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Abstract
In  medicine,  gesture  and  body  pose  analysis,  especially  in  the  context  of  telemedicine  and 
rehabilitation, has gained importance after the COVID-19 pandemic. Gesture recognition and body 
pose estimation demand high computational power to process large and complex data. To address this 
problems Authors examined machine learning methods and aggregation techniques for sequential 
data.
This paper compares two gesture analysis methods: frame-by-frame and gesture sequence analysis. 
The iMiGUE dataset, which contains skeleton data obtained using the OpenPose tool, is used. In this 
paper, the gesture classification results obtained using the RandomForestClassifier model with default 
and optimized parameters are evaluated in detail.
Sequential gesture analysis methods outperformed the classical frame-by-frame analysis in terms of 
precision and computational efficiency.
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1. Introduction

Recent years have yielded the most advanced solutions in the domain of  artificial 
intelligence (AI) to date, just to mention transformers architecture  [1] and plethora of large 
language models  (LLMs) based on that idea namely ChatGPT (GPT stands for Generative 
Pretrained Transformer) or Gemini  [2],[3],[4].  While results obtained by those models are 
marvelous, they have incurred significant costs [5],[6], impossible to bear by many institutions. 
Costs are mainly related to the number of parameters used in the training process - in some 
cases they reach billions - as well as length of training itself [5]. LLMs have found applications in 
a variety of domains, for example in healthcare [7],[8]. 

Yet solely analyzing language itself does not exhaust all possibilities of advanced AI 
solutions for healthcare. One area that proved to be beneficiary of AI development is gesture and 
body position recognition. [9] provides distinctions of three groups of gestures that are of our 
interests: head, hand and body. 

Gestures  convey  more  information  that  can  be  inferred  from  speech  alone  [10]. 
Significant effort has been put towards development of more robust and precise techniques for 
gesture recognition whether it is hand specifically  [11],[12] or body and head [13],[14],[15]. 
Those techniques proved to be crucial for rehabilitation purposes for post-stroke patients [16] or 
people with cerebral palsy  [17] allowing medical practitioners to remotely assess a patient's 
condition  and  state.  In  a  more  general  sense  gesture  and  body  recognition  yield  new 
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opportunities  for  rehabilitation  processes  [18],[19] providing  more  approachable  ways  of 
monitoring progress and overall condition of the patient. As demonstrated by the authors in 
[20], virtual reality (VR) offers a broad spectrum of applications in neurological rehabilitation. 
This is largely attributed to its ability to easily replicate natural environments, design specific 
movement patterns, and create engaging exercises in which patients can actively participate. 
During these exercises, it is crucial for the patient to be monitored through gesture recognition, 
allowing for effective tracking of their progress and identification of any obstacles.

COVID-19 pandemic presented a plethora of challenges and obstacles for the healthcare 
workforce  [21].  Unexpected  circumstances  forced  the  healthcare  sector  to  adjust  to  an 
unfamiliar  environment,  rendering  then-present  methods  of  rehabilitation  impossible  to 
execute  in  a  new  context.  Post-COVID-19  rehabilitation  has  been  deemed  “an  effective 
therapeutic strategy to improve the functional capacity and quality of life of patients”  [22] 
yielding  improvements  in  quality  of  both  physical  and  psychological  aspects  of  life  [23]. 
Pandemic circumstances put emphasis on the development of the niche of telemedicine and 
remote  healthcare  [24] with  rehabilitation being one  of  the  most  crucial  aspects.  Remote 
rehabilitation has been implemented during pandemic and to this day it is relied upon by the 
medical practitioners as a mean that “was safe, feasible, and acceptable for those who accessed 
it”  [25],[26].  In  the  context  of  remote  rehabilitation  gesture  recognition  and  body  pose 
estimation can be an important element of monitoring a patient's wellbeing and recovery [27],
[28]. At the same time, in the context of pandemic, the proposed methods may not be accessible 
for some patients due to limitations of possessed hardware unable to perform required work for 
proper  assessment  based  on  gestures  of  body  pose.  Therefore,  methods  to  decrease 
computational load are necessary to ensure availability of the service and its quality. 

In this paper we examine simple methods based on aggregation of the gestures, that 
prove to be beneficial both in terms of required computational power and storage as well as a 
performance. Given a dataset [29] consisting of skeleton data we aggregate data that describes 
each gesture presented in a dataset using five methods: minimum, maximum, integral, average 
and regression, and we compare obtained results with results obtained on original data.

2. Related works

Significant effort has been put towards examining techniques of processing the data for 
gesture recognition or body pose estimation. Authors in  [30] state that the most focus in 
research is put on “RGB data, depth data, or skeleton data”. In this paper we will solely focus on 
skeleton data. Ionescu et al. [31] proposed a strategy for segmentation of image for body pose 
estimation relying on regression to obtain joints coordinates. Wang et al.  [32] distinct two 
regression approaches in case of single person body pose estimation in 2D: “direct regression-
based approach, which involves regressing key points directly from features” and heatmap 
approach  that  infers  joints  positions  from the  heatmap.  For  the  3D case  two  mentioned 
approaches found applications, as well as a third approach that combines 2D and 3D approaches 
into one complex framework. This work focus on 3D skeleton data. 

While there is much effort put into discovery of the new techniques and methods of 
processing the data, there is significantly less effort put towards examining ways of easing 
computational load for recognizing gestures or body pose estimation. In the same vein, the 



aspect of compressing, like in our case, skeleton data or methods of aggregating such data leave 
still  much to  be  desired  for.  While  new techniques  are  providing impressive  results  (e.g. 
variations on Spatio-Temporal Graph Convolutional Network  [33]), they offer very little in 
terms of improving the general methodology for the data processing process.

3. Methodology

3.1. Dataset

In this study, the iMiGUE dataset [29] was utilized. This dataset was specifically created 
to analyze micro-gestures in the context of emotional AI. It contains videos of press conferences 
following tennis Grand Slam matches, where players respond to questions from journalists. 
iMiGUE was designed to investigate hidden emotions by analyzing micro-gestures, which are 
small, often unconscious movements that reflect internal emotional states. The videos were 
collected  from various  open video  platforms,  such  as  YouTube,  and  included  359  videos, 
including 258 winning and 101 losing matches, for a total of 2092 minutes of footage. All videos 
have a resolution of 1280x720 pixels and were recorded at a rate of 25 frames per second. The 
data is  labeled at two levels:  micro-gesture categories at the video clip level and emotion 
categories at  the entire video level.  A total  of 18,499 micro-gesture samples were labeled, 
assigning them 32 different categories. It’s worth noting that iMiGUE is a dataset that protects 
individuals’ privacy by removing biometric data such as face and voice. It contains data from 72 
athletes from 28 countries, allowing for analysis of micro-gestures in the context of diverse 
cultures  and  genders.  Additionally,  the  dataset  was  notably  imbalanced,  which  led  to 
significantly  low performance  in  both  detection  and  classification  tasks.  Nonetheless,  the 
application of class balancing techniques, as discussed in [34],[35], could potentially enhance 
the performance in these areas.

In the research,  the RGB material  contained in the iMiGUE dataset was not used. 
Instead, the focus was solely on the skeleton data. The skeleton data in the iMiGUE dataset is 
constructed to facilitate the recognition and understanding of micro-movements. This data is 
obtained using the OpenPose tool  [14], which extracts pose data for each frame of a video 
sequence. The pose data includes key points corresponding to different body parts, creating a 
skeletal representation of a person’s posture and movements over time. The dataset uses a 
sequence of key body points (or pose data) for each micro-movement instance, where each 
frame in the sequence contains the coordinates of key joints. These key points capture the 
spatial  configuration  of  the  body,  allowing  for  the  analysis  of  subtle  movements  that 
characterize micro-movements.  Skeletal data is advantageous because it  is insusceptible to 
dynamic background changes, making it more suitable for gesture recognition tasks in different 
environments. By focusing on skeleton data, the iMiGUE dataset provides a detailed and private 
way to analyze micro-movements, which are crucial for understanding hidden or suppressed 
emotions.

In this study, Authors used the training and validation data split proposed in the MiGA 
(Micro-gesture Analysis for Hidden Emotion Understanding) challenge  [36]. The data ware 
restricted to a few selected micro-gestures that the Authors believed had sufficient support in 
validation part of the dataset to perform correct inference. We selected the following micro-
gestures: ear touching (1720 samples, denoted as gesture 8),  torso touching (3329 samples, 



denoted as gesture 20), finger crossing (184 samples, denoted as gesture 24), lip pressing (2746 
samples, denoted as gesture 29), shoulder shaking (4261 samples, denoted as gesture 31), and 
unspecified gestures (9670 samples, denoted as gesture 99). These classes were selected because 
they had enough samples, which is crucial for performing correct analysis and inference.

3.2. Sequence data processing

The data in this dataset was originally divided into sequences of gestures (e.g., touching 
ears sequence,  touching torso sequence,  crossing fingers sequence,  etc.).  In the study,  the 
Authors investigated whether frame-by-frame inference (denoted as Base) would yield worse 
results than using simple methods that allow for the analysis of entire sequences. The simple 
methods proposed by the Authors included calculating the mean value for the entire sequence 
(denoted as Avg), determining the minimum (denoted as Min) and maximum (denoted as Max) 
values for the entire sequence, and performing linear regression on each sequence (denoted as 
Reg) and taking the slope value (a).

The formula for linear regression in this context can be represented as:

y=ax+b (1)

Where, a is the slope and b is the intercept.

Additionally, Authors used the integral (trapezoidal rule) for calculating the sequence 
value (denoted as Int). In this case the vector of sequence values y=¿] is uniformly distributed 
over the interval [0,1] and the integral value is calculated using the formula:

Integral ≈∫
0

1

f (x )dx ≈ 1
n
∑
0

n−1 y i+ y i+1

2

(2)

Where:

 y i and y i+1are successive values in the vector y ,

 n is the number of intervals.

When sequence-based inference was used, the support for the data changed. The new 
support values were touching ears (34 samples), touching torso (55 samples), crossing fingers (10 
samples), pressing lips (82 samples), shaking shoulders (193 samples), and undefined gestures 
(258 samples). The application of these methods for aggregating gestures belonging to the same 
sequence allowed for the analysis of entire gesture sequences, rather than analyzing each frame 
individually.

3.3. First Phase - Used model

In the first part of the study, the model RandomForestClassifier  [37] with parameters 

nestimators=100 and randomstate=42 was utilized. This model is an ensemble learning method 
that constructs multiple decision trees during training and outputs the mode of the classes 



(classification) or mean prediction (regression) of the individual trees. The parameter nestimators 

specify the number of trees in the forest,  while  randomstate ensures reproducibility of the 
results. This approach was considered the initial step in the study, allowing for a preliminary 
verification of the research hypothesis.

3.4. Second Phase - Grid Search

In the second part of the study, a Grid Search method was applied to find the best 
parameters. The parameter grid included the following:
 nestimators: number of trees in the forest, with values [100, 200, 300, 400, 500],

 max features: number of features to consider when looking for the best split, with options 
[None, 'sqrt', 'log2'],

 maxdepth: maximum depth of the tree, with values [None, 10, 20, 30, 40, 50],

 min¿: minimum number of samples required to split an internal node, with values [2, 5, 10],
 min¿: minimum number of samples required to be at a leaf node, with values [1, 2, 4],
 bootstrap: whether bootstrap samples are used when building trees, with options [True, 

False],
 criterion:  function  to  measure  the  quality  of  a  split,  with  options  ['gini',  'entropy', 

'log_loss'],

 oobscore: whether to use out-of-bag samples to estimate the generalization accuracy, with 
options [True, False],

 classweight:  weights  associated  with  classes,  with  options  [None,  'balanced', 
'balanced_subsample'].

The parameters were not searched in a brute-force manner (every combination of 
parameters), but instead, to save time (as the calculation for Base model was time consuming), it 
was decided to check each parameter sequentially. First, the best value for the first parameter 
was selected, then using this value, the best value for the second parameter was determined, and 
so on. This strategy, which can be used in model optimization [38], allowed each of the proposed 
models to select parameters that fit best its structure.

3.5. Used metrics

In  the  study,  the  following  metrics  were  used  to  evaluate  the  algorithms: 
Precision , Recall , F 1Score∧Accuracy .  Precisionmeasures the exactness of the positive 
predictions made by the model. It represents the proportion of correctly predicted positive 
outcomes (true positives) to all outcomes that the model predicted as positive (true positives + 
false positives) [39]. The formula for precision is as follows:

Precision= True Positives
True Positives+False Positives

(3)

where:



 True Positives are the number of correctly predicted positive cases,
 False Positives are the number of incorrectly predicted positive cases.

Recall measures the ability of a model to correctly identify all instances of an object in 
a dataset. It represents the ratio of the number of correctly detected instances of an object (true 
positives) to the total number of actual instances of the object in the dataset (true positives + 
false negatives) [39]. The formula for recall is as follows:

Recall= True Positives
True Positives+False Negatives

(4)

where:
 True Positives are the number of correctly predicted positive cases,
 False Negatives are the number of actual positive cases that were incorrectly predicted as 

negative.

The F 1Score is the harmonic average of Precision and Recall. It strikes a balance 
between Precision and Recall, which is especially important when we want to account for 
both false positives and false negatives in our model evaluation. The F 1Scoreranges from 0 to 
1, with higher values  indicating better performance. An ideal  F 1Scoreof 1 means that the 
model has achieved both perfect  Precision and perfect  Recall, suggesting that it is able to 
correctly detect all  instances of an object without generating false positives  [39],[40].  The 
formula for F 1Score is as follows:

F 1Score=2∗Precision∗Recall
Precision+Recall

(5)

where:
 Precision is the ratio of true positive predictions to the total number of positive predictions 

made (both true and false positives).
 Recall is the ratio of true positive predictions to the total number of actual positive cases 

(both true positives and false negatives).

The  Accuracy  metric is one of the simplest and most commonly used metrics for 
evaluating a classification model. It measures the percentage of correctly predicted results over 
the total number of cases in the data set.  Accuracy  is particularly useful when the data is 
balanced, i.e.  when the number of examples of each class is similar  [40].  The formula for 
Accuracyis as follows:

Accuracy= True Positives+True Negatives
True Positives+True Negatives+FalsePositives+False Negatives

(6)

where:
 True Positives (TP) are the number of correctly predicted positive cases.
 True Negatives (TN) are the number of correctly predicted negative cases.
 False Positives (FP) are the number of incorrectly predicted positive cases.



 False Negatives (FN) are the number of incorrectly predicted negative cases.

4. Results

Authors have conducted examinations that aimed to test how the results obtained by 
proposed aggregation compare to the Baseline results. By the Baseline results we understand 
results obtained by performing fitting of the model on the Base dataset, whereas the aggregated 
results refer to results obtained by fitting models on each of the aggregated datasets. For each of 
the Phases and for each of the dataset one fitting was performed accordingly. 

In the tables below results of each Phase are presented by each chosen metric. For each 
metric the best score was marked in red, while the best score was marked in green.

4.1. First Phase

In the first Phase every aggregated dataset as well as a Base dataset were fitted 
on RandomForestClassifier . Table 1 presents obtained results:
 for  F 1Scorethe best result was obtained by regression method (0.55) while the 

worst result was produced by Baseline model (0.43)
 for Precision score surprisingly three methods managed to obtain the same result 

(0.57), namely Regression, Integral and Maximum methods, while the Minimum 
method generated the worst result (0.47)

 for Recall score the best result was produced by Regression and Integral methods 
(0.57) and the worst one was produced by Baseline method (0.44)

 for Accuracy metric the best score was obtained by Regression and Integral methods 
(0.57) and the worst one was obtained by Baseline method (0.44)

Table 1
Results for Phase I

In  the  first  Phase  of  the  examination the  most  consistent  and best-scoring 
method turned out to be Regression, closely followed by Integral method, which scored 
slightly worse in F 1Score terms and kept equal on all other metrics. Maximum method 
scored almost as well as two mentioned methods, placing third. The Minimum and 
Average methods scored noticeably worse than former methods, yet better than the 

F1 Score Precision Recall Accuracy
Base 0.43 0.49 0.44 0.44
Avg 0.49 0.5 0.52 0.52
Reg 0.55 0.57 0.57 0.57
Int 0.54 0.57 0.57 0.57
Min 0.45 0.47 0.47 0.47
Max 0.54 0.57 0.56 0.56



Baseline results. Baseline results turned out to be the worst scores in three out of four 
metrics, making it the worst performing approach.

4.2. Second Phase

In the second Phase every aggregated dataset as well as a Base dataset were fitted 
on RandomForestClassifier  with Grid Search. Table 2 presents obtained results:

 for the F 1Score the best result was obtained by Maximum method (0.56), second 
best score was Regression (0.55), at the same time Baseline model was the worst 
scoring one (0.45)

 for Precision two methods were able to produce the best results, namely Integral 
and Maximum (0.60), Regression was able to produce second best result (0.58), the 
lowest scoring was Baseline (0.47)

 for Recall metric again the best score was obtained by Maximum method (0.59) with 
second best scoring method Integral (0.58), while the lowest score was obtained by 
Baseline (0.46)

 in terms of Accuracy the best scoring method was Maximum (0.59), second best was 
Integral (0.58) and the lowest scoring was Baseline (0.46)

Table 2
Results for Phase II

In Phase II of the examination the best scoring and most consistent method across all 
metrics was Maximum, which obtained the best results in all four metrics. It was followed by 
Regression and Integral methods, which produced overall good results, slightly worse than the 
former  method.  The overall  worst  performance  in  this  Phase  was  performed by Baseline 
method, which placed last in all considered metrics. Minimum and Average methods both 
performed  better  than  the  Baseline  model,  but  also  noticeably  worse  than  the  first  two 
mentioned.

4.3. Comparison

In the final part of the study, the F 1Scores from the I and II Phases were compared 
separately for each gesture, taking into account each presented method of sequential data 
processing. Figure 1 illustrates the F 1Scores for the ear-touching gesture.

F1 Score Precision Recall Accuracy
Base 0.45 0.47 0.46 0.46
Avg 0.51 0.53 0.55 0.55
Reg 0.55 0.58 0.55 0.57
Int 0.55 0.60 0.58 0.58
Min 0.48 0.50 0.5 0.5
Max 0.56 0.60 0.59 0.59



Figure 1: F 1Score value for gesture 8 (ear touching) before and after Grid Search

After applying Grid Search, better results were obtained for the methods: Base, Avg, Int, 
and Min. Worse results were observed for the Max method, while the Reg method yielded the 
same results. The results for gesture 20 (torso touching) are presented in Figure 2.

Figure 2: F 1Score value for gesture 20 (torso touching) before and after Grid Search

For gesture 20 - torso touching, all results improved after applying Grid Search. The best 
result for this gesture was obtained with the Max method, while the worst was with the Avg 
method. Notably, before applying Grid Search, the best result was also with Max, and the worst 
with Avg. Figure 3 presents the results for gesture 24 - finger crossing.



Figure 3: F 1Score value for gesture 24 (finger crossing) before and after Grid Search

A significant improvement after applying Grid Search can be observed for the Max 
method, while a substantial decline is seen for the Min method. The best result was achieved 
with the Max method, and the worst with the Reg method. Notably, before applying Grid 
Search, the best result was with Min, and the worst with Int. Figure 4 presents the results for 
gesture 29, which represents lip pressing.

Figure 4: F 1Score value for gesture 29 (lip pressing) before and after Grid Search

Also, a significant improvement after applying Grid Search can be observed for the Base, 
Int, and Min methods, while a decline is seen for the Reg method, and comparable results for the 
Avg and Max methods. The best result both before and after applying Grid Search was achieved 
with the Reg method, while the worst result in both cases was with the Base method. Figure 5 
shows the results for gesture 31 - shoulder shaking.



Figure 5: F 1Score value for gesture 31 (shoulder shaking) before and after Grid Search

All models with the applied sequential analysis method performed better than the Base 
model for gesture 31, both before and after Grid Search. The best performance, both before and 
after Grid Search, was achieved by the Reg method, while the worst was by the Base method. 
After Grid Search, the models that showed improvement were Avg, Reg, Max, and Min. Int 
model remained the same, while Base performed worse. Figure 6 presents the results for gesture 
99 (unspecified gestures).

Figure 6: F 1Score value for gesture 99 (unspecified) gestures before and after Grid Search

For gesture 99 - unspecified gestures, Grid Search led to overall improvements. Most 
models showed slight score increases, with the model using Maximum value performing best. 
The Base model also improved significantly. The Regression model experienced a slight decline, 



and the model with Integration remained stable. In this case the worst results were achieved by 
the Min model.

Overall, the application of Grid Search generally improved model performance across 
various gestures. Most models showed enhancements in their scores, with the models using 
Maximum value and Integration methods consistently performing well. The Averaging model 
also  demonstrated  notable  improvement.  However,  the  Regression  model  occasionally 
experienced slight declines, and while the Minimum value model showed some improvement, it 
often remained the lowest performer. 

5. Conclusion

Conducted examination proved that using simple aggregating methods for sequential 
data can be beneficial. The best scoring methods were consistently better than Baseline results, 
while using a more robust model with Grid Search improved them further. Furthermore, using 
said methods results in more benefits. One of them is the space it takes to store the data. The 
original dataset (restricted to just 6 gestures) takes around 400 MB of memory. The aggregated 
datasets take from around 6 MB up to 12 MB. In the worst case scenario it proves over 33 times 
reduction in size. Another aspect is the time it takes to calculate a model. For the Baseline 
method with Grid Search it took over 71 hours to compute. At the same time, for aggregation 
methods it took on average 1 hour and 28 minutes to compute a model, which resulted in over 48 
times improvement. Computing all 5 models took over 9 times less time than the one Baseline 
model. 

In both Phases aggregation methods Regression, Integral and Maximum proved to be 
worth considerations for further research. All three of them were outperforming the remaining 
two aggregations methods - Minimum and Average. Nonetheless, all aggregation methods were 
performing better than the Baseline results.

6. Future works

This paper serves as an introduction for further analysis that examines more complex 
approaches to aggregating data. While only simple methods are presented, this publication 
serves as a basis for future works in this direction. An example of such a complex method is the 
TCIP method, which is described in more detail in [41].  We aim to examine some methods that 
would  allow  us  to  significantly  reduce  the  size  of  the  dataset,  while  at  the  same  time 
maintaining, or even in some cases improving, the level of obtained results. 

Although obtained results are promising further work is necessary to establish scale of 
application of those solutions. Presented methods can be further tested on the Baseline dataset 
to establish comparison solely on the full data instead of aggregated. Authors would also like to 
acknowledge that the examination was performed on one dataset, further examination on other 
datasets  may  be  beneficial  for  estimating  usefulness  of  aggregation  methods.  Moreover, 
conducted examination focus on readily available data, we do not process data on the fly. While 
this might be an interesting approach, it is outside of the scope of this paper.



References

[1] A.  Vaswani  et  al.,  “Attention  Is  All  You  Need,”  arXiv.org,  Jun.  12,  2017. 
https://arxiv.org/abs/1706.03762

[2] J.  Devlin,  M.-W.  Chang,  K.  Lee,  and  K.  Toutanova,  “BERT:  Pre-training  of  Deep 
Bidirectional  Transformers  for  Language  Understanding,”  arXiv.org,  Oct.  11,  2018. 
https://arxiv.org/abs/1810.04805

[3] T. B. Brown et al., “Language Models Are Few-Shot Learners,” arxiv.org, vol. 4, May 2020, 
Available: https://arxiv.org/abs/2005.14165

[4] S. S. Gill and R. Kaur, “ChatGPT: Vision and Challenges,” Internet of Things and Cyber-
Physical Systems, vol. 3, pp. 262–271, 2023, doi: https://doi.org/10.1016/j.iotcps.2023.05.004.

[5] O.  Sharir,  B.  Peleg,  and  Y.  Shoham,  “The  Cost  of  Training  NLP  Models:  A  Concise 
Overview,” arXiv:2004.08900 [cs], Apr. 2020, Available: https://arxiv.org/abs/2004.08900

[6] S. Samsi et al., “From Words to Watts: Benchmarking the Energy Costs of Large Language 
Model Inference.” Available: https://arxiv.org/pdf/2310.03003

[7] M. Sallam, “ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic 
Review on the Promising Perspectives and Valid Concerns,” Healthcare, vol. 11, no. 6, p. 
887, Mar. 2023, doi: https://doi.org/10.3390/healthcare11060887.

[8] P. P. Ray, “Timely need for navigating the potential and downsides of LLMs in healthcare 
and  biomedicine,”  Briefings  in  bioinformatics,  vol.  25,  no.  3,  Mar.  2024,  doi: 
https://doi.org/10.1093/bib/bbae214.

[9] T. Acharya, “Gesture Recognition: A Survey,” IEEE Transactions on Systems, Man and 
Cybernetics,  Part  C  (Applications  and  Reviews),  Jan.  2000,  Accessed:  Apr.  26,  2024. 
[Online]. Available: https://www.academia.edu/32594485/Gesture_Recognition_A_Survey

[10] S.  Goldin-Meadow,  “The  role  of  gesture  in  communication  and  thinking,”  Trends  in 
Cognitive Sciences, vol. 3, no. 11, pp. 419–429, Nov. 1999, doi: https://doi.org/10.1016/s1364-
6613(99)01397-2.

[11] H.-J. Kim, J. S. Lee, and J.-H. Park, “Dynamic hand gesture recognition using a CNN model 
with 3D receptive fields,” Workshop on Neural Networks for Signal Processing, 2008, 
Accessed:  Jun.  24,  2024.  [Online].  Available: 
https://www.semanticscholar.org/paper/Dynamic-hand-gesture-recognition-using-a-
CNN-model-Kim-Lee/1ae971c25646d003e15dd9eb706650e58c21d900

[12] G.  Devineau,  F.  Moutarde,  W.  Xi,  and  J.  Yang,  “Deep  Learning  for  Hand  Gesture 
Recognition  on  Skeletal  Data,”  IEEE  Xplore,  May  01,  2018. 
https://ieeexplore.ieee.org/document/8373818 (accessed Nov. 26, 2022).

[13] E. Samkari, M. Arif, M. Alghamdi, and M. A. Al Ghamdi, “Human Pose Estimation Using 
Deep  Learning:  A  Systematic  Literature  Review,”  Machine  Learning  and  Knowledge 
Extraction,  vol.  5,  no.  4,  pp.  1612–1659,  Dec.  2023,  doi: 
https://doi.org/10.3390/make5040081.

[14] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose: Realtime Multi-Person 
2D Pose Estimation using Part Affinity Fields,” arXiv:1812.08008 [cs], May 2019, Available: 
https://arxiv.org/abs/1812.08008

[15] L. Pishchulin et al., “DeepCut: Joint Subset Partition and Labeling for Multi Person Pose 
Estimation,” arXiv:1511.06645 [cs], Apr. 2016, Available: https://arxiv.org/abs/1511.06645

https://doi.org/10.1016/j.iotcps.2023.05.004


[16] O. N. Zestas, D. N. Soumis, K. D. Kyriakou, K. Seklou, and N. D. Tselikas, “A computer-
vision  based  hand  rehabilitation  assessment  suite,”  AEU  -  International  Journal  of 
Electronics  and  Communications,  vol.  169,  p.  154762,  Sep.  2023,  doi: 
https://doi.org/10.1016/j.aeue.2023.154762.

[17] Y.-J. Chang, W.-Y. Han, and Y.-C. Tsai, “A Kinect-based upper limb rehabilitation system to 
assist people with cerebral palsy,” Research in Developmental Disabilities, vol. 34, no. 11, 
pp. 3654–3659, Nov. 2013, doi: https://doi.org/10.1016/j.ridd.2013.08.021.

[18] V. Tsakanikas et al., “Automated Assessment of Balance Rehabilitation Exercises With a 
Data-Driven  Scoring  Model:  Algorithm  Development  and  Validation  Study,”  JMIR 
Rehabilitation  and  Assistive  Technologies,  vol.  9,  no.  3,  p.  e37229,  Aug.  2022,  doi: 
https://doi.org/10.2196/37229.

[19] Y. Peng, “Smart Home based on Kinect Gesture Recognition Technology,” International 
Journal  of  Performability  Engineering,  2019,  doi: 
https://doi.org/10.23940/ijpe.19.01.p26.261269.

[20] D. Mikolajewski et al., “The Most Current Solutions using Virtual-Reality-Based Methods 
in  Cardiac  Surgery  --  A  Survey,”  Computer  Science,  vol.  25,  no.  1,  Mar.  2024,  doi: 
https://doi.org/10.7494/csci.2024.25.1.5633.

[21] R. Filip,  R.  G. Puscaselu,  L.  Anchidin-Norocel,  M. Dimian, and W. K. Savage,  “Global 
Challenges to Public Health Care Systems during the COVID-19 Pandemic: a Review of 
Pandemic Measures and Problems,” Journal of Personalized Medicine, vol. 12, no. 8, p. 1295, 
Aug. 2022, doi: https://doi.org/10.3390/jpm12081295.

[22] T. Sakai, C. Hoshino, M. Hirao, M. Nakano, Y Takashina, and A. Okawa, “Rehabilitation of 
Patients with Post-COVID-19 Syndrome: A Narrative Review,” Progress in rehabilitation 
medicine, vol. 8, no. 0, p. n/a-n/a, Jan. 2023, doi: https://doi.org/10.2490/prm.20230017.

[23] B.  Kesikburun  et  al.,  “The  effect  of  comprehensive  rehabilitation  on  post-COVID-19 
syndrome,”  Egyptian Rheumatology and Rehabilitation,  vol.  50,  no.  1,  Dec.  2023,  doi: 
https://doi.org/10.1186/s43166-023-00227-4.

[24] D. Joyce, Aoife De Brún, Sophie Mulcahy Symmons, R. Fox, and É. McAuliffe, “Remote 
patient monitoring for COVID-19 patients: comparisons and framework for reporting,” 
BMC  Health  Services  Research,  vol.  23,  no.  1,  Aug.  2023,  doi: 
https://doi.org/10.1186/s12913-023-09526-0.

[25] H.  Hawley-Hague et  al.,  “Exploring the  delivery of  remote  physiotherapy during the 
COVID-19 pandemic: UK wide service evaluation,” Physiotherapy Theory and Practice, pp. 
1–15, Aug. 2023, doi: https://doi.org/10.1080/09593985.2023.2247069.

[26] T.  Sakai,  C.  Hoshino,  R.  Yamaguchi,  M. Hirao,  R.  Nakahara,  and A.  Okawa,  “Remote 
rehabilitation for patients with COVID-19,” Journal of Rehabilitation Medicine, p. 0, 2020, 
doi: https://doi.org/10.2340/16501977-2731.

[27] K. Guo, M. Orban, J. Lu, M. S. Al-Quraishi, H. Yang, and M. Elsamanty, “Empowering Hand 
Rehabilitation with AI-Powered Gesture Recognition: A Study of an sEMG-Based System,” 
Bioengineering,  vol.  10,  no.  5,  p.  557,  May  2023,  doi: 
https://doi.org/10.3390/bioengineering10050557.

[28] J.  Xu,  L.  Leng,  and  B.-G.  Kim,  “Gesture  Recognition  and  Hand  Tracking  for  Anti-
Counterfeit Palmvein Recognition,” Applied Sciences, vol. 13, no. 21, p. 11795, Jan. 2023, 
doi: https://doi.org/10.3390/app132111795.



[29] X. Liu, H. Shi, H. Chen, Z. Yu, X. Li, and G. Zhaoz, “iMiGUE: An Identity-free Video Dataset 
for  Micro-Gesture  Understanding  and  Emotion  Analysis,”  arXiv.org,  Jul.  01,  2021. 
https://arxiv.org/abs/2107.00285 (accessed Jun. 25, 2024).

[30] H.-B. Zhang et al., “A Comprehensive Survey of Vision-Based Human Action Recognition 
Methods,” Sensors, vol. 19, no. 5, p. 1005, Feb. 2019, doi: https://doi.org/10.3390/s19051005.

[31] C.  Ionescu,  F.  Li,  and  C.  Sminchisescu,  “Latent  Structured  Models  for  Human  Pose 
Estimation,”  2011.  Accessed:  Jun.  26,  2024.  [Online].  Available: 
https://vision.imar.ro/human3.6m/ils_iccv11.pdf

[32] C. Wang and J. Yan, “A comprehensive survey of RGB-Based and skeleton-based human 
action  recognition,”  IEEE  Access,  vol.  11,  pp.  53880–53898,  2023,  doi: 
https://doi.org/10.1109/ACCESS.2023.3282311.

[33] W.  Zhong,  W.  Xiong,  Y.  Zhang,  M.  Zhang,  and  P.  Fu,  “A  Spatio-Temporal  Graph 
Convolutional Network for Gesture Recognition from High-Density Electromyography.” 
Accessed: Jul. 01, 2024. [Online]. Available: https://arxiv.org/pdf/2312.00553

[34] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep 
Learning,” Journal of Big Data, vol. 6, no. 1, Jul. 2019, doi: https://doi.org/10.1186/s40537-
019-0197-0.

[35] M. Tomaszewski and J. Osuchowski, “Effectiveness of Data Resampling in Mitigating Class 
Imbalance for Object Detection.” Accessed: Jul. 02, 2024. [Online]. Available: https://ceur-
ws.org/Vol-3628/paper14.pdf

[36] A. Mostafa, A. Shah, H. Chen, and Marko Savic, “The 2nd MiGA-IJCAI Challenge Track 1. 
Kaggle.,”  MiGA-IJCAI  Challenge,  Apr.  27,  2024.  https://kaggle.com/competitions/2nd-
miga-ijcai-challenge-track1 (accessed Jun. 29, 2024).

[37] S. Dimitriadis, D. Liparas, and ADNI, “How random is the random forest? Random forest 
algorithm on the service of structural imaging biomarkers for Alzheimer’s disease: from 
Alzheimer’s  disease  neuroimaging  initiative  (ADNI)  database,”  Neural  Regeneration 
Research, vol. 13, no. 6, p. 962, 2018, doi: https://doi.org/10.4103/1673-5374.233433.

[38] F.  Hutter,  H.  Hoos,  and K.  Leyton-Brown,  “Sequential  Model-Based Optimization for 
General  Algorithm Configuration.”  Available:  https://ml.informatik.uni-freiburg.de/wp-
content/uploads/papers/11-LION5-SMAC.pdf

[39] R. Yacouby and D. Axman, “Probabilistic Extension of Precision, Recall, and F1 Score for 
More  Thorough  Evaluation  of  Classification  Models,”  ACLWeb,  Nov.  01,  2020. 
https://aclanthology.org/2020.eval4nlp-1.9/ (accessed May 13, 2022).

[40] Ž. Ð. Vujovic, “Classification Model Evaluation Metrics,” International Journal of Advanced 
Computer  Science  and  Applications,  vol.  12,  no.  6,  2021,  doi: 
https://doi.org/10.14569/ijacsa.2021.0120670.

[41] M. Tomaszewski,  R. Gasz, S.  S.  Kasana, J.  Osuchowski,  S.  Singh, and S. Zator,  “TCIP: 
Transformed Colour Intensity Profiles analysis for fault detection in power line insulators,” 
Multimedia  tools  and  applications,  Mar.  2024,  doi:  https://doi.org/10.1007/s11042-024-
18901-w.

https://doi.org/10.1109/ACCESS.2023.3282311

	1. Introduction
	2. Related works
	3. Methodology
	3.1. Dataset
	3.2. Sequence data processing
	3.3. First Phase - Used model
	3.4. Second Phase - Grid Search
	3.5. Used metrics

	4. Results
	4.1. First Phase
	4.2. Second Phase
	4.3. Comparison

	5. Conclusion
	6. Future works
	References

