privacy 
and ethics. 

LLMs have significantly impacted sectors like smart 
offices, travel, e-commerce, and government by 
enhancing efficiency and personalization. In software 
development, LLMs are revolutionizing the field. They 

aid in document summarization, provide travel advice, 
and improve user engagement. Tools like GitHub 
Copilot demonstrate their advantage by assisting in 
coding tasks [10]. 

Also, LLMs boost software testing by automating 
tasks, detecting defects, and ensuring reliability. They 
improve fuzz and unit testing, creating test cases, and 
suggesting fixes. Research shows their significant 
benefits in expanding test coverage and error detection. 
Future efforts will focus on optimizing testing tools and 
techniques. 

2. Domain-Specific Software 
Testing 

2.1. Domain-Specific Languages 

Domain-specific languages (DSLs) are specialized 
languages designed for particular domains or tasks, 
offering simplified syntax for ease of use by domain 
experts [11]. They can be integrated with general-
purpose languages (GPL) like Java and C++, enhancing 
development efficiency through tool support such as 
analyzers and compilers. DSLs are crucial in various 
industries, for example, HTML in web development and 
SQL in databases. They automate tasks like API 
documentation and legal document generation, 
improving efficiency and reducing errors. DSLs also 
facilitate team collaboration by allowing non-technical 
members to express requirements in a natural language-
like format. 

For software development, DSLs boost efficiency by 
simplifying complex representations and promoting 
code reusability. They accelerate prototyping and 
iteration, integrating seamlessly into existing tools and 
workflows. Testing DSL-developed programs requires a 
detailed plan with automated test scripts for regression 
testing. Test cases must be readable, and test data should 
reflect the domain specifics to ensure comprehensive 
coverage and identify defects. Maintainability of test 
cases and DSL is essential for ongoing development 
success. 

2.2. Software Testing using DSL from the 
Automobile Industry 

This section addresses the critical need for rigorous 
testing in passenger car product development, ensuring 
quality and performance meet standards.  

Traditionally, automotive testing relies on manual, 
labor-intensive translation of requirements into test 
cases and scripts, causing significant strain on resources. 
To streamline this process and integrate Continuous 
Testing/Continuous Delivery  
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Table 1  
A segment of the test data, describing the test cases, pre-conditions, and the desired test script DSL to be generated. 

Test case Pre-condition Test script 
Forward gear is 
activated when the 
car is moving 
forward 

Configuration.Gears.Drive.is_activated() Signals.Check(signals=[Gears_GearsStatus], 
values=[Gears_GearsStatus_shift], waiting_time=100) 
Gear.Shift('drive') 

Reverse gear is 
activated when the 
car is being driven 
reversely 

Configuration.Gears.Reverse.is_activated() Signals.Check(signals=[Gears_GearsStatus], 
values=[Gears_GearsStatus_shift], waiting_time=100) 
Gear.Shift('reverse') 

At driving P gear is 
deactivated 

Configuration.Gears.Park.is_deactivated() current_speed = car.get_speed() 
current_gear = car.get_gear_status()  
Self.assertNotEqual(current_gear, 'park') 
car.stop() 
car.shift_gear('park') 
current_gear = car.get_gear_status() 

(CT/CD) pipelines, the industry is moving towards 
automated test development. 

The automotive sector is in pursuit of an AI-driven 
solution to streamline the automation of test script 
generation for its proprietary DSLs, which are integral 
to the testing of a spectrum of automotive systems. The 
prevailing manual methodology is marred by 
inefficiencies, susceptibility to errors, and variability in 
code quality, alongside insufficient test coverage. By 
harnessing the capabilities of large language models, an 
AI-powered tool has the potential to orchestrate this 
process, amplifying efficiency, curbing errors, and 
upholding uniformity in code excellence, thereby 
conquering existing challenges and invigorating the 
software development lifecycle. 

2.3. Sample Data 

A total of 51 data samples (Table 1), each representing 
a true mapping from a test case to a test script in a 
particular DSL format. 

For privacy protection purposes, all information, 
program code and data in this paper have been 
anonymized. 

3. Approach 
Broadly speaking, two dominant strategies have 
emerged for augmenting the knowledge base: the art of 
prompt engineering, which is particularly effective for 
modest datasets, and the process of model fine-tuning, 
which is best suited for addressing more substantial 
volumes of data. Considering the current data landscape, 
characterized by a dearth of samples and inherent 
uncertainties, a comprehensive evaluation was 
undertaken to compare the merits of both prompt 
engineering and LLM fine-tuning. This analysis has 
demonstrated that, under the present circumstances of 

limited data, prompt engineering emerges as the slightly 
superior approach. 

Consequently, we have intentionally opted to 
employ the finesse of prompt engineering for the 
automated crafting of test scripts. This strategic choice 
is rooted in its proven ability to deliver optimized 
outcomes, even within the confines of our data scarcity. 
By leveraging the finesse of prompt engineering, we aim 
to transcend the limitations imposed by scant data 
availability, thereby enhancing the overall performance 
and reliability of our test script generation process. 

An integral element of our approach is the selection 
of the foundational Large Language Model. To this end, 
we have undertaken a model selection process, 
meticulously assessing ChatGLM3, Llama3, and Qwen2. 
Following an exhaustive comparison, we determined 
that Llama3's generative capabilities align more closely 
with our requirements. Hence, we have chosen Llama3 
to serve as the underlying LLM for this study. 

3.1. Prompt to Make Precise Test Script 
Generation 

Through a meticulous process of refinement, we've 
perfected our prompt for generating test scripts, as 
shown in the example. This fine-tuning ensures our AI 
model produces outputs that are both accurate and meet 
our objectives. 

Our prompt is divided into four key components 
(Table 2): First, an exhaustive list of potential samples, 
excluding the current focus, provides a comprehensive 
training context. Second, we concentrate on the specific 
test purpose to create targeted, efficient test scripts. 
Third, we provide clear instructions in natural English 
for the LLM to follow, ensuring a seamless and accurate 
generation process. Lastly, we impose constraints to 
optimize the generation process, enabling our LLM 
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model to autonomously produce precise and relevant 
test scripts without excessive input. 

Table 2  
Pseudo code of prompt design. 

Prompt for test script generation (pseudo code) 
dataFrame = All sample mappings except the one 
which is being generated 
testCase = one test case which is being processed 
instruction = “Above is a list of test cases and 
corresponding test scripts, assembled in Json format. 
Please generate test script for the following test case:” 
condition = “Please export generated test script only, 
no leading text, no leading new lines.” 
prompt = dataFrame + CRLF + instruction + testCase 
+ condition 

This structured approach not only boosts script 
accuracy but also enhances the efficiency of our testing 
process, bringing us closer to our goal of fully automated 
AI-driven test script generation. 

3.2. Test Script Generation System 
Overview 

The test script generation system, illustrated in Figure 
3, converts input test cases into executable scripts in the 
partner's DSL language, verifying product functionality. 
It uses outlined methodologies, and scripts are evaluated 
by experts for accuracy and reliability, with corrections 
made as needed. 

Validated scripts are executed and stored, 
informing future prompts and enhancing script 
generation over time. This cycle of evaluation and 
learning improves script quality and reduces manual 
creation, aiming for an automated, self-improving 
system that streamlines software testing. As data 
storage grows, prompts become more complex, 

reflecting deeper learning and improved autonomy in 
script generation, ultimately advancing AI in software 
testing. 

 

Figure 3: Generation System Overview. 

4. Result and Evaluation 

4.1. Evaluation Metric 

This paper employs the Levenshtein Distance [12] to 
evaluate the textual accuracy of our language model, 
providing an objective measure of how closely 
generated text matches the ground truth. This edit 
distance metric, devised by Vladimir Levenshtein, 
quantifies the minimum number of single-character 
edits required to transform one string into another, 
offering insights into model performance. It plays a 
crucial role in fields like Natural Language Processing, 
where it assesses text similarity, and Bioinformatics, 
where it indicates genetic relatedness. Despite its higher 
computational demands for longer strings, our use of 
dynamic programming makes it an efficient tool for our 
analysis. The Levenshtein Distance aids in refining our 
model, ensuring that the text generation is both accurate 
and reliable. 

The formal definition of Levenshtein Distance 
between two arbitrary strings 𝑎 and 𝑏 with length of 
|𝑎| and |𝑏| respectively is given by 

 

𝐥𝐞𝐯(𝑎, 𝑏) =

⎩
⎪⎪
⎨

⎪⎪
⎧

|𝑎|, if |𝑏| = 0,
|𝑏|, if |𝑎| = 0,

𝐥𝐞𝐯൫tail(𝑎), tail(𝑏)൯, if head(𝑎) = head(𝑏),

1 + min ቐ

𝐥𝐞𝐯(tail(𝑎), 𝑏)

𝐥𝐞𝐯൫𝑎, tail(𝑏)൯

𝐥𝐞𝐯൫tail(𝑎), tail(𝑏)൯

, otherwise.

 

 

 
where tail(𝑥)  of any string 𝑥  of length 𝑛  is a 

substring of 𝑥 without the first character, i.e. tail(𝑥) =

tail(𝑥଴𝑥ଵ ⋯ 𝑥௡ିଵ) = 𝑥ଵ𝑥ଶ ⋯ 𝑥௡ିଵ  and head(𝑥)  of any 
string 𝑥 of length 𝑛 is a substring of 𝑥 without the last 
character, i.e. head(𝑥) = head(𝑥଴𝑥ଵ ⋯ 𝑥௡ିଵ) =

𝑥଴𝑥ଵ ⋯ 𝑥௡ିଶ. 

4.2. Result and Discussion 

In our comprehensive analysis, we have utilized the 
Levenshtein Distance alongside the test script 
generation methodologies previously discussed to assess 
the output across all 51 data samples. It is crucial to 
highlight the exceptional stability achieved with the 
prompts we've designed, particularly when employing 
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Llama3 as our LLM. The consistency of Llama3 is 
noteworthy; for a given data sample, or in other words, 
with the same prompt, the model reliably produces 
identical results in each test scenario. This uniformity is 
a testament to the robustness of our prompt engineering 
and the model's ability to deliver reliable outcomes. This 
level of consistency is not only a significant advantage 
in the context of test script generation but also a key 
factor in ensuring the reproducibility of our 
experiments. It allows us to confidently attribute any 
variations in the output to changes in the input data or 
to the model's fine-tuning, rather than to the inherent 
instability of the model itself. By achieving such a high 
degree of stability, we pave the way for more accurate 
and meaningful evaluations of our model's performance, 
which in turn, informs 

Figure 4: Discrete distribution as a horizontal bar 
chart to illustrate the result evaluation. 

our continuous efforts to enhance its capabilities. 
Moreover, this stability ensures that our test script 
generation process is not only efficient but also 
dependable, providing our partners and users with a tool 
that they can trust to deliver consistent results. 

The test results for all 51 samples are displayed in 
the horizontal bar chart in Figure 4, offering a clear 
visual representation of our system's performance. The 
red bars in the chart signify the text lengths of the 
ground truth test scripts, serving as a benchmark for 
comparison. It represents the ideal output, against which 
the effectiveness of our system is measured. The pink 
bars, on the other hand, denote the lengths of the test 
scripts generated by our system. This provides insight 
into the output of our AI-driven script generation 
process, highlighting the efficiency and effectiveness 
with which our system translates prompts into 
executable test scripts. Most importantly, the blue bars 
in the chart represent the Levenshtein Distances for 
each sample, a critical metric that quantifies the 
difference between the generated test scripts and the 
ground truth. This distance is calculated based on the 
minimum number of single-character edits required to 
transform the generated test scripts into the ground 
truth test scripts. In this context, a shorter blue bar 
indicates a higher degree of similarity, suggesting that 
the generated script closely mirrors the ground truth, 
which is the goal of our system. 

As observed from Error! Reference source not 
found., it is evident that the system currently exhibits a 
noticeable margin of error. This finding is further 
accentuated and clarified in the subsequent statistical 
box plot in Figure 5, which provides a more detailed 
visualization of the distribution of errors across our 
dataset. It is apparent that our dataset, comprising a 
mere 51 samples, is significantly limited for a deep 
learning initiative. The consensus in the field is that a 
larger dataset is often necessary to train models to 
achieve higher accuracy and reliability. 

Figure 5: Box plot display of the generated test 
results. 
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However, it is remarkable to note that despite this 
constraint, our system has produced flawless results in 
six instances where the generated test scripts matched 
the ground truth perfectly. This achievement is 
particularly impressive given the small sample size and 
serves as a testament to the potential of our approach 
using prompt engineering with large language models. 
The fact that our system was able to generate scripts 
indistinguishable from the ground truth in these cases 
suggests that with further optimization and a more 
extensive dataset, we could see a substantial 
improvement in the system's overall performance. 

This early success with a limited dataset is not just 
encouraging; it also validates the feasibility of our 
methodological approach. It indicates that our system 
has the innate capacity to learn and produce high-
quality outputs, even when faced with data scarcity. As 
we continue to expand our dataset and refine our 
models, we are confident that the performance will see 
a marked enhancement, further solidifying the 
effectiveness of our AI-driven test script generation 
system in the field of software testing. 

5. Conclusion and Future Work
This research highlights the significant impact of LLMs 
on enhancing software testing efficiency, particularly in 
the automotive sector. Our findings underscore the 
superiority of prompt engineering over model fine-
tuning, especially with smaller datasets. The 
Levenshtein Distance proved a reliable metric for script 
accuracy. Notably, LLMs, such as Llama3, demonstrated 
remarkable consistency, indicating the robustness of our 
framework. Even with a limited dataset, our system 
achieved high accuracy, showcasing LLMs' potential in 
software testing. 

Our study introduces a novel approach to DSL 
testing, with a user-friendly web application for our test 
script generation system, enhancing accessibility and 
testing efficiency. Future work includes expanding our 
dataset to improve script performance and integrating 
the system into CI/CD pipelines for real-time testing. 
Ethical considerations and model transparency will also 
be prioritized. In conclusion, our research establishes 
LLMs as a viable solution for automating DSL test script 
generation, laying the groundwork for future 
advancements in AI-assisted software testing. 
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