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Abstract
Digital image forensics currently mainly uses PRNU noise as a fingerprint to attribute an image to a particular camera.
However PRNU is usually extracted manually using Maximum Likelihood estimation from multiple images from the same
source device. In this paper we show that the PRNU can be learned in a data driven fashion using a ResNet based neural
network. We also show that it is possible to train a neural network for camera attribution directly on the residual noise,
that contains both the PRNU and a random component. We show that both approaches are valid as we obtained results
comparable with the state of the art.
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1. Introduction
Camera source identification consists in the attribution
of an image to the digital camera from which it was
originally captured by using only image features and no
external information. Camera source attribution plays
a pivotal role in forensic investigations, particularly in
the realm of digital imagery and video analysis. The
source information holds significant value for several
reasons, making it a critical aspect of modern forensic
examinations.

One of the primary reasons camera source attribu-
tion is crucial is its role in authenticating evidence. In
any criminal investigation, the authenticity of evidence is
paramount. By determining the camera source, the courts
can verify whether an image or video is an original cap-
ture or if it has been tampered with or manipulated. This
verification process is crucial for establishing the chain
of custody and ensuring the evidence presented in court
is reliable and admissible.

Camera source attribution also helps in determining
the integrity of images. With the advent of sophisticated
photo and video editing software, the risk of forged or
altered visuals has increased. However, each camera
model possesses unique characteristics that act as digital
fingerprints.

Furthermore, camera source attribution aids investi-
gators in linking suspects to crime scenes. Surveillance
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cameras, smartphones, and other digital devices often
capture photographs and videos that serve as crucial ev-
idence in criminal investigations. By determining the
camera source, investigators can establish a connection
between a suspect and a specific crime scene or event.
This information becomes vital in establishing a suspect’s
presence at a particular location and time, strengthening
the case against them.

Camera source attribution also aids in tracking cyber
criminal activity, particularly in cases involving child
exploitation, cyberbullying, or online harassment. By
identifying the camera source, law enforcement can trace
the origin of illegal or harmful content, leading to the
identification and apprehension of offenders. This proac-
tive approach helps protect potential victims and curtail
criminal activities.

Moreover, standardized camera source attribution
practices facilitate cooperation among law enforcement
agencies. Criminal activities often transcend jurisdic-
tional boundaries, and evidence may be collected by dif-
ferent agencies. By following consistent attribution prac-
tices, professionals can seamlessly exchange and analyze
visual evidence, enhancing the overall effectiveness of
criminal investigations.

The rest of the paper is structured as follows: section
2 reviews relevant related works, section 3 describes the
dataset, section 4 describes the proposed method, and in
particular section 4.1 describes a convolutional networks
that is trained to classify the source directly from the
residual noise, that contains both the PRNU and a ran-
dom component, while section 4.2 introduces a different
convolutional network that is trained on PRNU isolated.
The results are presented in section 5 and conclusions
are drawn in section 6.
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2. Related works
Camera attribution techniques are based on the analysis
of the sensor pattern noise (SPN) that is introduced by
the acquisition device. This signal however is the sum of
two components: a random component that depends on
different factors in the image acquisition process and a
deterministic component, that depends on intrinsic prop-
erties of the image sensor. This second component, called
Photo Response Non-Uniformity Noise (PRNU), should
be approximately the same in different images acquired
by the same device and can be used as a fingerprint of the
device itself. The PRNU component of an image can be
estimated from multiple images coming from the same
device as follows. First the image signal 𝐼 is separated
from the residual noise 𝑊 using a low-pass filter 𝑓 :

𝑊 = 𝐼 − 𝑓(𝐼) (1)

Then the deterministic component 𝐾 is separated from
the random component by averaging the residual noise
of multiple images [1] or using a more sophisticated min-
imum variance estimator like in [2, 3]:

𝐾 =

∑︀𝑁
𝑖=1 𝑊𝑖𝐼𝑖∑︀𝑁
𝑖=1 𝐼

2
𝑖

(2)

where 𝑁 is the number of images used to estimate the
PRNU, 𝐼𝑖 is an input image and 𝑊𝑖 is the residual noise
obtained through high-pass filtering. Once the deter-
ministic component 𝐾𝑐 of the camera 𝐶 is known, the
attribution of a new input image 𝐼𝑝 is computed thresh-
olding the correlation between the residual noise of the
input image 𝑊𝑝 = 𝐼𝑝 − 𝑓(𝐼𝑝) and the PRNU of the
sensor (𝐾𝑐).

𝛿(𝐼𝑝 ∈ 𝐶) = 𝜂(𝑐𝑜𝑟𝑟(𝑘𝑐,𝑊𝑝)) (3)

where 𝛿 is the Dirac function and 𝜂 is a thresholding
function.

In the last few years deep learning has revolution-
ized the field of computer vision, and in particular many
state of the art approaches in computer vision tasks such
as classification, segmentation, etc. are based on con-
volutional neural networks[4, 5, 6, 7, 8]. End-to-end
deep learning approaches have been successfully applied
also to image source identification, formulating the attri-
bution as a classification task. Some approaches apply
convolutional neural networks directly to raw images
[9, 10, 11], however often to this approach is preferred the
application of a domain transformation before process-
ing [12, 13, 14, 15]. While the authors of [3] extract the
PRNU manually and then use a convolutional network
for the classification.

In this paper we present two approaches: the first con-
sists in a simple convolutional network applied directly

to the residual noise while the second uses a ResNet based
CNN to extract the PRNU from a single image and then
the same convolutional network for classification. With
both approaches we obtain results comparable with the
state of the art.

3. Dataset
We tested the proposed method on the Vision dataset
[16], that contains labelled images acquired by common
devices. In particular the dataset contains flat and natural
images for each device, where natural images represent
common scenes while flat images represent homogeneus
backgrounds, without edges, and can be used to extract
the PRNU. Some samples from the dataset are shown
in figure 1. We used flat images to compute the resid-
ual noise and the PRNU target. We cropped all images,
keeping only the top left corner of the image with size
256× 256.

4. Method
In this section we describe the proposed method, and in
particular we describe the two approaches mentioned
in section 1: in section 4.1 the input of the network is
the residual noise, with both deterministic and random
components, while in section 4.2 the input of the clas-
sification network is the PRNU extracted by a second
neural network. The two approaches share the the same
convolutional neural network for classification described
in section 4.3.

4.1. Classification from Residual Noise
In this section we describe in detail the process we used to
isolate the residual noise from the input signal. We used
a method based on wavelet decomposition. This method
is based on the assumption that the wavelet coefficients
are modeled as iid Gaussian variables with zero mean
and variance given by a deterministic, unknown spatially
varying variance field. Given the variance field, the image
wavelet coefficients without noise are estimated with a
Minimum Mean Squared Error procedure. The extraction
of the residual noise then consists in the estimation of the
variance field and the estimation of the clean coefficients
using the variance field. This process can be summarized
in the following steps:

Step 1. Calculate the fourth-level wavelet decomposi-
tion of the noise image. The following steps will be taken
with ℎ(𝑖, 𝑗) as an example and the same steps will be
taken for other subbands. Denote the vertical, horizontal
and diagonal subbands as 𝑣(𝑖, 𝑗), ℎ(𝑖, 𝑗), 𝑑(𝑖, 𝑗), where
(𝑖, 𝑗) runs through an index set J that depends on the
decomposition level.
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Figure 1: Sample images: 1a, 1b, 1c, 1d, 1e is the flat image
from Samsung GalaxyS3Mini, Apple iPhone4s, Huawei P9,
LG D290, Sony XperiaZ1Compact and 1f, 1g, 1h, 1i, 1j is the
corresponding nat image.

Step 2. Then use MAP estimation to estimate the lo-
cal covariance of the original noise-free image for each
wavelet coefficient for 4 sizes of a square 𝑊 ×𝑊 neigh-
borhood N, for 𝑊 ∈ {3, 5, 7, 9}.

𝜎̂2
𝑊 = 𝑚𝑎𝑥(0,

1

𝑊 2

∑︁
(𝑖,𝑗)∈𝑁

ℎ2(𝑖, 𝑗)− 𝜎2
0), (𝑖, 𝑗) ∈ 𝐽 (4)

Take the minimum of the 4 variances as the final esti-
mate,

𝜎̂2(𝑖, 𝑗) = 𝑚𝑖𝑛{𝜎2
3(𝑖, 𝑗), 𝜎

2
5(𝑖, 𝑗), 𝜎

2
7(𝑖, 𝑗), 𝜎

2
9(𝑖, 𝑗)}, (𝑖, 𝑗) ∈ 𝐽

(5)

Step 3. Use Winner filter to denoise the wavelet coef-
ficient.

ℎ𝑑𝑒𝑛(𝑖, 𝑗) = ℎ(𝑖, 𝑗)
𝜎̂2(𝑖, 𝑗)

𝜎̂2(𝑖, 𝑗) + 𝜎2
0

(6)

and similar for 𝑣(𝑖, 𝑗) and 𝑑(𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐽
Step 4. Repeat Steps 1–3 for each level and each color

channel. The denoised image is obtained by applying
the inverse wavelet transform to the denoised wavelet
coefficients.

For further details we refer the reader to [17, 18, 15,
19, 20]. The isolated residual noise is the input of the
convolutional neural network described in section 4.3,
that predicts the source camera.

4.2. Classification from PRNU
The most common method for extracting PRNU is MLE,
but MLE requires multiple images from the same device to
extract the PRNU noise from a single image. In this paper
we propose a novel approach based on deep learning to
extract the PRNU component from the residual noise.
According to [21], when the original mapping is closer
to an identity mapping, the residual mapping is easier to
be optimized. Therefore we propose Resnet-based CNN,
and in particular the CSI-CNN architecture[22] shown
in Figure 2.

In order for the model to learn the specific target PRNU,
the input data is residual noise, the target is PRNU noise
extracted with MLE and the loss function is mean squared
error(MSE). The PRNU extracted from the Resnet-based
CNN is then used to train the Convolutional classifier
described in the next section. The complete workflow is
illustrated in figure 3.

4.3. Convolutional Classifier
As we already mentioned in section 4, the final block
of the two classification method is the same Convolu-
tional Network, which architecture is described in this
section. As shown in figure 4, the network is composed
of two convolutional blocks and two dense layers. Each
convolutional block contains two convolutional layers
with Relu activation, followed by a Max Pooling layer.
The input channel of the first convolutional layer is 1,
the kernel size is 3 × 3 and the stride size is 2 × 2 for
all convolutional layers. The pooling window size is 2
× 2. The output of the last dense layer is K-dimensional
vector encoding the probability distribution of the target
cameras. The loss function is the standard cross-entropy
function for classification.
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Figure 2: CSI-CNN architechture of the PRNU generate model.

Figure 3: The pipeline we proposed for image source forensics. I is the input image, F the wavelet based high pass filter, W is
the residual noise noise. The final result is a probability distribution over the K classes representing the acquisition devices.

5. Results
Our classifier is trained to recognize ten camera classes
(K = 10): Samsung GalaxyS3Mini, Apple iPhone4s, Apple
iPhone5c, Huawei P9, LG D290, Lenovo P70A, Sony Xpe-
riaZ1Compact, Microsoft Lumia640LTE, Wiko Ridge4G,
Xiaomi RedmiNote3, two of these devices are from the
same brand. In total, there are 2194 images. As described
in the previous section, we tested two configurations: in
the first the input of the classifier is the residual noise
while in the second the ResNet based neural network is
trained to predict the PRNU from raw images and then
the obtained PRNU is used to train the classifier. Figure
5 shows the learning curve of the ResNet based neural
network. Figure 6 shows the confusion matrices for both
configurations. With both approaches we reached state
of the art results, as shown in table 1. I

6. Conclusion
In this paper we presented two novel deep learning ap-
proaches for camera attribution from raw images, obtain-
ing results comparable with the state of the art. Moreover
we showed that the PRNU, that is the fingerprint of the
image sensor, can be isolated from the input image using
a data driven approach. We also showed that a neural net-
work can be trained to classify the target source camera
directly from the residual noise, that contains both the
PRNU and a random component, obtaining even better
results.

While significant progress has been made in address-
ing image source attribution, there are still areas that
warrant further exploration and development. A poten-
tial avenue for future research and improvements of this
work could be the application of similar techniques to

Figure 4: Structural details of the classification model.
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Table 1
Result Comparison

Model Dataset Target Labels Level Accuracy

Classification from learned PRNU (ours) VISION Camara 10 Patch 90.79%
Classification From Residual Noise (ours) VISION Camera 10 Patch 92.41%
Shallow CNN[23] VISION Camera 35 Patch 80.77%
DenseNet-40[23] VISION Camera 35 Patch 87.96%
Roberto, C et al[3] VISION Social Network 3 Patch 79.48%
Roberto, C et al[3] VISION Social Network 3 Image 89.83%
Bondi, L et al[24] Dresden Camera 18 Patch 72.90%

Figure 5: Learning curve for the PRNU generation.

compressed images. This is particularly important be-
cause the popular social media platforms compress the
uploaded content, hindering the source attribution. An-
other important line of research could be the application
of these models to AI generated content. The advent of
AI-generated images indeed, driven by advancements
in machine learning and deep learning algorithms, has
significant implications across various domains. While
these technologies offer exciting possibilities and creative
opportunities, they also raise important ethical, legal, and
societal concerns.
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