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Abstract
This work is devoted to camouflage pattern generation using generative adversarial neural networks 
(GANs). The problems of creating camouflage are identified: limited adaptability, the complexity of 
development, the subjectivity of evaluation, and lack of individualization. It has been shown that 
GANs are an effective means of creating visual camouflage despite the instability of their behavior 
during training associated with the fall of the gradient and the appearance of "mode collapse". To 
solve this problem, the following GAN architectures were analyzed: Progressive Growing GAN, 
StyleGAN/StyleGAN2,  CycleGAN,  Pix2Pix,  Deep  Convolutional  GAN,  Wasserstein  GAN, 
Conditional  GAN,  Self-Attention  GAN,  Hybrid  GAN.  As  a  result,  a  new  GAN  architecture  is 
proposed, based on the use of U-Net as a generator, a simplified discriminator architecture, the use of 
a combination of cross-entropy and MSE as a cost function, multiple angles, concatenation of features. 
The proposed GAN architecture demonstrates the potential to create effective camouflage patterns 
tailored to specific landscapes.
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1. Introduction

Camouflage is a collection of methods and means designed to disguise objects, such as 
people, equipment, or structures, by visually merging them with the environment. The main 
purpose of camouflage is to make an object difficult to see or recognize for an observer, which 
can  be  achieved  by  using  colors,  patterns,  shapes,  and  materials  that  mimic  the  natural 
environment or create optical illusions [1]. Camouflage is an important tool used in various 
fields of human activity to achieve a variety of purposes, from ensuring safety and survival to 
creating  aesthetic  effects  and  entertainment.  The  development  of  new  technologies  and 
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materials opens up new opportunities for creating more effective and versatile camouflage, 
which can be used in an even wider range of applications.

Camouflage is used not only in the military sphere but also in many other fields of human 
activity: cinema and television, art and design, fashion, architecture and interior design.

2. Related Works

Creating effective camouflage is a complex task that requires a comprehensive approach and 
consideration of many factors. Among the main problems faced by camouflage developers, the 
following can be distinguished [2]:

 limited adaptability: Traditional camouflage patterns are developed for specific types of 
terrain and lighting. When the conditions (time of day, weather, season) change, their 
effectiveness can significantly decrease. This makes them less effective in the dynamic 
environment of the modern battlefield;

 design  complexity:  Creating  an  effective  camouflage  pattern  requires  a  deep 
understanding of the principles of camouflage, taking into account the peculiarities of 
human and animal vision, as well as analyzing a large amount of environmental data. 
This is a labor-intensive and time-consuming process that requires the involvement of 
highly qualified specialists;

 subjectivity of assessment: Evaluation of the effectiveness of camouflage often depends 
on the subjective opinion of experts, which can lead to ambiguous results and make it 
difficult to choose the optimal solution;

 lack of individualization: Traditional camouflage patterns, as a rule, are universal and do 
not take into account the individual characteristics of military personnel and equipment. 
This can reduce their effectiveness in specific situations.

Solving these problems requires an integrated approach that combines knowledge from 
different fields. Generative-competitive neural networks (GANs) are promising ways to create 
visual camouflage[3]: GANs are a powerful machine learning tool that can be used to create 
high-quality and adaptive visual camouflage. They consist of two neural networks: a 
generator that creates images and a discriminator that evaluates their realism. These two 
networks are trained in a competitive process where the generator tries to produce images 
that the discriminator cannot distinguish from real photos [4, 5, 6, 7].

There are many ways to classify GANs, depending on their architecture, the type of data 
they generate, and their specific applications [8], some of the most popular architectures are:

1. Progressive Growing GAN (PGGAN) [9]:  This architecture allows you to gradually 
increase the resolution of the generated images, starting with a low resolution and 
adding new layers during the training process. This avoids problems with learning 
instability and provides high-quality images. PGGAN can be particularly useful for 
generating detailed camouflage patterns that must accurately represent terrain [28] 
textures and colors;

2. StyleGAN/StyleGAN2 [10,11]:  This  architecture  allows  you  to  control  the  style  of 
generated images using latent vectors. This can be used to create camouflage patterns 



with different styles to suit different lighting conditions or types of terrain. StyleGAN2 is 
an improved version of StyleGAN that provides even more control over style and image 
quality;

3. CycleGAN [12]: This architecture allows you to transform images from one domain to 
another (for example, from a photo of a summer forest to a photo of a winter forest). 
CycleGAN can be used to create camouflage patterns that adapt to different seasons or 
weather conditions;

4. Pix2Pix [13]: This architecture is designed to convert images from one type to another 
while preserving the content of the original. Pix2Pix can be used to create camouflage 
patterns that closely match the shape and contours of the object being camouflaged;

5. Deep Convolutional GAN (DCGAN) [14]: This architecture is one of the simplest and 
most efficient for image generation. It uses convolutional layers for image processing 
and can be easily adapted to generate camouflage patterns;

6. Wasserstein BY (WGAN) [15,16,17]:  WGAN solves the instability problem of GAN 
training  by  using  the  Wasserstein  metric  to  measure  the  distance  between  the 
distributions of real and generated data. This avoids the problem of vanishing gradients 
and provides more stable training;

7. Conditional GAN [18,19,20]: This type of GAN allows you to control the generation 
process with additional conditional data. In the context of camouflage generation, this 
can be data about the type of landscape, lighting conditions, or the type of object being 
camouflaged;

8. Self-Attention GAN (SAGAN) [21]: SAGAN uses a self-attention mechanism to model 
dependencies between different parts of an image. This allows for more detailed and 
realistic  images  to  be  generated,  which  can  be  useful  for  creating  high-resolution 
camouflage patterns;

9. Hybrid generative adversarial network (HGAN): provides a way to avoid the mode 
collapse problem. Using the hybridization approach both in the development of a new 
topology and in training methods can significantly increase the efficiency of the neural 
network  [22,23,24].  In  HGAN  [25]   provides  data  density  estimation  using  an 
autoregressive model and supports both adversarial and likelihood structures in the 
form  of  joint  learning,  which  diversifies  the  estimated  density  to  cover  different 
modes;Drag and drop all .otf files to the Font Book window.

3. Method

3.1. GAN Architecture

During  the  development  of  the  camouflage  pattern  generator,  several  neural  network 
architectures  were  considered,  including  traditional  convolutional  networks  (CNNs)  and 
various variations of generative adversarial networks (GANs).[26]. After careful analysis, the U-
Net  architecture  was  chosen  as  the  most  suitable  for  solving  the  given  task.  The  U-Net 
architecture was first proposed by Olaf Ronneberger, Philipp Fischer, and Thomas Brocks in 
2015 [27] in the article "U-Net: Convolutional Networks for Biomedical Image Segmentation". It 
was originally developed to solve biomedical image segmentation problems but quickly found 



applications in many other areas of computer vision, including image generation. U-Net has a 
number of advantages that make it an attractive choice for image generation:

 efficiency  in  image  generation  tasks:  U-Net  is  widely  used  for  image  generation, 
especially in medical imaging, where it exhibits high quality reconstruction of details 
and structures. This feature is important for creating realistic camouflage patterns that 
must accurately match the features of the landscape;

 skip connections: U-Net uses skip connections between the encoder and decoder layers. 
These connections allow information from the early encoder layers to be passed directly 
to  the  corresponding  decoder  layers.  This  helps  preserve  image  detail,  especially 
important for rendering fine textures and contours to generate more accurate and 
realistic images, which is critical for effective camouflage;

 symmetrical  structure:  The U-shaped structure of  the network (Fig.  1)  ensures the 
symmetry  of  the  encoding  and  decoding  processes,  which  contributes  to  a  better 
understanding and interpretation of the model. Such a structure allows you to easily 
modify and adjust the model to the specific requirements of the task;

 adaptability to different image sizes: U-Net can be easily adapted to work with images of 
different sizes, which is important for creating camouflage patterns that can be applied 
to objects of different sizes and shapes;

 effectiveness of learning: U-Net can be effectively trained even on limited data sets, 
which is relevant for the task of military camouflage generation, where collecting a large 
amount of representative data can be difficult;

 considering these advantages, the U-Net architecture was chosen as the basis for the 
camouflage pattern generator in this work. It allows you to effectively use information 
from multiple landscape images, preserve detail and structure, and create realistic and 
adaptive camouflage patterns;

U-Net consists of two main parts – encoder and decoder. Contracting path ,or encoder, is a 
sequence of convolutional layers (Conv2D) that reduce the spatial dimensions (height and 
width) of the input image and increase the number of channels (depth). Each convolutional layer 
is usually accompanied by an activation layer (for example, ReLU or LeakyReLU) and a batch 
normalization layer (Batch Normalization). Encoder responds for removing features from the 
image.

Expansive path,  or  decoder,  is  a  sequence of  transposed convolutional  layers  (Conv2D 
Transpose), which increase the spatial dimensions of the image and reduce the number of 
channels. Each transposed convolutional layer is also usually accompanied by an activation 
layer and a batch normalization layer. The decoder is responsible for generating the image based 
on the extracted features (Fig. 1).



Figure 1: U-net generator architecture.

In our implementation of the camouflage generator, a modified U-Net architecture that takes 
into account the specifics of the task is proposed. In particular, we feed 10 images of the same 
landscape taken from different angles to the input of the generator.

Each image is processed by a separate encoder, which extracts a set of features from it. These 
features are then combined using the Concatenate layer, creating a single tensor that contains 
information about all angles of the landscape. This tensor is then passed to a decoder that 
generates an image of the camouflage pattern. Input data consists of a batch of 10 landscape 
images  of  256×256×3 dimensons.  Encoder  path  gradually  reduces  dimensionality  and 
extracts features. Encoder consists of blocks, namely 2D convolutional layer (Conv2d), followed 
by a ReLu activation function that introduces non-lineriality, and then followed by BatchNorm 
to normalize layer outputs to enable more stable learning. After the feature extraction, the 
whole batch is concatenated together into a single tensor to combine multi-angle information. 
After  concatenation,  the  tensor  is  passed  into  the  decoder  pathway  that  consists  of  2D 
transposed convolutions that extends the dimensions to the original input size. Last layer is the 
output layer that produces the 256×256×3 camouflage pattern patch. Advantages of such 
approach are:

 taking into account the variety of visual characteristics of the landscape: The landscape 
can significantly change its appearance depending on the viewing angle, lighting and 
other factors. Using 10 photos from different angles allows the generator to take this 
diversity into account and create a camouflage pattern that will  be effective when 
viewed from different positions;

 creating more realistic and adaptive patterns - each photo contains unique information 
about the landscape, such as textures, colors, shapes, and shadows. Combining this 
information allows the generator  to  create more realistic  and adaptive camouflage 
patterns that blend in better with the environment.

 prevention of overfitting -  using 10 photos instead of one helps prevent generator 
overfitting. The model learns not just to reproduce specific details from a single image, 
but to detect general patterns and structures inherent in a given landscape.



 increasing the effectiveness of masking - a camouflage pattern created on the basis of 10 
photos will be more effective in masking an object on a given landscape because it takes 
into account its visual characteristics from different angles. This makes it possible to 
reduce the probability of detecting the object when observing from different positions.

 Versatility -  generator model trained on 10 images of one landscape can be easily 
adapted to create camouflage for other landscapes. To do this, it is enough to replace the 
input images with photos of a new landscape and retrain the model.;

Thus, using 10 photos at the input of the generator is an effective approach to create a 
versatile and adaptable military camouflage. It allows you to take into account the variety of 
visual characteristics of the landscape, prevent overtraining of the model and increase the 
effectiveness of camouflage.

Discriminator architecture is not significantly changed in comparison to classic image GANs. 
A standard CNN architecture, derived from the encoder pathway with binary classification head 
is used.

3.2. Loss Function

Loss functions play a key role in training generative adversarial networks (GANs) because 
they determine exactly how the model evaluates its performance and adjusts its parameters [30, 
31]. In the context of GANs, two main loss functions are used: one for the generator and one for 
the discriminator.

We start by outlining the loss functions that are commonly used in the generator.
Binary Cross Entropy (BCE) is widely used in GANs to evaluate how well the generator can 

fool  the  discriminator.  It  calculates  the  difference  between  the  probability  distributions 
predicted by the discriminator for real and generated images.

Mean Squared Error (MSE) measures the root mean square difference between generated and 
real images at the pixel level. This lossy function can be useful for improving the visual quality 
of the generated images, ensuring that they resemble the original photographs.

Wasserstein Loss is used in Wasserstein GAN (WGAN) and provides more stable training 
compared to BCE. It measures the distance between the distributions of real and generated data, 
which makes it less sensitive to the problems of vanishing gradients and mode collapse. This is 
especially important when there is a limited amount of training data, as in our case.

Perceptual Loss: This loss function estimates the difference between the generated image and 
the real image based on high-level features extracted from a pre-trained neural network (eg 
VGG). It helps the generator create images that are not only pixel-like, but also in content and 
style, which can be useful for creating realistic camouflage patterns:

PL=∑
i=0

N

λi ∙‖φi ( y )−φi ( y ' )‖2
2
, (1)

where  N is the number of layers in the network, which are used to calculate losses, i  are 
weighting factors for layers λi; φi ( y ) is a feature function that extracts features from a layer i for 

the target image y;  ‖‖2
2is the L2 norm.

Discriminator can use some of the loss functions outlined above, however usually it uses 
either of the following options. Binary Cross Entropy - as with the generator, BCE is used to 



evaluate the ability of the discriminator to distinguish between real and generated images. 
Wasserstein Loss  -  in  WGAN, the  discriminator  also  uses  Wasserstein loss,  but  with the 
opposite sign compared to the generator.

In the proposed approach, mean squared loss (MAE) is used as a generator loss. This loss 
function is used to compare the generated image with the concatenated image from 10 angles. 
This helps the generator to create a pattern that will be similar to all input images, taking into 
account different angles of the landscape:

MSE= 1
N∑

i=0

N

( y i− y i
' )2, (2)

where N is the number of samples; y iis the actual value for the sample i, y i
' is the predicted value 

for the sample i.
For discriminator, binary cross entropy loss is used. It causes the discriminator to correctly 

classify real images as genuine and generated ones as fakes. This helps the discriminator become 
better at its task, which in turn forces the generator to produce more realistic images:

BCE=−1
N ∑

i=0

N

¿¿, (3)

where  N is the number of samples,  y i is the actual label (0 or 1) for the sample  i,  pi is the 
predicted probability for the sample i.

3.3. Hyper-parameter tuning

Setting hyperparameters is an important step in the process of developing and training a 
GAN, as they significantly affect the quality and stability of the model. In the case of our GAN, 
the key hyperparameters are:

Batch size (batch_size):  Defines the number of  images processed per training iteration. 
Increasing the  batch size  can speed up training,  but  requires  more memory.  In  our  case, 
batch_size = 10 (number of angles).

Number of epochs: Specifies the number of passes over the entire training data set. More 
epochs can lead to better learning, but can also lead to overtraining. In our case, epochs = 1000.

Learning rate (learning_rate): Determines how much the model weights change after each 
iteration. Too high a learning rate can lead to instability, and too low a slow learning rate. In our 
case, learning_rate = 0.005 for the generator and learning_rate = 0.0001 for the discriminator.

Adam optimizer beta parameters (beta_1, beta_2): Defines how the Adam optimizer takes 
first-order and second-order moments into account. The values of beta_1 = 0.5 and beta_2 = 0.5 
are used.

3.4. Metrics for evaluating the quality of generated images

Both qualitative and quantitative metrics are used to evaluate the quality of the generated 
camouflage patterns.  Quantitative  metrics  allow you to  objectively  assess  the  variety  and 
realism of images, while qualitative metrics are based on the subjective assessment of experts. 
Inception Score (IS) and Fréchet Inception Distance (FID) metrics were used to quantify the 
quality of generated camouflage patterns. The Inception Score (IS) is a metric used to evaluate 
the  quality  and  diversity  of  images  generated  by  models  such  as  Generative  Adversarial 



Networks  (GANs).  It  evaluates  both  the  information  diversity  and  the  plausibility  of  the 
generated images.

To calculate the IS, a pre-trained Inception model is first used, which classifies images into 
different classes. The probabilities of the images belonging to each class are obtained. For each 
generated image , the Inception model gives the probability ( ∣ ) as well  – class.𝑥 𝑦 𝑥 𝑦

Inception Score is calculated through the ratio between ( ∣ ) and ( ):𝑦 𝑥 𝑦
The Inception Score (IS) is a metric used to evaluate the quality and diversity of images 

generated by models such as Generative Adversarial Networks (GANs). It evaluates both the 
information diversity and the plausibility of the generated images.

To calculate the IS, a pre-trained Inception model is first used, which classifies images into 
different classes. The probabilities of the images belonging to each class are obtained. For each 
generated image , the Inception model gives the probability ( ∣ ) as well  – class.𝑥 𝑦 𝑥 𝑦

Inception Score is calculated through the ratio between ( ∣ ) and ( ):𝑦 𝑥 𝑦
IS=eE x [DKL(P( y∨x )∨¿P( y ))], (4)

where DKL stands for Kullback-Leibler divergence, which calculates the distance between two 
distributions:

DKL(P (x )∨|P ( y ))=∑
y

❑

P( x ) log2(
P( x )
P( y )

). (5)

Fréchet Inception Distance (FID) is a metric used to evaluate the quality of generated images 
compared to real images. FID takes into account not only the diversity of images, but also how 
well their distribution approximates the distribution of real images.

FID calculation is based on the comparison of the statistical characteristics of the images 
extracted using the pre-trained Inception model. In particular, FID compares the mean vectors 
and covariances of  two sets  of  images in feature spaces that are obtained from a certain 
intermediate layer of the Inception model. FID is calculated by the formula:

FID=¿∨μr−μg∨¿2+√Tr (Σr+Σg−2Σr Σg ), (6)

where,  N ( μr , Σr ),  N ( μg , Σg )are multivariate normal distributions for real  and generated 

images, respectively, where μrand Σr are average and covariance for real images, and μg and 

Σg is the mean and covariance for the generated images, Tr is the trace of the matrix (the sum of 
its diagonal elements).

4. Results

As an example, consider the problem of generating camouflage patterns (Fig. 2) based on 
realistic images (Fig. 3). Table 1 shows that the value of the Inception Score (IS) increases with 
each learning epoch. This indicates that the generated images are becoming more diverse and 
clear. At the beginning of training (100 epochs), the IS is 1.28, which indicates low image quality. 
However, as the number of epochs increases, the IS increases to 2.23 per 1000 epochs, indicating 
a significant improvement in the quality of the generated images. Fréchet Inception Distance 
(FID) values decrease with each training epoch. This means that the feature distribution of 
generated images becomes closer to the feature distribution of real images. At the beginning of 
training (100 epochs), the FID is 148.3, indicating a significant difference between the generated 
and real images. However, as the number of epochs increases, the FID decreases to 56.2 per 1000 
epochs, indicating a significant improvement in the quality and realism of the generated images. 



Figure 2: Generated images.

Figure 3: Real images from the training dataset.

Table 1
Quality assessment results

Epoch Inception Score (IS) Fréchet Inception Distance (FID)

100 1.28 148.3

200 1.42 132.1

300 1.58 116.9



400 1.71 102.4

500 1.85 88.7

600 1.92 79.5

700 1.98 71.2

800 2.05 63.8

900 2.12 57.1

1000 2.23 56.2

Quality evaluation results based on IS and FID metrics confirm that the proposed GAN model 
is capable of learning and improving the quality of generated camouflage patterns over time. An 
increase in IS and a decrease in FID mean that images become more diverse, sharp and realistic.

5. Conclusions

The proposed GAN architecture demonstrates the potential to generate effective camouflage 
patterns adapted to specific landscapes.  It  takes into account different terrain angles,  uses 
effective training methods and can be easily adapted for different types of data. Further research 
and experimentation may lead to even more impressive results in camouflage generation.

Batches  of  10  images  of  the  same landscape from different  angles  to  the  input  of  the 
generator allow us to take into account the diversity of its visual characteristics. This helps 
create more realistic and adaptive camouflage patterns that effectively mask objects when 
viewed from different angles. Combining the features extracted from each image provides the 
generator with more complete information about the landscape, allowing it to create more 
complex and varied patterns that better match the characteristics of the terrain.

Using a simplified discriminator architecture with fewer layers and neurons helps prevent 
overtraining and maintains a balance between the generator and the discriminator. This is 
especially important when there is a limited amount of training data. The combination of these 
loss functions allows to simultaneously improve the quality of the generated images (MSE) and 
the ability of the generator to deceive the discriminator (BCE).

The proposed GAN architecture can be easily adapted to generate camouflage patterns for 
different types of landscapes. To achieve this, it is enough to replace the input images with 
photos of a new landscape and retrain the model.

Future  research  involves  using  more  complex  architectures  (e.g.  StyleGAN2-ADA), 
additional loss functions (e.g. perceptual loss), as well as regularization methods (e.g. spectral 
normalization).
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