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Abstract

SPARQL service descriptions allow for rich information schemas describing the data inside SPARQL
endpoints. Rewriting information schema (re)-discovery queries to queries using an existing one can
give major performance benefits. Rich service descriptions have many use cases beyond query rewriting.
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A significant challenge for users of SPARQL endpoints is discovering the shape and
quantity of the data exposed inside them. The W3C standards for SPARQL allow for
a Service Description (SD), enumerating the capabilities and capacities of SPARQL end-
point. The Swiss-Prot group provides extensive service descriptions for it’s SPARQL end-
points: (https://hamap.expasy.org/sparql, https://beta.swisslipids.org/sparqlhttps://sparql.rhea-
db.org/sparql and https://sparql.uniprot.org/sparql).

A SD contain metadata about a SPARQL endpoint, such as when it was updated and which
ontologies it uses. Such a SD can be seen as an information schema for a SPARQL endpoint.
Using the Service Description [1], VoID [2] and VoID-Ext [3] vocabularies. We store these in
in-dependant named graphs, which we always name as address of the SPARQL endpoint +
Jwell-known/void. e.g. https://sparql.rhea-db.org/.well-known/void.

FAIR SDs have many use cases, such as:

+ Query optimization and dataset visualizations. The tool SPEX which generates entity
relationship diagrams uses these in part if they are available.

+ Generating ShACL files describing the shape of the data in a SPARQL endpoint.

+ Generate APIs in languages such as R or Python to access the data in the SPARQL endpoint.
To be demonstrated in the CHIST-ERA: Open Research Data - TRIPLE project.

« License and last updated information for FAIR data monitors.

As an example: a common SPARQL query people are thought to use is to discover how
many distinct classes there are in a SPARQL endpoint shown in listing:1. For large datasets like
UniProt this is a non-trivial. Imagine running it as a classical unix pipeline like listing:2. Then
be surprised that this takes a few days to run if you have enough disk space and memory that
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is. This is because there are more than 140 billion distinct triples in UniProt. Of course having
such a SD is not enough as the people who are used to using such queries won’t change to use
a different query on an “information schema” by default. This means we need to rewrite the
query (listing:1) to a query in the form of (listing:3). Query rewriting needs to take into account
variations in prefix, white-space and variable naming. We solve this by using a SPARQL parser
from the RDF4;j project use the abstract SPARQL algebra for the query matching and rewrite.
The original query with is redirected to a new location with a new query (http 301).

Listing 1: "Count distinct classes used in a SPARQL endpoint”

SELECT (COUNT(DISTINCT ?class) AS ?classes)
WHERE { ?subject a ?class . }

Listing 2: "Simple pipeline to count the unique classes in an ntriples file”

sort —u all_triples_in_uniprot.nt | grep rdf:type | sort -u |
we -1

Listing 3: "Rewritten SPARQL query to retrieve the count of the distinct classes in the endpoint.”

SELECT (COUNT(DISTINCT ?classesRaw) AS ?classes)
FROM <http :// sparql.uniprot.org/. well -known/void >
WHERE { [] <http://rdfs.org/ns/void#class> ?classesRaw . |}
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