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Abstract
In solving the problem of automated analysis of football match video recordings, special video cameras are 
currently used. This work presents a comparative characterization of known algorithms and methods for 
video camera calibration, including those utilizing machine learning and neural networks, with the aim of 
identifying their shortcomings and forming a theoretical foundation for developing modern, more effective 
methods and algorithms. Specifically, it examines both algorithms that require more input data but operate 
quickly [1, 2] and more accurate algorithms using machine learning [3, 4, 5, 6, 5].
It is demonstrated that their main drawback is either accuracy or speed. More accurate algorithms using 
machine learning often do not specify the algorithm’s operational speed, which precludes their use in real-
time applications. The examined works that emphasize speed frequently lack the accuracy necessary for 
practical use in real-life scenarios.
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1. Introduction
Football  match  analysis  uses  statistical  data,  tactics,  and  player  performance  metrics  to  help 

coaches, scouts, and media professionals understand games better and make data-driven decisions. .In 
football analytics, determining players’ positions on the field plays a crucial role. Based on such 
information, it is possible not only to analyze [7] but also to predict [8] the game outcome.

One of  the most popular solutions is  the use of  location sensors attached to players’  bodies.  
However, this solution is not always optimal. Body-attached sensors often cause discomfort to players, 
and moreover, this solution is costly, making it inaccessible for football clubs with limited budgets.

Currently, computer vision technologies are gaining increasing popularity for solving the player 
localization problem on the field, particularly through automatic analysis of match video recordings. 
The determination of players’ positions on the field occurs in two stages: camera calibration and 
parameter determination, followed by player localization in the camera image.

This  work presents  a  comparative  analysis  of  known computer  vision and machine  learning 
algorithms for camera calibration and parameter determination.
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2. Related works

2.1. Camera Model
For the classic pinhole model, the basic formula of perspective projection is given by:

λmm=K [RT ]M , (1)
where:
M denotes a 3D point and m denotes the corresponding 2D point on image. They are both expressed 

in homogeneous coordinate and λm is an arbitrary scale factor.
R is 3 x 3 rotation matrix that describes the rotational mapping from the world coordinate system 

into the camera coordinate system.
T is a 3 x 1 vector that describes the translational mapping from the world coordinate system into 

the camera coordinate system.
K is a 3 x 3 matrix describing the internal camera parameters:

K=[ f s u0
0 βf v0
0 0 1 ]  2)

where:
Scale factor f applies to both the u and v axes of an image, while s describes the skew between these 

two axes.
Beta accounts for non-isotropic scaling, and the coordinates (uo,vo) denote the principal point.
When the observed 3D points lie on a plane, this projection can be simplified to a homography, 

which  is  a  3x3  matrix  mapping  between  two  planar  surfaces.  When  considering  perspective 
projection, an interesting phenomenon occurs with parallel lines in 3D space. If these lines are not 
parallel to the image plane, their 2D projections converge to a single point in the image. This point of 
convergence is termed the vanishing point. Notably, the line that connects this vanishing point to the 
optical center of the camera runs parallel to the corresponding 3D lines in space. Consequently, all sets 
of parallel lines in 3D space that share the same direction will correspond to the same vanishing point 
in the 2D image. This principle is fundamental to understanding how 3D scenes are projected onto 2D 
images in perspective projection.

2.2. Problem statement
Camera calibration involves determining its internal parameters (focal length, pixel ratio, projection 
center)  and  external  parameters  (rotation  and  translation  expressing  the  camera’s  position  and 
orientation relative to the world coordinate system).
Early approaches rely on matching local features in combination with direct linear transformation 
(DLT) to estimate homography. One of the first algorithms for determining these parameters is 
vanishingpoint based calibration (VPBC).
The study [9] presents a two-stage camera calibration method. In the first stage, the focal length and 
location of the principal point (intersection of the optical axis with the image plane) are determined 
using a single image of a calibration cube, an example of which is shown in Figure 1.
The second stage is dedicated to estimating the rotation matrix and translation vector between two 
cameras, using a stereo pair of images of a flat calibration pattern. This stage involves finding three 
corresponding vanishing points on both images, computing the rotation matrix based on these points, 
and estimating the translation vector through triangulation.
In [10] an improvement proposed to this method. Their approach is based on using only one image 
with two vanishing points, eliminating the need for a special calibration pattern. The method uses two 
lines to determine the vanishing points and information about the length of one of these lines



Figure 1: The aluminium block used to calibrate intinsic parameters of each camera

Figure 2: Results examples from [2]: each row corresponds to different video sequence.

to determine the transformation and subsequent calculations. This enhanced method simplifies the 
calibration process, making it more practical for various applications.
Both studies - [9] and [10] - made significant contributions to the development of camera calibration 
methods, improving the accuracy and convenience of this process. The first study laid the foundation 
for using vanishing points in camera calibration, while the second proposed a more efficient approach 
requiring less input data.
One of the first applications of the aforementioned algorithms in football is described in [2]. This 
method consists of two main stages.
The first stage involves detecting straight lines or their segments. For this purpose, Hough methods 
[11] or edge segmentation methods [12] are used. The detected lines are grouped into vertical and 
horizontal sets.
The second stage involves matching these two sets of image segments with segments in the football 
field model. Matching occurs by identifying segments that intersect with each other. Having two 
vanishing points, the algorithm selects segments that best correspond to the field model constructed 
using these vanishing points. After this, rotation (R) and translation (T) matrices are calculated to 
obtain the final camera model. An example of the algorithm’s sequential operation on real images is 
shown in Figure 2.
However, all the aforementioned algorithms have limitations and work effectively only under certain

Table 1
Comparison table for static calibration methods



Method Input data Accuracy Applicability
Using Vanishing
Points for Camera
Calibration [9]

Specific  calibration 
pattern;  Calibration 
Images; 2 Cameras
required

Translation  errors 
were  about  ±3  mm 
for distances ranging 
from 13 to 45 cm

Base method for 
further usage

Using Vanishing
Points for Camera
Calibration  and 
Coarse  3D 
Reconstruction  from 
A
Single Image [10]

A  single  image 
containing  at  least 
two  vanishing 
points;  Two  sets  of 
parallel lines selected 
by  the  user  to 
determine  the 
vanishing  points; 
The  length  of  one 
line  segment  in  3D 
space  (to  determine 
the  translation 
vector);  The 
principal  point  is 
assumed  to  be  the 
center  of  the  image 
The  aspect  ratio  is 
fixed by the user

Not provided Base method for 
further usage

Fast  2D  model-
toimage  registration 
using  vanishing 
points for sports
video analysis [2]

A  sufficient  number 
of  segments  of 
reasonable  quality 
must  be  extractable 
from the images for 
the  registration 
system to work.

Not provided Applicable  only  for 
frames  where 
sufficient  number  of 
segments  are 
observable

conditions and with specific input data. In the modern world, this is insufficient for a fully functional 
analytics system, the foundation of which is determining the homography matrix in each frame of the 
video stream.

Further discussion will be devoted to methods that not only find key points but also continue 
calculating the homography matrix in subsequent frames. These methods allow for the creation of 
more reliable and flexible systems for analyzing football matches, capable of working in various 
conditions and with different types of input data. A comparison of the aforementioned algorithms in 
terms of their application in real conditions of modern football is presented in Table 1.

2.3. Dynamic camera calibration
The study [13] is one of the pioneering works in the field of not only determining the homography 
matrix for individual frames but also tracking its changes in a sequence of frames. The authors first  
proposed a combined approach for automatic computation of homography during camera motion. 
This approach includes using the KLT system [14, 15, 16] for automatic detection of correspondences 
between frames by extracting characteristic features. Since these correspondences are not perfect and 
contain outliers, the RANSAC algorithm [17] is applied to filter out incorrect matches. After this 
additional selection, the DLT algorithm is used to compute a new homography matrix for the current 
frame. An example of the algorithm’s output is shown in Figure 3.

However, this method has a significant drawback: with each new frame, the reprojection error 
accumulates, leading to inaccuracies in the homography matrix. To address this issue, the authors



Figure 3: Results examples from [13]: each row corresponds to different frame

propose periodically adjusting the homography matrix using key points on the field lines.
It is important to note that the study does not specify the accuracy of the proposed algorithm. This 

approach laid the foundation for further research in the field of dynamic homography determination in 
video sequences.

The study [18] proposes one of the first approaches to determining not only the homography matrix 
but also the camera rotation angles. The authors developed a method that uses prior information about 
key points in the goal area to calculate these parameters with a fixed focal length. Experimental 
verification of the algorithm was conducted on a sample of 500 frames, and the researchers claim to 
have achieved reprojection accuracy within 2 pixels. It is important to note that the work focuses on 
theoretical aspects of determining rotation angles without considering the practical application of this 
method to frames that do not contain the goal area. A visual representation of the reprojection results 
obtained using this algorithm can be seen in Figure 4.

Despite using lines and camera parameters, [1] proposes using multiple key frames and lines along 
with ellipses to find the homography matrix. The process begins with system initialization, where key 
frames, examples of which are shown in Figure 5, are selected from the video sequence to cover the 
range of camera motion. Point correspondences between these key frames and the geometric model 
are manually selected to estimate homographies for all key frames. When processing new frames, the 
algorithm first identifies the closest key frame using local feature matching, applying SFOP key point 
detection [19] with SIFT descriptors [20]. This provides an initial estimate of the homography between 
the current frame and the geometric model. Feature finding is then performed by projecting the 
geometric model onto the current frame using the initial homography estimate. A model-driven 
approach is used to detect lines and ellipses in the frame, while point correspondences are obtained by 
back-projecting  matches  from the  nearest  key  frame.  The  algorithm then  proceeds  to  estimate 
homographies using two methods. First, it combines feature matches (lines, points, and ellipses) to 
obtain a linear estimate of the homography (Hlin). Second, it computes a frame-to-frame homography 
using local feature matches and combines this with the previous frame’s homography to obtain an 
alternative estimate (Htr). For refinement, the algorithm chooses between  Hlin  and  Htr  based on the 
residual  error  area.  The  selected  estimate  serves  as  the  initial  value  for  further  geometric 
minimization. The algorithm requires a lot of input data, which may be impossible or time-consuming 
to obtain.



Figure 4: Results examples from [18].

Figure 5: Key frames used in [1].

The accuracy of this approach is also not specified.
The study by Zhang et al. [21] describes a method for simplifying camera calibration and finding the 

transformation matrix by leveraging the specifics of a particular task. Traditionally, the DLT algorithm 
required four non-collinear key points to obtain the homography matrix. Instead, the authors propose 
the PCC (Pan-tilt camera calibration) algorithm, which takes into account the specifics of game filming 
where the camera remains stationary and only pan-tilt parameters change. This approach allows 
reducing the number of required key points for calibration to two. The PCC calibration process 
consists of two stages: first, initial camera calibration is performed using four points to determine fixed 
parameters, and then the Levenberg-Marquardt algorithm [22] is applied to find the homography 
matrix using only two key points. An important innovation in this work is the use of the offset line as a 
source of key points for determining the transformation matrix. The authors conducted a comparative 
analysis  of  the accuracy of  both algorithms using computer simulation,  which showed that the 
accuracy of the PCC algorithm surpasses that of the DLT algorithm.

A comparison of the aforementioned algorithms in terms of their application in real conditions of 
modern football is presented in Table 2.

Table 2
Comparison table for dynamic calibration methods

Method Input data Accuracy Applicability



AUTOMATIC 
RECTI-
FICATION OF LONG
IMAGE SEQUENCES
[13]

For the initial frame 
only,  manually 
selected  point 
correspondences 
between  the  image 
and the rink model

Not provided Ice  rink  contains 
more  unique 
elements  and  key 
points.  Football field 
is larger and it
will  lead  to  an 
accuracy  drop. 
Authors  haven’t 
provided  accuracy 
metrics,  thus  it  is 
hard  to  estimate 
applicability

Camera  pose 
estimation in football 
scenes  based  on 
vanishing points [18]

Known  key  points 
for goal zone

Tested on simulated 
data  with  added 
noise.  Reports  2 
pixel  accuracy  for 
projections. Error in 
pan/tilt  estimation 
correlates with roll
error

Algorithm  is  based 
on  goal  zone 
detections  that  are 
not  visible  all  the 
time  in  real  match 
recording.

Using Line and
Ellipse  Features  for 
Rectification  of 
Broadcast Hockey
Video [1]

A  set  of  manually 
annotated  key-
frames
with  point 
correspondences  to 
the geometric mode

Not provided Ice  rink  contains 
more  unique 
elements and key
points. Football field 
is  larger  and it  will 
lead  to  an  accuracy 
drop. Also it requires 
manually  annotated 
frames for every new 
camera.

Research on Camera 
Calibration in
Football Broadcast
Videos [21]

Details are not 
provided

Better  than  DLT 
algorithm,  but 
overall  accuracy  is 
not provided

Base method for 
further usage

2.4. Machine learning based camera calibration
Machine learning is a powerful approach in the field of artificial intelligence that uses statistical 
methods to analyze large volumes of data. This technology allows algorithms to detect complex 
patterns and make accurate predictions, finding applications in many areas - from speech recognition 
to autonomous vehicle control.

In the context of camera calibration and finding the homography matrix, [3] proposes an innovative 
approach. They use a branch and bound method in a Markov random field, where the energy function 
is based on semantic features such as field surface, lines, and circles. These features are obtained 
through  semantic  segmentation  -  one  of  the  tasks  of  machine  learning.  The  process  involves 
minimizing an energy function that takes into account that the field should predominantly consist of 
field surface pixels, and the projections of field primitives should correspond to detected primitives in 
the image. To optimize this function, the authors applied a Structured SVM algorithm trained on data 
from 9 unique stadiums. The accuracy of the algorithm, measured on 186 labeled images, reached an 
IOU score of 0.86.
Examples of the algorithm’s results are shown in Figure 6.

An alternative approach using machine learning was proposed [4]. The authors developed their 
own  camera  simulator  to  create  75  labeled  images  that  imitate  field  edges.  These  images  and 
corresponding transformation matrices are stored in a separate database. When processing a real 
match image, the KNN algorithm searches for the most similar image in the database using one of  
three strategies: Chamfer matching, HOG, or CNN-based. To extract field edges from real images, the 



stroke width transform (SWT) algorithm is  applied,  which demonstrates  better  noise  resistance 
compared to traditional methods

Figure 6: Examples of the obtained homographies and semantic segmentations in [3].

such as the Canny edge detector. Additionally, the authors remove the crowd from the image (using 
color-based field segmentation) and players (applying the Faster-RCNN human detector) to obtain an 
edge map that predominantly contains only field lines with minimal noise.

In [23],  a  method is  proposed that  uses  two neural  networks:  the first  determines the initial  
homography  matrix,  while  the  second  estimates  the  registration  error.  The  process  involves 
transforming the sports field template to the current perspective, combining the transformed image 
with the current one, and iteratively updating the homography parameters to minimize the error. The 
authors evaluated the accuracy of their method on WorldCup and hockey match data [4], achieving an 
IOU score of 89.8,
which surpasses previous results.

A similar method is presented in [6], but with an important distinction. They first perform semantic 
segmentation of the field lines using DeepLabV3 ResNet [24], and then determine camera parameters 
through iterative optimization. This approach considers the reprojection error calculated from the 
found  segments  and  their  counterparts  in  the  2D  image.  The  method  was  tested  on  the 
SoccerNetV3Calibration [25] and WorldCup datasets, achieving scores of 76.9 Compound Score and 
96.1 IOUpart, respectively.

The researchers in [26] introduce a novel approach using evenly spaced keypoints as field-specific 
features, framing the task as an instance segmentation problem with dynamic filter learning. To 
validate their method, they created the TS-WorldCup dataset, which comprises 3,812 sequential images 
from 43 videos of the 2014 and 2018 FIFA World Cup tournaments, featuring precise field markings. 
The method employs a standard encoder-decoder architecture similar to U-Net, with a ResNet-34 
backbone for the encoder.  It  introduces a keypoints-aware label  condition,  using 91 pre-defined 
keypoints and dynamically generated convolution kernels. The approach utilizes a keypoints-specific 
controller and dynamic head to predict keypoint heatmaps, which are then merged to estimate the 
final homography using DLT and RANSAC. The proposed method demonstrated strong performance 



when evaluated on the WC and TSWC datasets, achieving IOUpar and IOUwhole scores of 0.96 and 0.91 for 
WorldCup, and 0.97 and 0.93 for TSWC, respectively.
In their study, [27] introduce speed metrics as a measure of performance in keypoint detection. The 
authors propose a dual-model approach, employing separate deep learning models for point and line 
detection, both utilizing heatmap-based techniques. For keypoint extraction, they adopt the widely-
used HRNetV2-w48 model as their backbone architecture. The researchers report a processing time of 
33.6 ms per image using a single Nvidia GeForce RTX 3090 GPU. While this performance approaches 
real-time capabilities, further optimization is necessary for widespread practical application.

In contrast, [5] do not explicitly report processing times for their approach. They also use the 
HRNetV2-w48  backbone,  but  employ  a  single  network  for  both  keypoint  and  line  detection, 
potentially offering computational advantages. Their model is trained on a less powerful NVIDIA 
GeForce RTX 2080 Ti GPU, which may impact processing speed. While both papers use heatmap-based 
techniques, the "No Bells,  Just Whistles" approach integrates an additional boundary channel to 
enhance global information capture. This difference in architecture and the use of a single network for 
multiple tasks may lead to different performance characteristics, though direct speed comparisons are 
not possible without explicit timing data from the second paper. The effectiveness of this algorithm 
was evaluated on the SN23, WC14, and TSWC datasets, with the most significant improvement (98.6) 
achieved on the TSWC dataset.

3.Comparative analysis

3.1. Calibration methods comparison
Static calibration methods paved the way for more accurate and powerful approaches. The methods of 
[9] and [10] are utilized in nearly every dynamic and machine learning-based algorithm. However,
without additional refinement, they cannot be employed to determine the homography matrix for 
frame coordinate transformation.  In contrast,  [2]  can be applied to certain frames containing a 
sufficient number of visible segments, with the accuracy of this approach primarily dependent on the 
quality and quantity of identified segments. In typical football match video recordings, conditions are 
often suboptimal, with insufficient visible lines for this algorithm to function effectively.

The importance lies not only in the accuracy and speed of algorithms but also in their field coverage. 
A  football  field  does  not  always  contain  enough lines  to  determine  key  points  based  on  their 
intersections. The existing field coverage issues of previous approaches are partially addressed in [13]. 
However, the authors do not specify the algorithm’s accuracy, only its speed - 1900 frames per hour, or 
2 frames per second on a 2.8 GHz Pentium IV processor. Modern cameras record at a minimum of 24 
frames per second, which would result in a very long wait time to process a 90-minute football match.

Camera parameter determination in [18] does not resolve accuracy or speed issues of systems, 
focusing more on adding content to existing broadcasts or videos,  which does not require high 
precision.  Accuracy assessment is  mentioned in [1] -  visual evaluation by experts is  conducted. 
However, neither accuracy nor speed metrics are provided, though the approaches in this work 
improve upon the results of [13]. Field coverage is also increased by using not only lines but also their 
combination with ellipses on the field, found in the central and goal areas.

However, improvements in accuracy and coverage depend on well-annotated key frames required 
for the algorithm’s operation. This condition precludes application to real football match videos, as 
new annotated key frames would need to be created for each new camera or stadium.

With the advancement of machine learning, camera calibration methods have also evolved. In [3], 
the reprojection accuracy after homography determination is 0.88  IOU, significantly surpassing all 
previous approaches. The algorithm also does not focus on field parts where many key elements are 
visible but works on all field areas. The authors also indicate the speed of the homography matrix 
determination  algorithm  but  do  not  specify  the  speed  of  the  segmentation  model.  Typically, 
segmentation  models  are  resource-intensive,  precluding  their  use  in  real-time  and  significantly 
increasing the resources required for processing pre-recorded video.
Table 3
Comparison table for machine learning based calibration methods



Method Input data Accuracy Applicability
Sports  Field 
Localization  via 
Deep  Structured 
Models [3]

No input data re-
quired

Authors  collected 
186  images  from 10 
games as  a  test  set. 
Based on that test set 
accuracy
0.88  IOU  with  the 
manually  labeled 
data.

For offline usage

Automated Top
View Registration of
Broadcast Football
Videos [4]

Database  with  edge 
images  and 
corresponding 
homography 
matrices

Authors  manually 
annotated  500 
images  from  16 
different  matches. 
IOU  measure  is  0.86 
for  the  best 
approach.

For offline usage

Optimizing Through
Learned Errors for
Accurate Sports 
Field
Registration [23]

Models weights WorldCup IOU: 0.88
Hokey dataset IOU:
0.967

For offline usage

TVCalib: Camera
Calibration for
Sports Field 
Registration in 
Football [6]

Model weights WorldCUP IOUpar:
0.96
SoccerNetV3 CR:
76.9

For offline usage

Sports  Field 
Registration  via 
Keypointsaware 
Label Condition [26]

Model weights WorldCup IOUpar:
0.96
WorldCup IOUwhole:
0.91
TSWC IOUpar: 0.97
TSWC IOUwhole:
0.93

For offline usage

Enhancing Football
Camera Calibration
Through Keypoint
Exploitation [27]

Model weights Soccernet  Camera 
Calibration 
Challenge 2023 [28]
Acc@5: 0.73

For offline usage

No  Bells,  Just 
Whistles:  Sports 
Field Registration by 
Leveraging 
Geometric Properties 
[5]

Models weights WorldCup IOUpar:
0.96
WorldCup IOUwhole:
0.92
TSWC IOUpar: 0.98
TSWC IOUwhole:
0.96

For offline usage

In [4, 23, 6, 26], the focus is mainly on improving accuracy and increasing field coverage. Moreover, 
with the achieved maximum accuracy of full field homography IOUpart of 0.92, using the algorithm on 
offline video is quite feasible. Speed is mentioned only in [23], taking 9.58 seconds per frame.

Recent advancements in real-time keypoint detection algorithms have demonstrated significant 
progress in processing speed and efficiency. Falaleev et al. [27] and Gutierrez et al. [5] have reported 
state-of-the-art performance using the HRNet keypoint detection model, achieving a processing time 
of 33ms per frame on an Nvidia GeForce RTX 3090 GPU. These studies utilized the HRNetV2-w48 
model, which belongs to the second-largest category within the HRNetV2 model family and comprises 
67.1 million parameters. While the aforementioned research focused on larger models, it is worth 
noting that smaller variants within the HRNet family exist. These include the HRNet-W40-C with 57.6 
million parameters and the most compact version, HRNet-W18-C-Small-v1, containing 13.2 million 
parameters.



However, the performance characteristics of these smaller models in real-time keypoint detection 
tasks remain unexplored in the current literature. Furthermore, the studies by Falaleev et al. [27] and 
Gutierrez et al. [5] did not investigate additional techniques for model size reduction or processing 
speed  enhancement.  This  presents  an  opportunity  for  future  research  to  explore  optimization 
strategies that could potentially improve the efficiency and applicability of keypoint detection models 
across various computational resources and real-time scenarios.

3.2. Future directions of research
An  analysis  of  current  literature  in  the  field  of  machine  learning  for  camera  calibration  and 
homography matrix determination reveals a significant shortcoming in algorithm description and 
evaluation:  a  considerable  portion  of  the  presented  methods  lacks  comprehensive  information 
regarding quality metrics or performance speed. This limitation is particularly noticeable in machine 
learning algorithms,
where information about the algorithm’s operational speed is often absent. Such a situation creates 
serious obstacles for objective assessment of algorithm efficiency and their comparison.

The lack of performance data significantly limits the application of these algorithms in real-time 
systems, where data processing speed is a critical factor. Many algorithms that demonstrate high 
accuracy on test datasets may prove unsuitable for practical use due to low operational speed.

To overcome these limitations, it is necessary to focus on developing algorithms in the direction of 
improving  their  performance.  This  includes  optimizing  existing  algorithms,  developing  new 
approaches with an emphasis on computational efficiency, as well as applying parallel computing and 
specialized  hardware.  It  is  important  for  researchers  and  developers  to  pay  more  attention  to 
comprehensive algorithm evaluation, including both quality and performance metrics, which will 
expand their scope of application and increase efficiency in real conditions.

It is worth noting that the authors of the aforementioned works do not consider a number of 
important  optimization  techniques  for  computer  vision  models.  In  particular,  methods  such  as 
Pruning, Quantization, Knowledge Distillation, and Sparsity remain overlooked. These techniques 
have significant potential for substantially accelerating model performance while maintaining their 
effectiveness.

The use of these methods allows for the optimization of large and powerful models, reducing their 
computational requirements without significant loss of quality. For example, Pruning allows for the 
removal of the least important weights in a neural network, Quantization reduces the precision of 
parameter representation, Knowledge Distillation transfers knowledge from a large model to a smaller 
one, and Sparsity introduces sparseness into the network architecture.

The absence of consideration of these techniques in the analyzed works indicates a potential 
direction for further research and improvements in the field of computer vision model optimization.

Conclusions
In  this  work,  studies  related to  camera calibration for  determining the  homography matrix  for 
subsequent  transformation  of  2D  coordinates  into  3D  coordinates  were  analyzed.  The  analysis 
encompassed both foundational works associated with general camera calibration algorithms and 
more contemporary developments utilizing machine learning. It was ascertained that works without 
using of machine learning do not specify algorithm accuracy. Machine learning approach demonstrate 
sufficient accuracy but lack the necessary speed for comfortable use on offline recordings, as well as 
for potential future real-time application during broadcasts. The study analyzed and presented the 
main shortcomings of these works, conducted a comparative analysis of solutions, and identified 
directions and ideas for future improvements in this field.

The research covered a range of approaches, from basic camera calibration methods to advanced 
machine learning techniques. It revealed that traditional methods often lack precise accuracy metrics,



while machine learning approach, though accurate, fall short in terms of processing speed. This speed 
limitation hinders their practical application in both offline video analysis and real-time broadcast 
scenarios.

A  critical  evaluation  of  existing  methodologies  highlighted  their  respective  strengths  and 
weaknesses. The comparative analysis provided insights into the effectiveness of various solutions, 
considering  factors  such  as  accuracy,  field  coverage,  and  computational  efficiency.  This 
comprehensive review served to pinpoint areas where current approaches fall short and where future 
research efforts should be concentrated.

Based on the findings, several directions for future research and development were identified. These 
include the need for improved algorithm speed optimization, especially for machine learning-based 
methods, without compromising accuracy. Additionally, the potential for incorporating advanced 
optimization techniques such as pruning, quantization, knowledge distillation, and sparsity in model 
architectures was emphasized as a promising avenue for enhancing both accuracy and computational 
efficiency.

The work underscores the importance of developing algorithms that not only achieve high accuracy 
but also demonstrate practical applicability in real-world scenarios, particularly in the context of 
sports  analytics  and  broadcast  technologies.  By  highlighting  these  areas  for  improvement,  this 
analysis provides a valuable foundation for future research aimed at advancing the task of camera 
calibration and homography matrix determination.
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