
Design and Optimization of Heat Exchangers Using Large
Language Models

Sandeep Mishra1,†, Vishal Jadhav1,†, Shirish Karande1 and Venkataramana Runkana1,*

1Tata Research Development and Design Centre, Pune, Maharashtra, India

Abstract
Heat exchangers (HEs) are essential in process industries for efficient thermal energy transfer. Their design and optimization
are crucial for improving energy efficiency, reducing costs, and ensuring reliable system performance. However, these tasks
are complex due to varying fluid properties, phase changes, and fouling. This study proposes the HxLLM framework, utilizing
Large Language Models (LLMs) to aid in the design and optimization of HEs. The framework identifies the mathematical
model for heat transfer in HEs, followed by retrieval-augmented generation (RAG) based code generation and correction. In
this study, a repository was created by extracting mathematical models from relevant literature along with common errors
observed in such tasks. These repositories, combined with carefully crafted prompts, were used to extract the mathematical
model and generate the corresponding code within this framework. We observed that LLMs can effectively identify and
generate initial code for mathematical models, though first responses often needed corrections. The RAG approach for code
correction significantly enhanced code accuracy. This study demonstrates that LLMs, with a RAG framework, can automate
and improve the design and optimization process of HEs, offering a promising tool for engineers and researchers to achieve
better efficiency and cost-effectiveness.

Keywords
Heat Exchangers, Design and Optimization, Large Language Models, Retrieval Augmented Generation

1. Introduction
A heat exchanger is a device designed to transfer heat
between two or more fluids. It plays a critical role in
various industries such as chemical processing, power
generation, HVAC systems, automotive, and renewable
energy [1]. The design and optimization of heat ex-
changers are vital for enhancing energy efficiency, re-
ducing operational costs, and minimizing environmental
impact. Effective heat exchanger design ensures the ef-
ficient transfer of thermal energy, leading to significant
energy savings and reduced greenhouse gas emissions [2].
Currently, methods such as the Log-Mean Temperature
Difference (LMTD), Effectiveness-Number of Transfer
Units (𝜖-NTU), Computational Fluid Dynamics (CFD) [3],
heuristic search techniques like Genetic Algorithms and
artificial intelligence (AI) and machine learning(ML) al-
gorithms based techniques like artificial neural networks
(ANNs) are used for the design and optimization of heat
exchangers [4, 5]. The typical steps in design and opti-
mization of heat exchanger involve problem definition,
selection of design method, initial design, detailed anal-
ysis, optimization, validation and testing, iteration, and
implementation. These steps ensure the heat exchanger

KiL’24: Workshop on Knowledge-infused Learning co-located with
30th ACM KDD Conference, August 26, 2024, Barcelona, Spain
*Corresponding author.
†

These authors contributed equally.
$ sandeepm.mishra@tcs.com (S. Mishra); vi.suja@tcs.com
(V. Jadhav); shirish.karande@tcs.com (S. Karande);
venkat.runkana@tcs.com (V. Runkana)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

operates at optimal efficiency, meeting both economic
and environmental goals [5] .

Designing and optimizing heat exchangers are chal-
lenging tasks, especially since these systems operate in
harsh environments such as power plants. Researchers
have explored various surrogate modeling approaches, in-
cluding machine learning [6, 7, 8, 9, 10] and deep learning
[11, 12, 13, 14, 15, 16], to accelerate this process (further
details on these approaches can be found in appendix 6).
While these methods have demonstrated improvements
in design and optimization, implementing them for new
designs requires engineers to undergo extensive training.
Consequently, applying these approaches to new design
problems can be time-consuming.

Recently, large language models (LLMs) have shown
significant potential in design and optimization within
the engineering domain. Pluhacek et al. [17] used LLMs
like GPT-4 to create new hybrid swarm intelligence opti-
mization algorithms, highlighting their innovative role
in tackling optimization challenges. Ma et al. [18] found
that LLM-generated design solutions were more feasible
and useful than crowdsourced ones, enhancing design
quality through advanced natural language processing.
Sabbatella et al., [19] focused on prompt optimization
to improve LLM performance, emphasizing the impor-
tance of fine-tuning. Ma et al,[20] introduced LLaMoCo,
a framework that fine-tunes LLMs for optimization tasks,
showing superior performance compared to other mod-
els. Yang et al. [21] frame LLMs as optimizers, using
them to generate candidate solutions from natural lan-
guage prompts in an iterative loop. Liu et al.[22] sur-

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sandeepm.mishra@tcs.com
mailto:vi.suja@tcs.com
mailto:shirish.karande@tcs.com
mailto:venkat.runkana@tcs.com
https://creativecommons.org/licenses/by/4.0

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

veyed ChatGPT-related research, highlighting LLM ap-
plications in education, medicine, and physics, driven
by innovations in pre-training and fine-tuning. Kashefi
and Mukerji [23] directly explore using ChatGPT [24]
to generate code for numerical algorithms, with promis-
ing results. Yao et al[25] introduces frameworks like the
"Tree of Thoughts" enable LLMs to explore multiple rea-
soning paths and make global decisions for challenging
tasks. Wang et al.[26] propose an interactive "chain of
repairing" approach where LLM agents work together
to iteratively debug and improve generated code. Xu et
al.[27] proposes integrating information retrieval into
the LLM reasoning chain for knowledge-intensive tasks,
enabling the model to dynamically incorporate relevant
information and modify its reasoning trajectory. Addi-
tionally, Li and Mellou [28] introduce OptiGuide, a frame-
work utilizing LLMs to bridge the gap between supply
chain automation and human comprehension. Chen et
al. [29] present OptiChat, a system equipped with a chat-
bot GUI for diagnosing infeasible optimization models
using natural language interactions. Liu et al. [30] in-
troduce CodeMind, a framework designed to evaluate
the code reasoning abilities of LLMs. CodeMind sup-
ports three code reasoning tasks and shows that while
LLMs can follow control flow constructs and explain how
inputs evolve to output for simple programs, their per-
formance drops for more complex code. Also Ni and
Buehler [31] demonstrate how teams of interacting LLM
agents can autonomously collaborate to solve mechanics
problems, write code, and incorporate domain knowl-
edge. Ahmadi Teshnizi et al.[32] propose OptiMUS, an
LLM-based agent for formulating and solving mixed in-
teger linear programming (MILP) problems from natural
language descriptions. In summary, above studies have
shown their effectiveness of LLMs in creating new al-
gorithms, enhancing design solutions, improving opti-
mization tasks, and generating code. Various frameworks
and approaches, such as LLaMoCo, OptiGuide, and Op-
tiChat, demonstrate LLMs’ capabilities in tackling com-
plex problems, including optimization, code reasoning,
and collaborative tasks.

Inspired by these developments, this study explores
the application of LLMs for automating the design and
optimization of heat exchangers with HxLLM framework.
The primary objective is to develop a system that can gen-
erate mathematical models and optimization algorithms
based on user-input, leveraging the capabilities of LLMs
to determine optimal parameter values and perform cost
optimization. By extracting relevant information from
research articles, LLMs could potentially generate mod-
els and propose optimized designs through an iterative,
interactive process, reducing the manual effort required.

2. Methodology
Designing and optimizing a heat exchanger typically in-
volves the following steps: defining the problem, select-
ing a design method, optimizing, validating and testing,
iterating, and implementing. The design method selec-
tion includes the mathematical formulation describing
heat transfer, while optimization involves finding the
optimal design parameters by evaluating various pairs
of heat transfer metrics and their corresponding design
parameters.

To mimic real-world scenarios, this study relies on
available literature on heat exchanger design and opti-
mization. Initially, some literature texts were provided
as context to the LLM model with prompts to extract
mathematical model summaries. These summaries were
then stored in the mathematical model summary reposi-
tory. For each of these mathematical models, an expert
wrote the Python script to evaluate the mathematical
model equations. Also, the frequent errors were stored
in the code error repository. The details of the mathe-
matical model repository and code error repository are
as follows:

Mathematical Model Repository Our repository, a
CSV file, currently contains over 115 entries, organized
into three columns: ID, Summary, and Code. The Sum-
mary section comprises summaries of articles, which
were generated using prompts (Table 1) for research arti-
cles. After creating the code for each mathematical model,
we processed it through an error correction framework
to ensure its accuracy. Once refined, the code was added
to the Code section corresponding to its respective sum-
mary.

Code Error Repository This repository is a collection
of complex errors that the LLM had difficulty solving,
documented as metadata. Each entry includes the error
description and its solution, provided as the page content
of a document object.

We propose the HxLLM framework for LLM-assisted
design and optimization of heat exchangers. It has three
main components: mathematical model identification,
code retrieval for the mathematical model, and code gen-
eration and correction. In subsequent sections, we dis-
cuss the components of the HxLLM framework and how
it utilizes the mathematical model repository and code
error repository.

2.1. Mathematical model identification
This component extracts the mathematical model from
the user input. User input can also include a research
article that the user might want to use for a new design.
Figure 1 (a) shows the mathematical model identification

2

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

Table 1
Prompt for extracting the mathematical model summary from
user input

<paper>
{raw_text}
</paper>
Please carefully read through the mathematical model
section of the paper above. Identify and list all the
unique equations that are used to construct the model.
For each equation you find:
- Give it a specific, descriptive name based on what
it represents or calculates. For example, if there is an
equation for "tube side heat transfer coefficient", name it
something like "Tube side heat transfer coefficient (ht)".
- Briefly describe how to calculate the equation based
on the information in the paper.
Avoid using generic labels like "Equation ()" for the
names. Also avoid using phrases like "Calculated using
equation ()" in your descriptions. Instead, just provide a
general description of how each equation is calculated.
Output your final list of named and described equations
inside <equations>tags.

component. The user provides scientific text or a research
article (in PDF file format), which is then processed by the
LLM. The LLM is prompted (see table 1 for the prompt
provided to the LLM) to summarize the mathematical
model described in the article, focusing solely on its de-
scription instead of detailed equations. This approach
was chosen due to challenges with accurately parsing
and reading equations (mathematical expressions present
in the article) using our current PyPDF reader for text
extraction from the research article PDF file.

Figure 1: HxLLM Framework

Further, the generated mathematical model is com-
pared with mathematical models available in mathemati-
cal model summary database. Using TF-IDF vectorizer co-
sine similarity score is evaluated between mathematical
model summary generated by LLM and model summary
in mathematical model summary repository.

2.2. Code retrieval for mathematical
model

The highest similarity score obtained with mathemati-
cal model extraction component, is then compared with
threshold similarity score. In this case, if the similarity
score is greater than 75%, the summary corresponding
to the highest similarity score is extracted. Subsequently,
we retrieve the code associated with that summary, which
serves as our sample base code for further processing.
The details of this step are illustrated in Fig. 1 (b). If the
similarity score is less than 75%,then the paper is new
and does not match any summary in our repository, and
an alternative approach is employed. This approach pairs
a most similar research article mathematical model with
its corresponding code and, when presented with a new
research article, uses a sequential prompting technique
to produce the desired output.This essentially represents
a few-shot prompting example, as illustrated in Fig. 2

2.3. Code generation using LLM
The sample base code obtained from previous compo-
nent, along with chain of thought prompting technique,
enables the LLM to generate new code through sequen-
tial prompting (see prompts in table 2 and table 3). In
this component, we created the error database for errors
that were encountered while creating the code for each
mathematical model (see Fig. 1(c)). It contains a list of
potential errors encountered in mathematical models for
heat exchangers. Code generated by LLM is executed,
and if the execution results in an error , then RAG based
technique is used to get similar error and its resolution
. Then again the prompt with similar error and its res-
olution is given to the LLM (see prompt in table 4 and
table prompt 5). This iteration continues until specific
number of times (in this case 3) or terminates early if
the execution is successful. In case code exits with error
then human provides the resolution of the error and then
once again the code generation loop continues.

2.4. Code Generation for Optimization
Algorithm

The final stage in our methodology involves generating
the code for the optimization algorithm, following a sim-
ilar approach to the code generation component. We
start by providing a sequential prompt to generate the
initial code. This code then goes through an iterative
correction process to identify and fix any complex errors,
leveraging suggestions from the RAG system.Here are
the two prompts(Table:6,Table:7) that we have used for
generation of final optimisation algorithm.

After utilizing the Chain of Thought prompting to
generate the code for the optimization algorithm using

3

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

Table 2
Prompt for code generation, by detecting which part of base
code required change

Your task is to recreate the Python code for the specified
research paper. The goal is to generate code that can
be directly copied and pasted for execution on a user’s
system. You will be provided with a series of prompts to
guide you through the process.
<paper>
{a}
</paper>
First, carefully study the mathematical models and equa-
tions provided in the paper above. Pay close attention
to the details and notations used.
<sample_code>
{a1}
</sample_code>
Next, compare the sample code provided above with
the original paper. Identify which functions need to be
changed based on the equations and models described
in the paper.
When writing the code, make sure to write out the full
formula. As an example, for equation (3) instead of sim-
ply representing it as a comment like # equation (3). This
will ensure clarity and completeness.
To optimize your work, only write the equations that
are different and need to be changed. If a function is
already the same as in the original paper, there’s no need
to rewrite it.
Remember, it’s crucial that any generated results are
complete and accurate. Double-check your work to en-
sure the code aligns with the paper’s specifications.
Please provide your response inside <code>tags.
<code>
Your generated code goes here.
</code>
You don’t need to provide the entire code in one go. I
will provide more prompts in a sequence to guide you
through the process. Let’s work together to recreate the
code accurately and efficiently.

the previously created mathematical model as the objec-
tive function, we then pass this code through our final
code correction framework. This framework employs the
same RAG techniques to produce the correct final code.

2.5. HxLLMWorkflow
In summary, HxLLM framework takes user input in the
form of research article PDF and generates the code for
mathematical model and optimization algorithm men-
tioned in the research article. The entire workflow is
presented in Fig, 2. Initially, the workflow processes a
research article focused primarily on heat exchanger mod-
els and their cost optimization. Using LLM and prompt
engineering, we identify the mathematical model. We
then compare the provided article with a database con-

Table 3
Prompt for Generating New Code for Mathematical Model

<original_code>
{a1}
</original_code>
And here are the modified lines of code:
<modified_code>
{b}
</modified_code>
The specific lines or code blocks that need to be replaced
from the modified code into the original code are:
{b}
Please carefully examine the original code and modi-
fied code provided. Your task is to surgically replace the
lines/blocks specified in modified code from the <modi-
fied_code>into the appropriate locations in the <origi-
nal_code>.
When doing the replacements, make sure the modified
code integrates properly with the surrounding original
code. Fix any mismatched variable names, indentation
issues, or other small inconsistencies introduced by in-
serting the modified code.
Once you have an updated version of the code with
the changes incorporated, your next step is to create a
unified linking function. This function should contain all
the key parameters used throughout the different code
blocks. The goal is to have a single master function that
can be called with all the necessary parameters, which
will then appropriately call the other functions and code
blocks in the proper sequence to produce the end result.
When you have completed the unified linking function,
test the code to make sure it runs without any errors.
Debug if necessary.
Finally, provide the full corrected code, from first line to
last line, inside <corrected_code>tags. Format it cleanly
so that I can directly copy and paste your code and run
it without issues.

taining mathematical models from multiple papers to
check for similarity. If a match is found, we retrieve the
base code as a reference for the LLM to generate the
mathematical model described in the paper. To ensure
the accuracy of the generated code, we incorporate a
code correction framework along with RAG techniques.
If the base code is not present, we use few-shot examples
to generate the mathematical model and subsequently
the optimization model.

3. Results and Discussion
In this study, we used the Anthropic Claude 3 Opus model
as the LLM, and several research articles, including [33]
and [34], were utilized as user input.

We applied HxLLM framework to 115 research articles.
In the following subsections, we describe representative
results of our framework for research articles with similar

4

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

Table 4
Prompt for Error Correction

Here is a Python code that encountered an error when
run:
<code>
{code}
</code>
The error message was:
{error_message}
Please carefully read the error message and identify
which line number and what part of the code is causing
the error.
Then, make the necessary changes to fix the code so
that it will run without any errors.
Provide the full corrected code inside <fixed_code>tags.
The pattern should be <fixed_code>Corrected version
of the code </fixed_code>. Double check it so that it
should not contain any type of other errors and should
return results.

Table 5
Prompt for Error Correction with RAG

Here is a Python code that encountered an error when
run:
<code>
{code}
</code>
The error message was:
{error_message}
The solution you can refer to solve this problem is:
{Solution}
Please carefully read the error message and identify
which line number and what part of the code is causing
the error.
<thinking>
Think step-by-step about:
1. What the error message is saying
2. Which line of code it references
3. How the provided solution addresses the issue
</thinking>
Then, make the necessary changes to fix the code so
that it will run without any errors.
Provide the full corrected code inside <fixed_code>tags.

mathematical models present in the mathematical model
repository, as well as for research articles without similar
models in the repository. Finally, we discuss optimization
algorithm code generation. .

Table 6
Prompt - 1 for code generation for final optimisation algorithm

You will be optimizing the mathematical model of a heat
exchanger based on provided code and an optimization
algorithm from a research paper.
Here is the code for the heat exchanger model:
<code>
{Code}
</code>
And here is the paper having the optimization algorithm:
<paper>
{raw_text}
</paper>
Please carefully read through the code and paper to
understand the heat exchanger model and the proposed
optimization approach.
After reviewing the materials, please identify the tar-
get/design variables that the paper aims to optimize,
along with any specified limits on those variables. List
out each variable and its limits (if given).
Next, find the unified linking function described in the
paper. Show how to incorporate this linking function
into the optimization algorithm.
Then, write out the full code that performs the optimiza-
tion of the heat exchanger model. Use the target/design
variables, limits, and unified linking function you identi-
fied from the paper. Aim to closely follow the optimiza-
tion approach from the paper while integrating it with
the existing heat exchanger model code.
Before outputting the final code, take a moment to dou-
ble check that your code follows the optimization algo-
rithm correctly and that you have used the right vari-
ables and limits. Think through the optimization process
step-by-step to verify the logic.
Finally, output the complete optimized code inside
<optimized_code>tags. Also output the final opti-
mized values of the target/design variables inside <opti-
mized_values>tags.
Remember, the goal is to implement the paper’s opti-
mization approach to find optimal values for the heat
exchanger model’s design variables. Let me know if you
have any other questions!

3.1. Model Extraction and Code
Generation for Similar Research
Articles

3.1.1. Mathematical Model Extraction

As mentioned before, it is expected that user will provide
the scientific text containing the mathematical model for
heat exchanger design. This text is passed as context
along with prompt (mentioned in table 1 to LLM for
extraction of the mathematical model and its parameters.
For this study, we have considered the research article
by [33] as the scientific text example. The mathematical
model extracted by LLM for this research article is given

5

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

Table 7
Prompt – 2 for code generation for final optimisation algo-
rithm

You will be combining two code snippets, one for a math-
ematical model and another for an optimization algo-
rithm, to produce a final output that can be copy-pasted
and run.
Here is the code for the mathematical model:
<code1>
{Code}
</code1>
And here is the code for the optimization algorithm:
<code2>
{d}
</code2>
Please carefully review both code snippets and think
about how they should be combined to produce a work-
ing final output. Write out your thought process for
combining the code inside <scratchpad>tags.
<scratchpad>
</scratchpad>
Once you have determined the best way to combine
the code snippets, please provide the final combined
code that can be copy-pasted and run inside <com-
bined_code>tags.
<combined_code>
</combined_code>

Figure 2: HxLLM Framework Workflow

in table 8.

3.1.2. Code Retrieval for Mathematical Model

Post extraction of the mathematical model summary, we
identify the similar mathematical model present in our
mathematical model repository. We experimented with
several retrieval approaches like retrieval using LLM,
parent document retriever and RAG fusion with query
duplication and reformulation along with TF-IDF based
retrieval method, to identify the similar mathematical
model from repository. However, we observed that TF-
IDF based retrieval was providing the satisfactory result

Table 8
LLM-Generated Summary for User-Provided Article

1. Tube side heat transfer coefficient for laminar flow
(ht_laminar): Calculated using the tube inside diameter,
thermal conductivity, tube side Reynolds number, tube
side Prandtl number, and tube length.
2. Tube side heat transfer coefficient for transition flow
(ht_transition): Calculated using the tube inside diam-
eter, thermal conductivity, tube side Reynolds number,
tube side Prandtl number, tube length, and the Darcy
friction factor.
3. Tube side heat transfer coefficient for turbulent flow
(ht_turbulent): Calculated using the tube outside diam-
eter, thermal conductivity, tube side Reynolds number,
tube side Prandtl number, tube side dynamic viscosity,
and wall dynamic viscosity.
4. Darcy friction factor (ft): Calculated using the tube
side Reynolds number.
5. Tube side Reynolds number (Ret): Calculated using
the tube side fluid density, tube side flow velocity, tube
inside diameter, and tube side dynamic viscosity.
6. Tube side flow velocity (vt): Calculated using the tube
side mass flow rate, tube inside diameter, tube side fluid
density, number of tube passes, and number of tubes.
7. Number of tubes (Nt): Calculated approximately using
the shell inside diameter, tube outside diameter, number
of tube passes, and coefficients that depend on the flow
arrangement and number of passes.
8. Tube side Prandtl number (Prt): Calculated using the
tube side dynamic viscosity, tube side specific heat, and
tube side thermal conductivity.
9. Shell side heat transfer coefficient (hs): Calculated us-
ing the shell equivalent diameter, thermal conductivity,
shell side Reynolds number, shell side Prandtl number,
shell side dynamic viscosity, and wall dynamic viscosity.
...continued...

compared to other approaches. Hence, TF-IDF vectorizer
was used to identify the similar mathematical model with
cosine similarity as metric for the similarity. Threshold of
75% for the similarity metric (through trial and error) was
selected to decide if the mathematical model extracted
by LLM is similar to any of the model present in the
repository.

Output of the TF-IDF vectorizer based retrieval for
mathematical model similar to the extracted mathemati-
cal model is shown in table:9. It can be seen that identi-
fied similar mathematical model has similarity score of
0.924 as the elements like, tube side heat transfer coeffi-
cient, friction factor etc are common in both extracted
mathematical model (see table 8) and identified similar
mathematical model (see table 9).

3.1.3. Code generation and Correction

Post identifying the similar mathematical model from
the repository, the python code corresponding to similar

6

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

Table 9
Output of TF-IDF vectorizer method showing the similarity
scores and closest summary

Output of TF-IDF vectorizer method
Closest summary index: 11
Similarity score: 0.924
Closest summary:
1. Heat transfer area (A): Calculated using the heat
transfer rate, overall heat transfer coefficient, LMTD
correction factor, and logarithmic mean temperature
difference.
2. Heat transfer rate (Q): Determined from an energy
balance using the mass flow rates and specific heats of
the hot and cold fluids along with their inlet and outlet
temperatures.
3. Tube side flow velocity (Vi): Calculated from the
tube side mass flow rate, fluid density, number of tubes,
number of tube passes, and tube inner diameter.
4. Number of tubes (NT): Estimated using an empirical
correlation based on the shell diameter, tube outer di-
ameter, and coefficients that depend on the tube layout
and number of passes.
5. Tube side Reynolds number (Re): Calculated from
the tube side flow velocity, tube inner diameter, and
kinematic viscosity of the tube side fluid.
...continued...

Table 10
List of functions to be updated to match key equations from
the original paper

Block-2 function calculate_fs() - Replace with cor-
rect equation for friction factor fs from the paper.
Block-7 function Tube_side_heat_transfer
_coefficient() - Replace ht equations with correct
ones from paper.
Block-12 function Shell_Side_heat_transfer
_coefficient() - Replace hs equation with correct
one from paper.
Block-13 function for overall heat transfer coefficient U -
Replace with equation (2) from paper.
Block-15 function Correction_factor() - Replace
with correct F equation from paper.
Block-19 function calculate_Cod() - Verify discount-
ing equation matches paper.
Block-20 function Calculate_Total_Cost() - Verify
capital cost equation matches paper.

mathematical model was taken as base code (see appendix
5.1) for further processing. Since our aim is to get the
code for extracted mathematical model, we first identify
the changes required in base code by passing the base
code as context with prompt mentioned in table 2 to LLM
and ask LLM to identify the changes required in base
code. The changes suggested by the LLM are given in
table 10.

The changes mentioned in LLM response illustrates

the equations present within the original codebase that
necessitate alterations. It details which segments in the
base code should be modified to ensure the accuracy
and logical integrity of extracted mathematical model.
Following this, we provided the next prompt (Table:3),
instructing the model to include these changes in the
base code and rewrite it coherently. The generated code
for this step is given in appendix 5.2.

To ensure that, the generated code is accurate and runs
without any errors, this code was passed to the code cor-
rection framework. The errors encountered during the
execution of the code, are presented in figure 3. Simple
errors (not present in the error repository) was resolved
by prompting (see table 4) LLM and errors which was not
so obvious for LLM (listed in error repository) were re-
solved through RAG based approach with prompt (given
in table 5). It may happen, though, that errors may still
not be resolved; in that case, the error was resolved man-
ually, and the solution for the error was added to the
error repository for further reference by LLM.

By learning from past errors in this way, the RAG
system can iteratively improve the quality and accuracy
of the code it produces. The final result of the error-free
mathematical code generated by the LLM is provided in
(Appendix:5.2).

Figure 3: Error Correction Framework Response

3.2. Model Extraction and Code
Generation for Non-Similar Research
Articles

In the previous section 3.1, we described the steps for
user input for which we had similar mathematical model.
However, in practical scenario user may come up with
models that may not be similar to model available in
mathematical model repository. In such scenario, we
adopted the different steps for code generation of mathe-
matical models. These steps are described below:

3.2.1. Mathematical Model Extraction

We have selected the research article [34], for which sim-
ilar mathematical model is not available in the model

7

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

Table 11
Summary generated by LLM for dissimilar paper

Shear stress constraint(𝐶1(𝑥)): Ensures the shear stress
is less than the maximum allowable shear stress 𝑆, cal-
culated using the maximum load 𝑃max, coil diameter 𝐷,
and wire diameter 𝑑.
Free length constraint(𝐶2(𝑥)): Ensures the free length
is greater than the minimum required length, calculated
using the deflection 𝛿, number of coils 𝑛, and wire di-
ameter 𝑑.
Minimum wire diameter constraint(𝐶3(𝑥)): Ensures the
wire diameter is greater than the minimum allowable
wire diameter 𝑑min.
Continued...

repository. The provided paper mainly discusses the
application of Rao algorithms to optimize mechanical
system component designs, assessing their comparative
effectiveness against established methods in addressing
complex constraints and mixed-type variables. However,
our database contains papers focused on the cost opti-
mization of heat exchangers. We use the prompt (given
in table 1) to generate the mathematical model summary.
LLM generated summary is given in table 11.

3.2.2. Code Retrieval for Mathematical Model

The mathematical model summary (in table 11) when
compared using TF-IDF vectorizer based retriever, we
found that, similarity index was 0.512, indicating that
no mathematical model closely matches the generated
mathematical model summary. Hence, the sample code
was taken as reference base code for the step of code
generation.

3.2.3. Code generation and Correction

Since we are not using the base code which is similar to
the mathematical model, in this case we ask the LLM to
generate the code from scratch with sample code using
few-shot example prompting approach (Table:12). We
provided a closely matched reference paper, the math-
ematical model related to the paper, and associated it
with the prompt in a way that the model learns from
the example how to build the mathematical model for an
optimization algorithm problem. The result generated
with this approach is given in appendix 5.3.

This code demonstrates that Claude 3 Opus is a very ca-
pable model, able to learn from examples and write code
in a manner required for our case. However, the code
generated by the LLM needs to be executed to ensure
correctness. For this, we sent the code to our code correc-
tion framework (as described in sub section 3.1.3), and
the output of that framework after multiple correction
iterations, is given in appendix:5.4.

Table 12
Mathematical code generation prompt for dissimilar paper

You will be recreating the Python code for a specified re-
search paper. The goal is to generate code that can be
directly copied and pasted for execution. I will provide you
with a series of prompts to guide you through the process.
First, here is a sample paper for your reference:
<sample_paper>
{SAMPLE_PAPER}
</sample_paper>
And here is the sample code associated with the mathemat-
ical model from that paper:
<sample_code>
{SAMPLE_CODE}
</sample_code>
Note that the sample code may be entirely different from the
paper you will be working with. It is only provided to give
you an idea of how to proceed in creating the code for the
mathematical model of the given paper. The mathematical
expressions and logic in your paper may be different.
Now, here is the paper you will be recreating the code for:
<paper>
{PAPER}
</paper>
Please carefully study the mathematical models and equa-
tions provided in this paper.
Next, write out the equations for all the formulas in the
paper as Python functions, similar to how it was done in
the sample code. First, you will need to figure out the logic
and all the formulas. Then, write out each formula as a
Python function.
If there are no mathematical models or formulas given in
the paper, simply state "No mathematical models or
formulas are present in this paper."
When writing the code, make sure to write out the full
formula for clarity. For example, instead of representing
equation (3) as a comment like # equation (3), write
out the entire equation. This will ensure completeness.
It’s crucial that any generated results are complete and
accurate. Double-check your work to ensure the code aligns
with the paper’s specifications.
Please provide your generated code inside <code> tags like
this:
<code>
Your generated code goes here.
</code>
You don’t need to provide the entire code all at once. I will
provide more prompts in a sequence to guide you through
the process. Let’s work together to recreate the code accu-
rately and efficiently.

3.3. Optimisation code generation
Once the mathematical model code is generated, it can
be integrated with optimization algorithm for obtain-
ing the configuration with optimal cost. It is achieved
with two steps, first code generation for optimization
algorithm and second integration of mathematical model

8

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

with optimization algorithm. The first step is performed
in this study, by providing the user provided research
article as context to LLM with prompt (Table:6), to gen-
erate the code for optimization. Here we have illustrated
the output of this approach for research article by Pa-
tel and Rao [33]. This article [33] describes the use of
PSO (Particle Swarm Optimization) techniques, where
the target variables are three design variables: shell in-
ternal diameter, outer tube diameter, and baffle spacing.
These variables are considered for optimization. As per
the prompt, the LLM correctly identified the design vari-
ables along with their limits. It also accurately replicated
the PSO algorithm as described in the paper to optimize
the cost function and determine the values of these tar-
get variables. The code generated by LLM is given in
appendix:5.5.

In next step, prompt (given in table7), that instructs
LLM to combine both the mathematical model and the op-
timization code to produce the final code for optimization.
This combined code was then passed through the code
correction framework. The output of code correction
framework is presented in appendix:5.6.

The LLM performed remarkably well in identifying
and writing most of the code logic accurately. However,
the final answer did not exactly match the results de-
scribed in the paper, as some of the parameter values
were guessed by LLM since it was not present in the ar-
ticle provided by user. Also the code generated by LLM
relied on the pdf text, which did not have accurate infor-
mation of mathematical model equation due to limitation
of pdf text parsing.

3.4. Limitations and Future Work
Research articles are often in pdf format, and parsing
these pdfs to text can result in loss of equation informa-
tion, table or graph image information. In present study,
we have ignored this loss of information. However, the
concrete methodology to parse the information in pdf
files or any other similar files which contains multiple
type of information needs to formulated for better com-
prehension of context by LLMs. Combination of meth-
ods like, use of neural networks [35], vision transformer
based models [36] or LLM based models [37, 38] can
be explored further for overcoming this limitation. The
code generation capability of the LLMs have improved
in recent times, however LLMs require human inputs
(prompts) code generation of complete design and op-
timization of heat exchangers and can not be achieved
in one shot. This further can be improved with agent
based workflows for better code generation. Also, the cur-
rent benchmark studies does not consider requirements
of such design and optimization workflows and can’t be
used for evaluating the framework proposed in this study
and human evaluation approach was selected for anal-

ysis. Also, the current framework relies heavily on the
user input for the mathematical model, its parameters
and optimization algorithm to be used. To reduce this
dependency on user input, the external data repositories
(like the mathematical model repository and code error
repository mentioned in this framework) for material
properties, optimization methodologies, program synthe-
sis, domain specific information etc. can be integrated in
this framework to obtain the reliable and comprehensive
framework for design and optimization across different
design problems. Developing such framework, is the
future goal of the present authors.

4. Conclusion
This study introduced the HxLLM framework, leveraging
Large Language Models (LLMs) to automate the design
and optimization of heat exchangers (HEs). Our approach
integrated mathematical model extraction, code genera-
tion, and error correction using a RAG framework. The
LLMs effectively identified and generated initial code for
the mathematical models, although initial responses of-
ten required corrections. Our results demonstrated that
LLMs, when combined with RAG, offer a promising tool
for automating the design and optimization processes of
HEs. This can lead to increased energy efficiency and
reduced costs in the process industry. However, the study
also highlighted the limitations of current LLM capabili-
ties, particularly in handling diverse mathematical mod-
els and optimizing complex designs without substantial
human input. Future work should focus on enhancing
the LLM’s ability to parse complex information from var-
ious document formats and reducing reliance on user
input by integrating extensive external data repositories.
Additionally, incorporating agent-based workflows may
further improve the code generation process. These ad-
vancements will help create a more comprehensive and
reliable framework for designing and optimizing diverse
engineering systems.

References
[1] J. B. B. Rao, V. R. Raju, Numerical and

heat transfer analysis of shell and tube heat ex-
changer with circular and elliptical tubes, In-
ternational Journal of Mechanical and Materials
Engineering 11 (2016) 2198–2791. URL: https://
doi.org/10.1186/s40712-016-0059-x. doi:10.1186/
s40712-016-0059-x.

[2] S. Jung, H. Jung, Y. Ahn, Optimal eco-
nomic–environmental design of heat exchanger
network in naphtha cracking center considering
fuel type and co2 emissions, Energies 15 (2022).

9

https://doi.org/10.1186/s40712-016-0059-x
https://doi.org/10.1186/s40712-016-0059-x
http://dx.doi.org/10.1186/s40712-016-0059-x
http://dx.doi.org/10.1186/s40712-016-0059-x

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

URL: https://www.mdpi.com/1996-1073/15/24/9538.
doi:10.3390/en15249538.

[3] S. Hall, 2 - heat exchangers, in: S. Hall (Ed.),
Branan’s Rules of Thumb for Chemical Engineers
(Fifth Edition), fifth edition ed., Butterworth-
Heinemann, Oxford, 2012, pp. 27–57. URL:
https://www.sciencedirect.com/science/article/pii/
B9780123877857000025. doi:https://doi.org/
10.1016/B978-0-12-387785-7.00002-5.

[4] K. J. Bell, Heat Exchanger Design for the Process
Industries , Journal of Heat Transfer 126 (2005) 877–
885. URL: https://doi.org/10.1115/1.1833366. doi:10.
1115/1.1833366.

[5] S. Kharaji, Heat exchanger design and optimiza-
tion, in: L. C. Gómez, V. M. V. Flores, M. N.
Procopio (Eds.), Heat Exchangers, IntechOpen, Ri-
jeka, 2021. URL: https://doi.org/10.5772/intechopen.
100450. doi:10.5772/intechopen.100450.

[6] M. Saeed, A. S. Berrouk, Y. F. Al Wahedi,
M. P. Singh, I. A. Dagga, I. Afgan, Perfor-
mance enhancement of a c-shaped printed cir-
cuit heat exchanger in supercritical co2 brayton
cycle: A machine learning-based optimization
study, Case Studies in Thermal Engineering 38
(2022) 102276. URL: https://www.sciencedirect.com/
science/article/pii/S2214157X22005226. doi:https:
//doi.org/10.1016/j.csite.2022.102276.

[7] H. Keramati, F. Hamdullahpur, M. Barzegari,
Deep reinforcement learning for heat exchanger
shape optimization, International Journal of
Heat and Mass Transfer 194 (2022) 123112. URL:
https://www.sciencedirect.com/science/article/pii/
S001793102200583X. doi:https://doi.org/10.
1016/j.ijheatmasstransfer.2022.123112.

[8] J. Zou, T. Hirokawa, J. An, L. Huang, J. Camm,
Recent advances in the applications of machine
learning methods for heat exchanger model-
ing—a review, Frontiers in Energy Research 11
(2023). URL: https://www.frontiersin.org/articles/
10.3389/fenrg.2023.1294531. doi:10.3389/fenrg.
2023.1294531.

[9] L. Huang, J. Zou, B. Liu, Z. Jin, J. Qian, Machine
learning assisted microchannel geometric optimiza-
tion—a case study of channel designs, Energies 17
(2024). URL: https://www.mdpi.com/1996-1073/17/
1/44. doi:10.3390/en17010044.

[10] E. Efatinasab, N. Irannezhad, M. Rampazzo,
A. Diani, Machine and deep learning driven
models for the design of heat exchangers with
micro-finned tubes, Energy and AI 16 (2024)
100370. URL: https://www.sciencedirect.com/
science/article/pii/S2666546824000363. doi:https:
//doi.org/10.1016/j.egyai.2024.100370.

[11] A. Gupta, V. Jadhav, M. Patil, A. Deodhar,
V. Runkana, Forecasting of Fouling in

Air Pre-Heaters Through Deep Learning
ASME 2021 Power Conference (2021). URL:
https://doi.org/10.1115/POWER2021-64665.
doi:10.1115/POWER2021-64665, v001T01A002.

[12] A. Gupta, V. Jadhav, A. Deodhar, V. Runkana,
Physics-assisted long-short-term-memory network
for forecasting of fouling in a regenerative heat ex-
changer, in: Heat Transfer Summer Conference,
volume 85796, American Society of Mechanical En-
gineers, 2022, p. V001T20A001.

[13] S. Sundar, M. C. Rajagopal, H. Zhao, G. Kuntumalla,
Y. Meng, H. C. Chang, C. Shao, P. Ferreira,
N. Miljkovic, S. Sinha, S. Salapaka, Fouling model-
ing and prediction approach for heat exchangers
using deep learning, International Journal of
Heat and Mass Transfer 159 (2020) 120112. URL:
https://www.sciencedirect.com/science/article/pii/
S0017931020330489. doi:https://doi.org/10.
1016/j.ijheatmasstransfer.2020.120112.

[14] V. Jadhav, A. Deodhar, A. Gupta, V. Runkana,
Physics informed neural network for health moni-
toring of an air preheater PHM Society European
Conference, 7(1) (2022). URL: https://doi.org/10.
36001/phme.2022.v7i1.3343. doi:10.36001/phme.
2022.v7i1.3343.

[15] R. Majumdar, V. Jadhav, A. Deodhar, S. Karande,
L. Vig, V. Runkana, Real-time health monitoring of
heat exchangers using hypernetworks and pinns,
2022. arXiv:2212.10032.

[16] Z. Wu, B. Zhang, H. Yu, J. Ren, M. Pan, C. He,
Q. Chen, Accelerating heat exchanger de-
sign by combining physics-informed deep
learning and transfer learning, Chemi-
cal Engineering Science 282 (2023) 119285.
URL: https://www.sciencedirect.com/science/
article/pii/S0009250923008412. doi:https:
//doi.org/10.1016/j.ces.2023.119285.

[17] M. Pluhacek, A. Kazikova, T. Kadavy, A. Viktorin,
R. Senkerik, Leveraging large language models
for the generation of novel metaheuristic optimiza-
tion algorithms, in: Proceedings of the Compan-
ion Conference on Genetic and Evolutionary Com-
putation, GECCO ’23 Companion, Association for
Computing Machinery, New York, NY, USA, 2023,
p. 1812–1820. URL: https://doi.org/10.1145/3583133.
3596401. doi:10.1145/3583133.3596401.

[18] K. Ma, D. Grandi, C. McComb, K. Goucher-Lambert,
Conceptual design generation using large language
models, 2023. arXiv:2306.01779.

[19] A. Sabbatella, A. Ponti, I. Giordani, A. Cande-
lieri, F. Archetti, Prompt optimization in large
language models, Mathematics 12 (2024). URL:
https://www.mdpi.com/2227-7390/12/6/929. doi:10.
3390/math12060929.

[20] Z. Ma, H. Guo, J. Chen, G. Peng, Z. Cao, Y. Ma,

10

https://www.mdpi.com/1996-1073/15/24/9538
http://dx.doi.org/10.3390/en15249538
https://www.sciencedirect.com/science/article/pii/B9780123877857000025
https://www.sciencedirect.com/science/article/pii/B9780123877857000025
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-387785-7.00002-5
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-387785-7.00002-5
https://doi.org/10.1115/1.1833366
http://dx.doi.org/10.1115/1.1833366
http://dx.doi.org/10.1115/1.1833366
https://doi.org/10.5772/intechopen.100450
https://doi.org/10.5772/intechopen.100450
http://dx.doi.org/10.5772/intechopen.100450
https://www.sciencedirect.com/science/article/pii/S2214157X22005226
https://www.sciencedirect.com/science/article/pii/S2214157X22005226
http://dx.doi.org/https://doi.org/10.1016/j.csite.2022.102276
http://dx.doi.org/https://doi.org/10.1016/j.csite.2022.102276
https://www.sciencedirect.com/science/article/pii/S001793102200583X
https://www.sciencedirect.com/science/article/pii/S001793102200583X
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2022.123112
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2022.123112
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1294531
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1294531
http://dx.doi.org/10.3389/fenrg.2023.1294531
http://dx.doi.org/10.3389/fenrg.2023.1294531
https://www.mdpi.com/1996-1073/17/1/44
https://www.mdpi.com/1996-1073/17/1/44
http://dx.doi.org/10.3390/en17010044
https://www.sciencedirect.com/science/article/pii/S2666546824000363
https://www.sciencedirect.com/science/article/pii/S2666546824000363
http://dx.doi.org/https://doi.org/10.1016/j.egyai.2024.100370
http://dx.doi.org/https://doi.org/10.1016/j.egyai.2024.100370
https://doi.org/10.1115/POWER2021-64665
http://dx.doi.org/10.1115/POWER2021-64665
https://www.sciencedirect.com/science/article/pii/S0017931020330489
https://www.sciencedirect.com/science/article/pii/S0017931020330489
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2020.120112
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2020.120112
https://doi.org/10.36001/phme.2022.v7i1.3343
https://doi.org/10.36001/phme.2022.v7i1.3343
http://dx.doi.org/10.36001/phme.2022.v7i1.3343
http://dx.doi.org/10.36001/phme.2022.v7i1.3343
http://arxiv.org/abs/2212.10032
https://www.sciencedirect.com/science/article/pii/S0009250923008412
https://www.sciencedirect.com/science/article/pii/S0009250923008412
http://dx.doi.org/https://doi.org/10.1016/j.ces.2023.119285
http://dx.doi.org/https://doi.org/10.1016/j.ces.2023.119285
https://doi.org/10.1145/3583133.3596401
https://doi.org/10.1145/3583133.3596401
http://dx.doi.org/10.1145/3583133.3596401
http://arxiv.org/abs/2306.01779
https://www.mdpi.com/2227-7390/12/6/929
http://dx.doi.org/10.3390/math12060929
http://dx.doi.org/10.3390/math12060929

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

Y.-J. Gong, Llamoco: Instruction tuning of large
language models for optimization code generation,
2024. arXiv:2403.01131.

[21] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou,
X. Chen, Large language models as optimizers, 2024.
arXiv:2309.03409.

[22] Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian,
H. He, A. Li, M. He, Z. Liu, Z. Wu, L. Zhao,
D. Zhu, X. Li, N. Qiang, D. Shen, T. Liu, B. Ge,
Summary of chatgpt-related research and per-
spective towards the future of large language
models, Meta-Radiology 1 (2023) 100017. URL:
https://www.sciencedirect.com/science/article/pii/
S2950162823000176. doi:https://doi.org/10.
1016/j.metrad.2023.100017.

[23] A. Kashefi, T. Mukerji, Chatgpt for programming
numerical methods, 2023. arXiv:2303.12093.

[24] OpenAI, Chatgpt, https://www.openai.com/
chatgpt, 2023. Accessed: 15 May 2024.

[25] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths,
Y. Cao, K. Narasimhan, Tree of thoughts: Deliberate
problem solving with large language models, 2023.
arXiv:2305.10601.

[26] H. Wang, Z. Liu, S. Wang, G. Cui, N. Ding, Z. Liu,
G. Yu, Intervenor: Prompting the coding ability of
large language models with the interactive chain
of repair, 2024. arXiv:2311.09868.

[27] S. Xu, L. Pang, H. Shen, X. Cheng, T.-S. Chua,
Search-in-the-chain: Interactively enhancing large
language models with search for knowledge-
intensive tasks, 2024. arXiv:2304.14732.

[28] B. Li, K. Mellou, B. Zhang, J. Pathuri, I. Menache,
Large language models for supply chain optimiza-
tion, 2023. arXiv:2307.03875.

[29] H. Chen, G. E. Constante-Flores, C. Li, Diagnos-
ing infeasible optimization problems using large
language models, 2023. arXiv:2308.12923.

[30] C. Liu, S. D. Zhang, A. R. Ibrahimzada, R. Jab-
barvand, Codemind: A framework to challenge
large language models for code reasoning, 2024.
arXiv:2402.09664.

[31] B. Ni, M. J. Buehler, Mechagents: Large language
model multi-agent collaborations can solve me-
chanics problems, generate new data, and integrate
knowledge, 2023. arXiv:2311.08166.

[32] A. AhmadiTeshnizi, W. Gao, M. Udell, Optimus:
Optimization modeling using mip solvers and large
language models, 2023. arXiv:2310.06116.

[33] V. Patel, R. Rao, Design optimization of
shell-and-tube heat exchanger using particle
swarm optimization technique, Applied Ther-
mal Engineering 30 (2010) 1417–1425. URL:
https://www.sciencedirect.com/science/article/pii/
S1359431110001080. doi:https://doi.org/10.
1016/j.applthermaleng.2010.03.001.

[34] R. Venkata Rao, R. Pawar, Design of Me-
chanical Components Using Variants of Rao
Algorithm, 2023, pp. 687–700. doi:10.1007/
978-981-19-9285-8_64.

[35] Z. Wang, J.-C. Liu, Translating math for-
mula images to latex sequences using deep neu-
ral networks with sequence-level training, In-
ternational Journal on Document Analysis and
Recognition (IJDAR) 24 (2021) 1–13. doi:10.1007/
s10032-020-00360-2.

[36] L. Blecher, G. Cucurull, T. Scialom, R. Stojnic,
Nougat: Neural optical understanding for academic
documents, 2023. arXiv:2308.13418.

[37] LlamaIndex, Llamaparse, https://docs.llamaindex.
ai/en/stable/module_guides/loading/connector/
llama_parse/, 2024. Accessed: 15 May 2024.

[38] anthropic, claude3, https://anthropic.com/claude,
2024. Accessed: 15 May 2024.

5. Code Listing

5.1. Retrieved Base Code for similar
research article

import math
import numpy as np

pie = 3.141

def Prandtl_number(mew,Cp,Kt):
Pr = (mew*Cp)/Kt
return Pr

def calculate_fs(Re):
fs = 2 * 0.72 * Re**(-0.15) # equation (28)

return fs

def Number_of_tubes(C, n, DG, do):
NT = C * ((DG/do)**(-n)) # equation (4)
return NT

def Flow_velocity_tube(m, di, rho, NT, s):
Vi = m / ((math.pi/4) * (di**2) * rho * (

NT/s))
equation (3)
return Vi

def Reynolds_number_tube(rho_t,vt,di,mew_t):
Re = (rho_t*vt*di)/mew_t
return Re

def calculate_friction_factor(Re):
ft = (1.82*math.log10(Re) - 1.64)**(-2) #

equation (5)
return ft

11

http://arxiv.org/abs/2403.01131
http://arxiv.org/abs/2309.03409
https://www.sciencedirect.com/science/article/pii/S2950162823000176
https://www.sciencedirect.com/science/article/pii/S2950162823000176
http://dx.doi.org/https://doi.org/10.1016/j.metrad.2023.100017
http://dx.doi.org/https://doi.org/10.1016/j.metrad.2023.100017
http://arxiv.org/abs/2303.12093
https://www.openai.com/chatgpt
https://www.openai.com/chatgpt
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2311.09868
http://arxiv.org/abs/2304.14732
http://arxiv.org/abs/2307.03875
http://arxiv.org/abs/2308.12923
http://arxiv.org/abs/2402.09664
http://arxiv.org/abs/2311.08166
http://arxiv.org/abs/2310.06116
https://www.sciencedirect.com/science/article/pii/S1359431110001080
https://www.sciencedirect.com/science/article/pii/S1359431110001080
http://dx.doi.org/https://doi.org/10.1016/j.applthermaleng.2010.03.001
http://dx.doi.org/https://doi.org/10.1016/j.applthermaleng.2010.03.001
http://dx.doi.org/10.1007/978-981-19-9285-8_64
http://dx.doi.org/10.1007/978-981-19-9285-8_64
http://dx.doi.org/10.1007/s10032-020-00360-2
http://dx.doi.org/10.1007/s10032-020-00360-2
http://arxiv.org/abs/2308.13418
https://docs.llamaindex.ai/en/stable/module_guides/loading/connector/llama_parse/
https://docs.llamaindex.ai/en/stable/module_guides/loading/connector/llama_parse/
https://docs.llamaindex.ai/en/stable/module_guides/loading/connector/llama_parse/
https://anthropic.com/claude

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

def Tube_side_heat_transfer_coefficient(di,
Re, Pr, k):

Nu = 0.023 * (Re**0.8) * (Pr**0.4) #
equation (6)

hi = (Nu * k) / di
return hi

def Shell_hydaulic_diameter(St, do):
if St == 1.25*do: # square pitch

De = (1.27 / do) * (St**2 - 0.785*do**2)
equation (7a)

else: # triangular pitch
De = (1.10 / do) * (St**2 - 0.917*do**2)
equation (7b)

return De

def Cross_section_area(St, do, e, DG):
As = (St - do) * e * DG / St # equation (8)

return As

def Flow_velocity_shell(ms,rho_s,As):
vs = ms/(rho_s*As)
return vs

def Reynolds_number_shell(ms,de,As,mew_s):
re = (ms*de)/(As*mew_s)
return re

def Shell_Side_heat_transfer_coefficient(k,
De, Re, Pr, mu,

mu0, jh):
Nu = jh * Re * (Pr**(1/3)) * ((mu/mu0)

**0.14)
equation (11)
ho = (Nu * k) / De
return ho

def Overall_heat_transfer_coefficient(hi, di,
do, Rfi, kw,

xw, Rfo, ho):
K = 1 / ((do/(hi*di)) + (Rfi*do/di) + (xw/

kw) + Rfo +
(1/ho)) # equation (12)
return K

def LMTD(Th_i,Th_o,Tc_i,Tc_o):
deltaT1 = Th_i - Tc_o
deltaT2 = Th_o - Tc_i
lmtd = (deltaT1 - deltaT2) / math.log(

deltaT1 / deltaT2)
return lmtd

def Correction_factor(R, P):
numerator = ((R**2 + 1)**0.5) / (R - 1)
denominator = math.log((1 - P) / (1 - P*R))

/ math.log
((2 - P*(R + 1 - (R**2 + 1)**0.5)) /
(2 - P*(R + 1 + (R**2 + 1)**0.5)))

F = numerator * denominator # equation (20)

return F

def Sensible_heat(Cp_h,mh,Th_i,Th_o):
Q = mh*Cp_h*(Th_i-Th_o)
return Q

def calculate_DPt(s, L, di, rho, Vi, mu, mu0,
m):

DPt = s * ((0.092 * (L/di) * ((rho * Vi**2)
/2) *

((mu/mu0)**(-m))) + 2.5) * ((rho * Vi**2)
/2)

equation (16)
return DPt

def calculate_DPs(jf, DG, De, Le, rho, Vo, mu,
mu0):

DPs = 8 * jf * (DG/De) * (Le/DG) *
((rho * Vo**2)/2) * ((mu/mu0)**(-0.14))
equation (16)
return DPs

def calculate_Cod(n, i, C_o):
X = np.arange(1, n + 1) # Create an array

of X
values from 1 to n
terms = C_o / (1 + i) ** X
C_od = np.sum(terms)
return C_od

def Calculate_Total_Cost(C, n, DG, do, m,
rho_t, rho_s,

s, mew_t, L, Kt, St, e, ms, mew_s, Ks, Rfi,
Rfo, Th_i,

Th_o, Tc_i, Tc_o, Cp_h, Cp_c, etta, ny, H, Ce,
i, kw,

xw, jh, jf, mu0, m_exp):
di = 0.8*do
NT = Number_of_tubes(C, n, DG, do)
Vi = Flow_velocity_tube(m, di, rho_t, NT,

s)
Re_t = Reynolds_number_tube(rho_t, Vi, di,

mew_t)
Pr_t = Prandtl_number(mew_t, Cp_c, Kt)
hi = Tube_side_heat_transfer_coefficient(

di, Re_t,
Pr_t, Kt)

De = Shell_hydaulic_diameter(St, do)
As = Cross_section_area(St, do, e, DG)
Vo = Flow_velocity_shell(ms, rho_s, As)
Re_s = Reynolds_number_shell(ms, De, As,

mew_s)
Pr_s = Prandtl_number(mew_s, Cp_h, Ks)
ho = Shell_Side_heat_transfer_coefficient(

Ks, De, Re_s,
Pr_s, mew_s, mu0, jh)

12

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

K = Overall_heat_transfer_coefficient(hi,
di, do, Rfi, kw,

xw, Rfo, ho)
lmtd = LMTD(Th_i, Th_o, Tc_i, Tc_o)
R = (Th_i - Th_o) / (Tc_o - Tc_i)
P = (Tc_o - Tc_i) / (Th_i - Tc_i)
F = Correction_factor(R, P)
A = (m*Cp_c*(Tc_o-Tc_i))/(K*F*lmtd)
Span = (A/(math.pi*do*NT))

DPt = calculate_DPt(s, Span, di, rho_t, Vi,
mew_t, mu0,

m_exp)
DPs = calculate_DPs(jf, DG, De, L, rho_s,

Vo, mew_s, mu0)

a1 = 8000
a2 = 259.2
a3 = 0.93 # Exchanger made with Stainless

steel for both
shell and tubes
C_i = a1 + a2 * (A**(a3/3))

P = 1 / etta * (((m / rho_t) * DPt) + ((ms
/ rho_s) * DPs))

C_o = P * Ce * H
C_od = calculate_Cod(ny, i, C_o)

C_tot = C_i + C_od
return C_tot

Unified linking function
def main():

C = 0.158
n = 2.263
DG = 0.54
do = 0.0254
m = 18.80
rho_t = 995
rho_s = 850
s = 4
mew_t = 0.00358
L = 4.88
Kt = 0.13
St = 1.25*do
e = 0.127
ms = 5.52
mew_s = 0.0004
Ks = 0.13
Rfi = 0.00061
Rfo = 0.00061
Th_i = 199
Th_o = 93.3
Tc_i = 37.80
Tc_o = 76.7
Cp_h = 2.47
Cp_c = 2.05
etta = 0.9
ny = 10
H = 7000

Ce = 0.12
i = 10
kw = 50
xw = 0.0005
jh = 0.0035
jf = 0.0035
mu0 = 0.0004
m_exp = 0.25

C_tot = Calculate_Total_Cost(C, n, DG, do,
m, rho_t,

rho_s, s, mew_t, L, Kt, St, e, ms, mew_s,
Ks, Rfi, Rfo,

Th_i, Th_o, Tc_i, Tc_o, Cp_h, Cp_c, etta,
ny, H, Ce, i,

kw, xw, jh, jf, mu0, m_exp)
print(f""The value of Objective function (

Total cost)
is = {C_tot}"")

if __name__ == ""__main__"":
main()

5.2. Final Mathematical code for similar
research article

This is the final result of the error-free mathematical code
generated by the LLM.

import math
import numpy as np

pie = 3.141

def Prandtl_number(mew,Cp,Kt):
Pr = (mew*Cp)/Kt
return Pr

def calculate_fs(b0, Re):
fs = 2 * b0 * Re**(-0.15)
return fs

def Number_of_tubes(C,n1,Ds,d0):
Nt = C*((Ds/d0)**n1)
return Nt

def Flow_velocity_tube(mt,dt,rho_t,n,Nt):
vt = (mt*(n/Nt))/((pie/4)*(dt**2)*rho_t)
return vt

def Reynolds_number_tube(rho_t,vt,di,mew_t):
Re = (rho_t*vt*di)/mew_t
return Re

def calculate_friction_factor(Re):
ft = (1.82 * math.log10(Re) - 1.64)**(-2)
return ft

def Tube_side_heat_transfer_coefficient(Kt,di

13

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

,Re,Pr,L,d0,mew_t,mew_w):
if Re < 2300:

ht = (Kt/di)*(3.657+(0.0677*(Re*Pr*(di/L
))

1.33)/(1+0.1*Pr*((Re*di/L)0.3)))
elif 2300 < Re < 10000:

ft = calculate_friction_factor(Re)
ht = (Kt/di)*((ft/8)*(Re-1000)*Pr)

/(1+12.7
math.sqrt(ft/8)(Pr**(2/3)-1))*(1+(di/L

)**0.67)
else:

ht = 0.027*(Kt/d0)*(Re**0.8)*(Pr**(1/3))
*

((mew_t/mew_w)**0.14)
return ht

def Shell_hydaulic_diameter(Pt,d0):
De = 4*(Pt**2 - (math.pi*d0**2)/4)/(math.

pi*d0)
return De

def Cross_section_area(Ds,b,C1):
As = Ds*b*C1
return As

def Flow_velocity_shell(ms,rho_s,As):
vs = ms/(rho_s*As)
return vs

def Reynolds_number_shell(ms,de,As,mew_s):
re = (ms*de)/(As*mew_s)
return re

def Shell_Side_heat_transfer_coefficient(Ks,
De,

Re,Pr,mew_s,mew_w):
hs = 0.36*(Ks/De)*(Re**0.55)*(Pr**(1/3))*
((mew_s/mew_w)**0.14)
return hs

def LMTD(Tis,Tos,Tit,Tot):
deltaT1 = Tis - Tot
deltaT2 = Tos - Tit
lmtd = (deltaT1 - deltaT2) /
math.log(deltaT1 / deltaT2)
return lmtd

def Correction_factor(Tis, Tos, Tit, Tot):
R = (Tis - Tos) / (Tot - Tit)
P = (Tot - Tit) / (Tis - Tit)
numerator = math.sqrt(R**2 + 1) / (R - 1) *

math.log((1 - P) / (1 - P*R))
denominator = math.log((2 - P*(R + 1 -
math.sqrt(R**2 + 1))) / (2 - P*(R + 1 +
math.sqrt(R**2 + 1))))
F = numerator / denominator
return F

def Sensible_heat(ms,Cps,Tis,Tos):
Q = ms*Cps*(Tis-Tos)
return Q

def calculate_DPt(rho_t,vt,L,dt,ft,n):
p = 4
DPt = rho_t*vt**2/2 * ((L/dt)*ft + p) * n
return DPt

def calculate_DPs(fs,rho_s,vs,L,B,Ds,De):
DPs = fs * rho_s*vs**2/2 * (L/B) * (Ds/De)
return DPs

def calculate_Cod(n, i, C_o):
X = np.arange(1, n + 1)
terms = C_o / (1 + i) ** X
C_od = np.sum(terms)
return C_od

def Calculate_Total_Cost(C, n1, Ds, mt, rho_t,

rho_s, n, mew_t, L, Kt, Pt, d0, B, ms, mew_s,
Ks, Rfs, Rft, Tis, Tos, Tit, Tot, Cp_h, Cp_c,
etta, ny, H, Ce, i, b, C1, mew_w):

p = 4
di = 0.8*d0
De = Shell_hydaulic_diameter(Pt,d0)
Re_s = Reynolds_number_shell(ms,De,
Cross_section_area(Ds,b,C1),mew_s)
Pr_s = Prandtl_number(mew_s,Cp_h,Ks)
hs = Shell_Side_heat_transfer_coefficient
(Ks,De,Re_s,Pr_s,mew_s,mew_w)
Nt = Number_of_tubes(C, n1, Ds, d0)
vt = Flow_velocity_tube(mt,di,rho_t,n,Nt)
Re_t = Reynolds_number_tube(rho_t,vt,di,

mew_t)
Pr_t = Prandtl_number(mew_t,Cp_c,Kt)
ht = Tube_side_heat_transfer_coefficient
(Kt,di,Re_t,Pr_t,L,d0,mew_t,mew_w)
U = 1/((1/hs)+Rfs+(d0/di)*(Rft+(1/ht)))
lmtd = LMTD(Tis,Tos,Tit,Tot)
F = Correction_factor(Tis,Tos,Tit,Tot)
A = (mt*Cp_c*(Tot-Tit))/(U*F*lmtd)
Span = (A/(pie*d0*Nt))
ft = calculate_friction_factor(Re_t)
DPt = calculate_DPt(rho_t,vt,Span,di,ft,n)
b0 = 0.72
fs = calculate_fs(b0, Re_s)
vs = Flow_velocity_shell(ms,rho_s,
Cross_section_area(Ds,b,C1))
DPs = calculate_DPs(fs,rho_s,vs,L,B,Ds,De)
a1 = 8000
a2 = 259.2
a3 = 0.93
C_i = a1 + a2 * (A**(a3/3))
P = 1 / etta * (((mt / rho_t) * DPt) +
((ms / rho_s) * DPs))
C_o = P * Ce * H
C_od = calculate_Cod(ny, i, C_o)
C_tot = C_i + C_od

14

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

return C_tot

5.3. First Instance Code generation for
Non Similar research article

import math

Rao-1 algorithm
def rao1_update(Xu_v_w, Xbest_v_w, Xworst_v_w,

r1):
return Xu_v_w + r1 * (Xbest_v_w -

Xworst_v_w)

Rao-2 algorithm
def rao2_update(Xu_v_w, Xbest_v_w, Xworst_v_w,

r1, r2,
Xu_v_w_or_XU_v_w, XU_v_w_or_Xu_v_w):

return Xu_v_w + r1 * (Xbest_v_w -
Xworst_v_w) + r2

* (abs(Xu_v_w_or_XU_v_w) - abs(
XU_v_w_or_Xu_v_w))

Rao-3 algorithm
def rao3_update(Xu_v_w, Xbest_v_w, Xworst_v_w,

r1, r2,
Xu_v_w_or_XU_v_w, XU_v_w_or_Xu_v_w):

return Xu_v_w + r1 * (Xbest_v_w - abs(
Xworst_v_w))

+ r2 * (abs(Xu_v_w_or_XU_v_w) - (
XU_v_w_or_Xu_v_w))

Helical compression spring objective
function

def helical_spring_volume(D, d, n):
return math.pi**2 * D * d**2 * (n+2) / 4

Hydrostatic thrust bearing objective
function

def hydrostatic_thrust_bearing_power_loss(Q,
Po, Ef):

return Q * Po / 0.7 + Ef

Multiple disc clutch brake objective
function

def multiple_disc_clutch_brake_mass(ro, ri, t,
z, rho):

return math.pi * (ro**2 - ri**2) * t * (z
+1) * rho

Cylindrical roller bearing objective
function

def
cylindrical_roller_bearing_dynamic_capacity
(bm, lv,

gamma, Dr, le, Z):
return 207.9 * bm * lv *
(1 + (1.04 * ((1-gamma)/(1+gamma))

(143/108))

(9/2))**(-2/9)
*gamma**(2/9) * (1-gamma)**(29/27) * (1+

gamma)
**(1/4)
* (le)**(7/9) * Dr**(29/27) * Z**(3/4)

Spherical roller bearing objective function
def spherical_roller_bearing_dynamic_capacity

(bm,
lv, gamma, Dr, le, Z, alpha):

return 207.9 * bm * lv *
(1 + (1.04 * ((1-gamma)/(1+gamma))

(143/108))(9/2))**
(-2/9) * gamma**(2/9) * (1-gamma)**(29/27)
* (1+gamma)**(1/4) *
(le*math.cos(alpha))**(7/9) * Z**(3/4) * Dr

**(29/27)

Plate fin heat exchanger objective
function

def
plate_fin_heat_exchanger_entropy_generation

(epsilon, Tci, Thi, Rc, teh, Cph, dPh, Phi,
tec, Cpc, dPc, Pci):

return (1-epsilon) * ((Tci-Thi)**2 /
(Tci*Thi)) + (Rc*teh/Cph) * (dPh/Phi)
+ (Rc*tec/Cpc) * (dPc/Pci)

Shell and tube heat exchanger objective
function

def shell_and_tube_heat_exchanger_total_cost(
Ci, Cod):

return Ci + Cod

Welded beam objective function
def welded_beam_cost(c1, x1, t, l, h, c2, b,

L):
return (1+c1) * (x1*t + l) * h**2 + c2*t*b

*(l+L)

Belt-pulley drive objective function
def belt_pulley_drive_weight(rho, b, d1,
t1, d2, t2, d1_1, t1_1, d1_2, t1_2):

return math.pi * rho * b * (d1*t1 +
d2*t2 + d1_1*t1_1 + d1_2*t1_2)

Hollow shaft objective function
def hollow_shaft_weight(do, di, L, rho):

return math.pi/4 * (do**2 - di**2) * L *
rho

def run_optimization(Xu_v_w, Xbest_v_w,
Xworst_v_w, r1, r2, Xu_v_w_or_XU_v_w,
XU_v_w_or_Xu_v_w,D, d, n, Q, Po, Ef,
ro, ri, t, z, rho, bm, lv, gamma, Dr,
le, Z, alpha, epsilon, Tci, Thi, Rc,
teh, Cph, dPh, Phi, tec, Cpc, dPc,
Pci, Ci, Cod, c1, x1, l, h, c2, b, L, do, di):

15

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

"""
Runs the optimization process using
the Rao algorithms and objective functions.

Parameters:
- Xu_v_w, Xbest_v_w, Xworst_v_w,
r1, r2, Xu_v_w_or_XU_v_w,
XU_v_w_or_Xu_v_w: Parameters for Rao

algorithms
- D, d, n: Parameters for helical
compression spring
- Q, Po, Ef: Parameters for hydrostatic

thrust bearing
- ro, ri, t, z, rho: Parameters for

multiple
disc clutch brake
- bm, lv, gamma, Dr, le, Z: Parameters for
cylindrical roller bearing
- alpha: Additional parameter for

spherical
roller bearing
- epsilon, Tci, Thi, Rc, teh, Cph, dPh,

Phi,
tec, Cpc, dPc, Pci: Parameters for plate

fin
heat exchanger
- Ci, Cod: Parameters for shell and tube

heat exchanger
- c1, x1, l, h, c2, b, L: Parameters for

welded beam
- do, di: Additional parameters for hollow

shaft
"""

Run Rao algorithms
rao1_result = rao1_update(Xu_v_w,

Xbest_v_w, Xworst_v_w, r1)
rao2_result = rao2_update(Xu_v_w,

Xbest_v_w, Xworst_v_w,
r1, r2, Xu_v_w_or_XU_v_w, XU_v_w_or_Xu_v_w)

rao3_result = rao3_update(Xu_v_w,
Xbest_v_w, Xworst_v_w,

r1, r2, Xu_v_w_or_XU_v_w, XU_v_w_or_Xu_v_w)

Calculate objective functions
helical_spring_result =

helical_spring_volume
(D, d, n)
hydrostatic_thrust_bearing_result =

hydrostatic_
thrust_bearing_power_loss(Q, Po, Ef)
multiple_disc_clutch_brake_result =
multiple_disc_clutch_brake_mass(ro, ri, t,

z, rho)
cylindrical_roller_bearing_result =

cylindrical
_roller_bearing_dynamic_capacity

(bm, lv, gamma, Dr, le, Z)
spherical_roller_bearing_result =

spherical
_roller_bearing_dynamic_capacity
(bm, lv, gamma, Dr, le, Z, alpha)
plate
_fin_heat_exchanger_result = plate
_fin_heat_exchanger_entropy_generation
(epsilon, Tci, Thi, Rc, teh, Cph, dPh, Phi,

tec, Cpc, dPc, Pci)
shell_and_tube_heat_exchanger_result =

shell
_and_tube_heat_exchanger_total_cost
(Ci, Cod)
welded_beam_result = welded_beam_cost(c1,
x1, t, l, h, c2, b, L)
belt_pulley_drive_result =

belt_pulley_drive_weight
(rho, b, d1, t1, d2, t2, d1_1, t1_1, d1_2,

t1_2)
hollow_shaft_result = hollow_shaft_weight(

do, di, L, rho)

Return results
return {

’rao1_result’: rao1_result,
’rao2_result’: rao2_result,
’rao3_result’: rao3_result,
’helical_spring_result’:
helical
_spring_result,
’hydrostatic
_thrust_bearing_result’: hydrostatic
_thrust_bearing_result,
’multiple_disc_clutch_brake_result’:

multiple
_disc_clutch_brake_result,
’cylindrical_roller_bearing_result’:

cylindrical
_roller_bearing_result,
’spherical_roller_bearing_result’:
spherical
_roller_bearing_result,
’plate_fin_heat_exchanger_result’:
plate_fin_heat_exchanger_result,
’shell_and_tube_heat_exchanger_result’:

shell
_and_tube_heat_exchanger_result,
’welded_beam_result’: welded_beam_result

,
’belt_pulley_drive_result’:

belt_pulley_drive_result,
’hollow_shaft_result’:

hollow_shaft_result
}

16

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

5.4. Final revised Mathematical model for
the non-similar research article
following the code correction
framework

import math

Rao-1 algorithm
def rao1_update(Xu_v_w, Xbest_v_w, Xworst_v_w,

r1):
return Xu_v_w + r1 * (Xbest_v_w -

Xworst_v_w)

Rao-2 algorithm
def rao2_update
(Xu_v_w, Xbest_v_w, Xworst_v_w, r1,
r2, Xu_v_w_or_XU_v_w, XU_v_w_or_Xu_v_w):

return
Xu_v_w + r1 * (Xbest_v_w - Xworst_v_w)
+ r2 * (abs(Xu_v_w_or_XU_v_w) - abs(

XU_v_w_or_Xu_v_w))

Rao-3 algorithm
def rao3_update(Xu_v_w, Xbest_v_w, Xworst_v_w,

r1, r2,
Xu_v_w_or_XU_v_w, XU_v_w_or_Xu_v_w):return
Xu_v_w + r1 * (Xbest_v_w - abs(Xworst_v_w)) +
r2 * (abs(Xu_v_w_or_XU_v_w) - (

XU_v_w_or_Xu_v_w))

Helical compression spring objective
function

def helical_spring_volume(D, d, n):
return math.pi**2 * D * d**2 * (n+2) / 4

Hydrostatic thrust bearing objective
function

def hydrostatic_thrust_bearing_power_loss(Q,
Po, Ef):

return Q * Po / 0.7 + Ef

Multiple disc clutch brake objective
function

def multiple_disc_clutch_brake_mass(ro, ri, t,
z, rho):

return math.pi * (ro**2 - ri**2) * t * (z
+1) * rho

Cylindrical roller bearing objective
function

def
cylindrical_roller_bearing_dynamic_capacity

(bm, lv, gamma, Dr, le, Z):
return 207.9 * bm * lv *
(1 + (1.04 * ((1-gamma)/(1+gamma))
(143/108))(9/2))**(-2/9)
* gamma**(2/9) * (1-gamma)**(29/27) * (1+

gamma)**(1/4)

* (le)**(7/9) * Dr**(29/27) * Z**(3/4)

Spherical roller bearing objective function
def spherical_roller_bearing_dynamic_capacity
(bm, lv, gamma, Dr, le, Z, alpha):return
207.9 * bm * lv * (1 +
(1.04 * ((1-gamma)/(1+gamma))**(143/108))
(9/2))(-2/9) * gamma**(2/9) * (1-gamma)

**(29/27)
* (1+gamma)**(1/4) * (le*math.cos(alpha))

(7/9) * Z(3/4) *
Dr**(29/27)

Plate fin heat exchanger objective function
def

plate_fin_heat_exchanger_entropy_generation

(epsilon, Tci, Thi, Rc, teh, Cph,
dPh, Phi, tec, Cpc, dPc, Pci):return
(1-epsilon) * ((Tci-Thi)**2 / (Tci*Thi)) +
(Rc*teh/Cph) * (dPh/Phi) + (Rc*tec/Cpc) * (

dPc/Pci)

Shell and tube heat exchanger objective
function

def shell_and_tube_heat_exchanger_total_cost(
Ci, Cod):

return Ci + Cod

Welded beam objective function
def welded_beam_cost(c1, x1, t, l, h, c2, b,

L):
return (1+c1) * (x1*t + l) * h**2 + c2*t*b

*(l+L)

Belt-pulley drive objective function
def belt_pulley_drive_weight(rho, b, d1, t1,
d2, t2, d1_1, t1_1, d1_2, t1_2):return
math.pi * rho * b * (d1*t1 + d2*t2 + d1_1*

t1_1 + d1_2*t1_2)

Hollow shaft objective function
def hollow_shaft_weight(do, di, L, rho):

return math.pi/4 * (do**2 - di**2) * L *
rho

def run_optimization(Xu_v_w, Xbest_v_w,
Xworst_v_w, r1, r2, Xu_v_w_or_XU_v_w,

XU_v_w_or_Xu_v_w,
D, d, n, Q, Po, Ef, ro, ri, t, z, rho, bm,
lv, gamma, Dr, le, Z, alpha,, Tci, Thi, Rc,

teh,
Cph, dPh, Phi, tec, Cpc, dPc, Pci, Ci, Cod,
c1, x1, l, h, c2, b, L, do, di):""""""

Runs the optimization process using the
Rao algorithms

and objective functions.

Parameters:
- Xu_v_w, Xbest_v_w, Xworst_v_w, r1, r2,

17

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

Xu_v_w_or_XU_v_w, XU_v_w_or_Xu_v_w:
Parameters

for Rao algorithms
- D, d, n: Parameters
for helical compression spring
- Q, Po, Ef: Parameters
for hydrostatic thrust bearing
- ro, ri, t, z, rho: Parameters
for multiple disc clutch brake
- bm, lv, gamma, Dr, le, Z: Parameters
for cylindrical roller bearing
- alpha: Additional
parameter for spherical roller bearing
- epsilon, Tci, Thi, Rc,
teh, Cph, dPh, Phi, tec, Cpc, dPc, Pci:

Parameters
for plate fin heat exchanger
- Ci, Cod: Parameters for shell and tube

heat exchanger
- c1, x1, l, h, c2, b, L: Parameters for

welded beam
- do, di: Additional parameters for hollow

shaft
""""""

Run Rao algorithms
rao1_result = rao1_update(Xu_v_w,

Xbest_v_w,
Xworst_v_w, r1)
rao2_result = rao2_update(Xu_v_w,

Xbest_v_w,
Xworst_v_w, r1, r2, Xu_v_w_or_XU_v_w,

XU_v_w_or_Xu_v_w)
rao3_result = rao3_update(Xu_v_w,

Xbest_v_w,
Xworst_v_w, r1, r2, Xu_v_w_or_XU_v_w,

XU_v_w_or_Xu_v_w)

Calculate objective functions
helical_spring_result =

helical_spring_volume
(D, d, n)
hydrostatic_thrust_bearing_
result =

hydrostatic_thrust_bearing_power_loss
(Q, Po, Ef)
multiple_disc_clutch_brake_
result = multiple_disc_clutch_brake_mass
(ro, ri, t, z, rho)
cylindrical_roller_bearing_
result =

cylindrical_roller_bearing_dynamic_capacity

(bm, lv, gamma, Dr, le, Z)
spherical_roller_bearing_
result =

spherical_roller_bearing_dynamic_capacity

(bm, lv, gamma, Dr, le, Z, alpha)
plate_fin_heat_exchanger_

result = plate_fin_heat_exchanger_entropy_
generation
(epsilon, Tci, Thi, Rc, teh, Cph, dPh, Phi,

tec, Cpc,
dPc, Pci)
shell_and_tube_heat_exchanger_
result =

shell_and_tube_heat_exchanger_total_cost

(Ci, Cod)
welded_beam_result = welded_beam_cost
(c1, x1, t, l, h, c2, b, L)
belt_pulley_drive_result =

belt_pulley_drive_weight
(rho, b, d1, t1, d2, t2, d1_1, t1_1, d1_2,

t1_2)
hollow_shaft_result = hollow_shaft_weight
(do, di, L, rho)

Return results
return {

’rao1_result’: rao1_result,
’rao2_result’: rao2_result,
’rao3_result’: rao3_result,
’helical_spring_result’:

helical_spring_result,
’hydrostatic_thrust_bearing_result’:

hydrostatic_
thrust_bearing_result,
’multiple_disc_clutch_brake_result’:

multiple_disc_
clutch_brake_result,
’cylindrical_roller_bearing_result’:

cylindrical_roller
_bearing_result,
’spherical_roller_bearing_result’:

spherical_
roller_bearing_result,
’plate_fin_heat_exchanger_result’:

plate_fin_
heat_exchanger_result,
’shell_and_tube_heat_exchanger_result’:

shell_and_tube_
heat_exchanger_result,
’welded_beam_result’: welded_beam_result

,
’belt_pulley_drive_result’:

belt_pulley_drive_result,
’hollow_shaft_result’:

hollow_shaft_result
}

5.5. Initial code generation for
optimization model outlined in the
research article

def PSO

18

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

(num_particles, max_iterations, w, c1, c2,
Ds_min,

Ds_max, do_min, do_max, B_min, B_max):

particles = []
velocities = []
best_positions = []
best_costs = []

global_best_position = None
global_best_cost = float(’inf’)

for i in range(num_particles):
Ds = random.uniform(Ds_min, Ds_max)
do = random.uniform(do_min, do_max)
B = random.uniform(B_min, B_max)

particles.append([Ds, do, B])
velocities.append([0, 0, 0])

cost = Calculate_Total_Cost(0.158,
2.263, Ds,

18.80, 995, 850, 4, 0.00358, 4.88, 0.13,
1.25*

0.0254, do, B, 5.52, 0.0004, 0.13,
0.00061,

0.00061, 199, 93.3, 37.80, 76.7, 2.47,
2.05,

0.9, 10, 7000, 0.12, 10, 0.127, 0.4,
0.0004)

best_positions.append([Ds, do, B])
best_costs.append(cost)

if cost < global_best_cost:
global_best_position = [Ds, do, B]
global_best_cost = cost

for iteration in range(max_iterations):
for i in range(num_particles):

r1 = random.random()
r2 = random.random()

velocities[i][0] = w*velocities[i][0]
+ c1*r1*

(best_positions[i][0] - particles[i
][0]) + c2*r2*

(global_best_position[0] - particles[
i][0])

velocities[i][1] = w*velocities[i][1]
+ c1*r1*

(best_positions[i][1] - particles[i
][1]) + c2*r2*

(global_best_position[1] - particles[
i][1])

velocities[i][2] = w*velocities[i][2]
+ c1*r1*

(best_positions[i][2] - particles[i
][2]) + c2*r2*

(global_best_position[2] - particles[

i][2])

particles[i][0] += velocities[i][0]
particles[i][1] += velocities[i][1]
particles[i][2] += velocities[i][2]

particles[i][0] = max(min(particles[i
][0], Ds_max)

, Ds_min)
particles[i][1] = max(min(particles[i

][1], do_max)
, do_min)
particles[i][2] = max(min(particles[i

][2], B_max)
, B_min)

cost = Calculate_Total_Cost(params)

if cost < best_costs[i]:
best_positions[i] = particles[i].

copy()
best_costs[i] = cost

if cost < global_best_cost:
global_best_position =

particles[i].copy()
global_best_cost = cost

return global_best_position

PSO parameters
num_particles = 50
max_iterations = 100
w = 0.7
c1 = 1.4
c2 = 1.4

Variable limits
Ds_min = 0.1
Ds_max = 1.5
do_min = 0.015
do_max = 0.051
B_min = 0.05
B_max = 0.5

optimal_values = PSO(num_particles,
max_iterations, w, c1, c2, Ds_min, Ds_max,

do_min,
do_max, B_min, B_max)

5.6. Final revised optimisation model
following the code correction
framework

import math
import numpy as np

pie = 3.141

19

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

def Prandtl_number(mew,Cp,Kt):
Pr = (mew*Cp)/Kt
return Pr

def calculate_fs(b0, Re):
fs = 2 * b0 * Re**(-0.15)
return fs

def Number_of_tubes(C,n1,Ds,d0):
Nt = C*((Ds/d0)**n1)
return Nt

def Flow_velocity_tube(mt,dt,rho_t,n,Nt):
vt = (mt*(n/Nt))/((pie/4)*(dt**2)*rho_t)
return vt

def Reynolds_number_tube(rho_t,vt,di,mew_t):
Re = (rho_t*vt*di)/mew_t
return Re

def calculate_friction_factor(Re):
ft = (1.82 * math.log10(Re) - 1.64)**(-2)
return ft

def Tube_side_heat_transfer_coefficient
(Kt,di,Re,Pr,L,d0,mew_t,mew_w):

if Re < 2300:
ht = (Kt/di)*(3.657+(0.0677*
(Re*Pr*(di/L))**1.33)/(1+0.1*Pr*((Re*di/

L)**0.3)))
elif 2300 < Re < 10000:

ft = calculate_friction_factor(Re)
ht = (Kt/di)*((ft/8)*
(Re-1000)*Pr)/(1+12.7*
math.sqrt(ft/8)*(Pr**(2/3)-1))*(1+(di/L)

**0.67)
else:

ht = 0.027*(Kt/d0)*(Re**0.8)*(Pr**(1/3))
*((mew_t/mew_w)**0.14)

return ht

def Shell_hydaulic_diameter(Pt,d0):
De = 4*(Pt**2 - (math.pi*d0**2)/4)/(math.

pi*d0)
return De

def Cross_section_area(Ds,b,C1):
As = Ds*b*C1
return As

def Flow_velocity_shell(ms,rho_s,As):
vs = ms/(rho_s*As)
return vs

def Reynolds_number_shell(ms,de,As,mew_s):
re = (ms*de)/(As*mew_s)
return re

def Shell_Side_heat_transfer_coefficient

(Ks,De,Re,Pr,mew_s,mew_w):
hs = 0.36*(Ks/De)*(Re**0.55)
*(Pr**(1/3))*((mew_s/mew_w)**0.14)
return hs

def LMTD(Tis,Tos,Tit,Tot):
deltaT1 = Tis - Tot
deltaT2 = Tos - Tit
lmtd = (deltaT1 - deltaT2) / math.log(

deltaT1 / deltaT2)
return lmtd

def Correction_factor(Tis, Tos, Tit, Tot):
R = (Tis - Tos) / (Tot - Tit)
P = (Tot - Tit) / (Tis - Tit)
numerator = math.sqrt(R**2 + 1) /
(R - 1) * math.log((1 - P) / (1 - P*R))
denominator = math.log((2 - P*
(R + 1 - math.sqrt(R**2 + 1))) /
(2 - P*(R + 1 + math.sqrt(R**2 + 1))))
F = numerator / denominator
return F

def Sensible_heat(ms,Cps,Tis,Tos):
Q = ms*Cps*(Tis-Tos)
return Q

def calculate_DPt(rho_t,vt,L,dt,ft,n):
p = 4
DPt = rho_t*vt**2/2 * ((L/dt)*ft + p) * n
return DPt

def calculate_DPs(fs,rho_s,vs,L,B,Ds,De):
DPs = fs * rho_s*vs**2/2 * (L/B) * (Ds/De)
return DPs

def calculate_Cod(n, i, C_o):
X = np.arange(1, n + 1)
terms = C_o / (1 + i) ** X
C_od = np.sum(terms)
return C_od

def Calculate_Total_Cost(C, n1, Ds, mt, rho_t,

rho_s, n, mew_t, L, Kt, Pt, d0, B, ms, mew_s,
Ks, Rfs, Rft, Tis, Tos, Tit, Tot, Cp_h, Cp_c,
etta, ny, H, Ce, i, b, C1, mew_w):

p = 4
di = 0.8*d0
De = Shell_hydaulic_diameter(Pt,d0)
Re_s = Reynolds_number_shell(ms,De,
Cross_section_area(Ds,b,C1),mew_s)
Pr_s = Prandtl_number(mew_s,Cp_h,Ks)
hs = Shell_Side_heat_transfer_coefficient
(Ks,De,Re_s,Pr_s,mew_s,mew_w)
Nt = Number_of_tubes(C, n1, Ds, d0)
vt = Flow_velocity_tube(mt,di,rho_t,n,Nt)
Re_t = Reynolds_number_tube(rho_t,vt,di,

mew_t)
Pr_t = Prandtl_number(mew_t,Cp_c,Kt)

20

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

ht = Tube_side_heat_transfer_coefficient
(Kt,di,Re_t,Pr_t,L,d0,mew_t,mew_w)
U = 1/((1/hs)+Rfs+(d0/di)*(Rft+(1/ht)))
lmtd = LMTD(Tis,Tos,Tit,Tot)
F = Correction_factor(Tis,Tos,Tit,Tot)
A = (mt*Cp_c*(Tot-Tit))/(U*F*lmtd)
Span = (A/(pie*d0*Nt))
ft = calculate_friction_factor(Re_t)
DPt = calculate_DPt(rho_t,vt,Span,di,ft,n)
b0 = 0.72
fs = calculate_fs(b0, Re_s)
vs = Flow_velocity_shell(ms,rho_s,
Cross_section_area(Ds,b,C1))
DPs = calculate_DPs(fs,rho_s,vs,L,B,Ds,De)
a1 = 8000
a2 = 259.2
a3 = 0.93
C_i = a1 + a2 * (A**(a3/3))
P = 1 / etta * (((mt / rho_t) * DPt) +
((ms / rho_s) * DPs))
C_o = P * Ce * H
C_od = calculate_Cod(ny, i, C_o)
C_tot = C_i + C_od
return C_tot

import random

def PSO(num_particles, max_iterations, w,
c1, c2, Ds_min, Ds_max, do_min, do_max, B_min,

B_max):

particles = []
velocities = []
best_positions = []
best_costs = []

global_best_position = None
global_best_cost = float(’inf’)

for i in range(num_particles):
Ds = random.uniform(Ds_min, Ds_max)
do = random.uniform(do_min, do_max)
B = random.uniform(B_min, B_max)

particles.append([Ds, do, B])
velocities.append([0, 0, 0])

cost = Calculate_Total_Cost(0.158,
2.263, Ds, 18.80, 995, 850, 4, 0.00358
, 4.88, 0.13, 1.25*0.0254, do, B, 5.52
, 0.0004, 0.13, 0.00061, 0.00061, 199,
93.3, 37.80, 76.7, 2.47, 2.05, 0.9, 10
, 7000, 0.12, 10, 0.127, 0.4, 0.0004)

best_positions.append([Ds, do, B])
best_costs.append(cost)

if cost < global_best_cost:
global_best_position = [Ds, do, B]
global_best_cost = cost

for iteration in range(max_iterations):
for i in range(num_particles):

r1 = random.random()
r2 = random.random()

velocities[i][0] = w*velocities[i][0]
+ c1*r1*

(best_positions[i][0] - particles[i
][0]) + c2*r2*

(global_best_position[0] - particles[
i][0])

velocities[i][1] = w*velocities[i][1]
+ c1*r1*

(best_positions[i][1] - particles[i
][1]) + c2*r2*

(global_best_position[1] - particles[
i][1])

velocities[i][2] = w*velocities[i][2]
+ c1*r1*

(best_positions[i][2] - particles[i
][2]) + c2*r2*

(global_best_position[2] - particles[
i][2])

particles[i][0] += velocities[i][0]
particles[i][1] += velocities[i][1]
particles[i][2] += velocities[i][2]

particles[i][0] = max(min(particles[i
][0], Ds_max),

Ds_min)
particles[i][1] = max(min(particles[i

][1], do_max),
do_min)
particles[i][2] = max(min(particles[i

][2], B_max),
B_min)

cost = Calculate_Total_Cost(0.158,
2.263,

particles[i][0], 18.80, 995, 850, 4,
0.00358

, 4.88, 0.13, 1.25*0.0254, particles[
i][1],

particles[i][2], 5.52, 0.0004, 0.13,
0.00061

, 0.00061, 199, 93.3, 37.80, 76.7,
2.47, 2.05

, 0.9, 10, 7000, 0.12, 10, 0.127,
0.4, 0.0004)

if cost < best_costs[i]:
best_positions[i] = particles[i].

copy()
best_costs[i] = cost

if cost < global_best_cost:
global_best_position =

particles[i].

21

Sandeep Mishra et al. CEUR Workshop Proceedings 1–22

copy()
global_best_cost = cost

return global_best_position

PSO parameters
num_particles = 50
max_iterations = 100
w = 0.7
c1 = 1.4
c2 = 1.4

Variable limits
Ds_min = 0.1
Ds_max = 1.5
do_min = 0.015
do_max = 0.051
B_min = 0.05
B_max = 0.5

optimal_values, optimal_cost = PSO(
num_particles,

max_iterations, w, c1, c2, Ds_min, Ds_max,
do_min,

do_max, B_min, B_max)

print(f"Optimal values: Shell diameter =
{optimal_values[0]}, Tube outer diameter =
{optimal_values[1]}, Baffle spacing = {

optimal_values[2]}")

6. Heat Exchanger Design with
Surrogate Models

Researchers have explored various surrogate modeling
approaches, including machine learning [6, 7, 8, 9, 10]
and deep learning [11, 12, 13, 14, 15, 16], to accelerate the
design and optimization of heat exchangers.

Fouling, the deposition of chemical compounds, re-
duces the heat transfer efficiency of heat exchangers and
can lead to operational stoppages. Measuring the extent
of fouling is challenging due to the lack of direct measure-
ments. Recently, deep learning-based models have been
developed to provide real-time visibility and forecast the
health of heat exchangers, aiding in better planning and
optimization of operations [11, 12, 13]. Physics-informed
deep learning approaches have further enhanced real-
time visibility into fouling severity, facilitating real-time
operational optimizations in plants [14, 15]. These ap-
proaches have also been applied to accelerate the design
process [16].

Saeed et al. [6] applied machine learning algorithms
to improve the performance of a C-shaped printed cir-
cuit heat exchanger (PCHE) within a supercritical CO2
Brayton cycle. By analyzing 81 channel configurations
using computational fluid dynamics (CFD) and subse-

quently training machine learning models, they demon-
strated significant improvements in thermo-hydraulic
performance using a multi-objective genetic algorithm.
Concurrently, Keramati et al. [7] explored the poten-
tial of deep reinforcement learning (Deep RL) for heat
exchanger shape optimization, integrating a deep neu-
ral network (DNN) with a CFD solver. Their approach,
based on Proximal Policy Optimization (PPO), resulted
in notable enhancements in heat transfer efficiency and
pressure drop reduction. Zou et al. [8] reviewed the appli-
cations of machine learning methods for heat exchanger
modeling, highlighting the effectiveness of these models
for design optimization. Additionally, Long et al. [9] and
EFATINASAB et al. [10] investigated the use of machine
learning and deep learning models for microchannel and
micro-finned tube heat exchangers, respectively, demon-
strating the competitive performance and scalability of
these techniques in design optimization.

22

	1 Introduction
	2 Methodology
	2.1 Mathematical model identification
	2.2 Code retrieval for mathematical model
	2.3 Code generation using LLM
	2.4 Code Generation for Optimization Algorithm
	2.5 HxLLM Workflow

	3 Results and Discussion
	3.1 Model Extraction and Code Generation for Similar Research Articles
	3.1.1 Mathematical Model Extraction
	3.1.2 Code Retrieval for Mathematical Model
	3.1.3 Code generation and Correction

	3.2 Model Extraction and Code Generation for Non-Similar Research Articles
	3.2.1 Mathematical Model Extraction
	3.2.2 Code Retrieval for Mathematical Model
	3.2.3 Code generation and Correction

	3.3 Optimisation code generation
	3.4 Limitations and Future Work

	4 Conclusion
	5 Code Listing
	5.1 Retrieved Base Code for similar research article
	5.2 Final Mathematical code for similar research article
	5.3 First Instance Code generation for Non Similar research article
	5.4 Final revised Mathematical model for the non-similar research article following the code correction framework
	5.5 Initial code generation for optimization model outlined in the research article
	5.6 Final revised optimisation model following the code correction framework

	6 Heat Exchanger Design with Surrogate Models

