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Abstract 
 
In this paper, we present SISYPHUS, a storage 
manager for data cubes that provides an efficient 
physical base for performing OLAP operations. 
On-Line Analytical Processing (OLAP) poses 
new requirements to the physical storage layer of 
a database management system. Special 
characteristics of OLAP cubes such as 
multidimensionality, hierarchical structure of 
dimensions, data sparseness, etc., are difficult to 
handle with ordinary record-oriented storage 
managers. The SISYPHUS storage manager is 
based on a chunk-based data model that enables 
the hierarchical clustering of data with a very low 
storage cost. Moreover, it provides an access 
interface that is “hierarchy aware” and thus native 
to the OLAP data space. This interface can be 
used to implement efficient access paths to cube 
data. 

1   Introduction 
On-Line Analytical Processing (OLAP) is a trend in 
database technology, based on the multidimensional view 
of data. A good definition of the term OLAP is found in 
[OLAP97]: "…On-Line Analytical Processing (OLAP) is 
a category of software technology that enables analysts, 
managers and executives to gain insight into data through 
fast, consistent, interactive access to a wide variety of 
possible views of information that has been transformed 
from raw data to reflect the real dimensionality of the 
enterprise as understood by the user. OLAP functionality 

is characterized by dynamic multidimensional analysis of 
consolidated enterprise data supporting end user analytical 
and navigational activities including calculations and 
modeling applied across dimensions, through hierarchies 
and/or across members, trend analysis over sequential 
time periods, slicing subsets for on-screen viewing, drill-
down to deeper levels of consolidation, rotation to new 
dimensional comparisons in the viewing area etc. …".  
The OLAP data space is composed of measures 
(alternatively facts1) and dimensions. In the real world, a 
measure would be typically an attribute in some enterprise 
model that changes constantly and there is interest in 
measuring its values in regular periods. Common 
examples of measures are total sales during a day, balance 
snapshots of a bank account, inventory levels of a 
warehouse etc.  
A dimension is another enterprise attribute that does not 
change with time (and if it does this happens very slowly 
compared to measures) and has a constant value for a 
specific measure value. For example, the date of the day, 
the name of the store and the specific product that a total 
refers to, characterize a sales total at the end of a day for a 
large retail store. At least one of these constants will have 
a different value for a different measure value. Therefore, 
dimension values can uniquely identify a fact value in the 
same sense that a set of coordinates uniquely identifies a 
point in space. 
A cube can be envisioned as a multi-dimensional grid 
built from the dimension values. Each cell in this grid 
contains a set of measure values, which are all 
characterized by the same combination of coordinates. 
Note that in the literature the term "cube" usually implies 
a set of pre-computed aggregates along all possible 
dimension combinations. In what follows by "cube" we 
will mean just a set of facts organized as described above 
(in SISYPHUS, a cell is simply defined as a set of 
measures). 
OLAP poses new requirements to storage management. 
Ordinary record-oriented storage managers have been 
designed to fulfill mainly the needs of on-line transaction 

                                                           
1 The terms "fact" and "measure" will be used interchangeably 
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processing (OLTP) systems and thus fail to serve as an 
efficient storage basis for doing OLAP. Therefore the 
need for storage managers that adapt well to OLAP 
characteristics is essential. 
Our contribution to this problem can be summarized as 
follows:  

• We present the design of a storage manager 
specific to OLAP cubes, based on a chunk-
oriented file system, called SISYPHUS. 

• The chunk-oriented file system offered by 
SISYPHUS: 

o is natively multi-dimensional and 
supports hierarchies,  

o clusters data hierarchically,  
o is space conservative in the sense that it 

copes with the cube sparseness, and 
o adopts a location-based data-addressing 

scheme instead of a content-based one. 
• SISYPHUS provides a data-access interface that 

enables navigation in the multi-dimensional and 
multi-level data space of a cube. This interface 
can be used for defining more elaborate cube-
oriented access paths. 

SISYPHUS is implemented on top of the SHORE Storage 
Manager (SSM), a C++ library for building object 
repository servers developed at the University of 
Wisconsin-Madison [SSMP97]. 
The structure of this paper is as follows: in section 2 we 
argue on the new requirements posed to storage managers 
in the context of OLAP. In section 3, we present a 
hierarchy of abstraction levels offered by the SISYPHUS 
modules. In section 4, we present the heart of SISYPHUS, 
which is the chunk-oriented file system. In section 5, we 
present a set of access operations offered by SISYPHUS 
with which more elaborate OLAP access methods and 
operations can be defined. We begin though, with a small 
hint on chunking. 
Chunking is not a new concept in the relevant literature. 
Several papers exploit chunks; to our knowledge, the first 
paper to introduce the notion of the chunk was [SaSt94]. 
Very simply put, a chunk is a sub-cube within a cube with 
the same dimensionality as the encompassing cube. A 
chunk is created by defining distinct ranges of members 
along each dimension of the cube. In other words, by 
applying chunking to the cube we essentially perform a 
kind of grouping of data. It has been observed ([SaSt94, 
DeRaSh+98]) that chunks provide excellent clustering of 
cells, which results in less I/O cost when reading data 
from a disk and also better caching, if a chunk is used as a 
caching unit. 
Chunks can be of uniform size [SaSt94, ChIo99] or of 
variant size [DeRaSh+98]. Our approach of chunking 
deals with variant size chunks that are built according to 
the parent-child relationships of the dimension members 
along an aggregation path. A similar approach has been 
adopted in [DeRaSh+98] for caching OLAP query results. 
 
 

2   OLAP requirements relative to storage 
management 
A typical RDBMS storage manager offers the storage 
structures, the operations, and in one word the framework, 
in order to implement a tuple (or record) oriented file 
system on top of an operating system’s file system or 
storage device interface. Precious services, such as the 
management of a buffer pool, in which pages are fetched 
from permanent storage and “pinned” into some page slot 
in main memory, or the concurrency control with different 
kind of locks offered at several granularities, and even the 
recovery management done by a log manager, can all 
gracefully be included in a storage manager system. The 
record-oriented SHORE storage manager [SSMP97] 
offers all of these functionalities.  
However, in the context of OLAP some of these services 
have “restricted usefulness”, while some other 
characteristics that are really needed are not supported by 
a record-oriented storage manager. For example, it is 
known that in OLAP there are no transaction-oriented 
workloads with frequent updates to the database. Most of 
the loads are read-only. Moreover, queries in OLAP are 
much more demanding than in OLTP systems and thus 
pose an imperative need for small response times, which 
in storage management terms translates to efficient access 
to the stored data. Also, concurrent access to the data is 
not as important in OLAP as it is in OLTP. This is due to 
the read-oriented profile of OLAP workloads and the 
different end-user target groups between the two.  
Additionally, OLAP data are natively multi-dimensional. 
This means that the underlying storage structures should 
provide efficient access to the data, when the latter are 
addressed by dimension content. Unfortunately, record-
oriented storage managers are natively one-dimensional 
and cannot adapt well to this requirement. Moreover, the 
intuitive view of the cube as a multidimensional grid with 
facts playing the role of the data points within this grid, 
points out the need for addressing data by location and not 
by content, as it is in ordinary storage managers.  
Finally, dimensions in OLAP contain hierarchies. The 
most typical dimensional restriction is to select some point 
at a higher aggregation level, e.g. year “1998” that will 
next be interpreted possibly to some range on the most 
detailed data. Again, ordinary storage managers do not 
support hierarchies in particular. 
The need for smaller response times makes the issue of 
good physical clustering of the data a central point in 
storage management. Sometimes this might cause 
inflexibility in updating. However, considering the profile 
of typical OLAP workloads this is acceptable. 
As a last point, we should not forget that OLAP cubes are 
usually very sparse. [Co96] argues that only 20% of the 
cube contains real data. Therefore, the storage manager 
must cope with sparseness and make good space 
utilization. 
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3   Levels of abstraction in SISYPHUS  
The levels of abstraction in a storage manager are guided 
by the principles of data abstraction and module design 
[GrRe93]. Each level plays its own role in storage 
management by hiding details of the levels below from the 
levels above. Figure 1 depicts the abstraction levels 
implemented in SISYPHUS. This hierarchy of levels had 
to stand upon the corresponding abstraction levels 
provided by the record-oriented SHORE storage manager 
(SSM) [SSMP97]. We will start our description of Figure 
1 in a bottom up approach. 
The SSM provides a hierarchy of storage structures. A 
device corresponds to a disk partition or an operating 
system file used for storing data. A device contains 
volumes. A volume is a collection of files and indexes 
managed as a unit. A file is a collection of records. A 
record is an un-typed container of bytes consisting 
basically of a header and a body. The body of a record is 
the primary data storage location and can range in size 
from zero bytes to 4-GB. 
The SISYPHUS file manager’s primary task is to hide all 
the SSM details. The higher levels don’t have to know 
anything about devices, disk volumes, SSM files, SSM 
records, etc. The abstraction provided by this module is 
that the basic file system consists of a collection of cubes, 
where each cube is a collection of buckets. 
Each cube is stored in a single SSM file. We use an SSM 
record to implement a bucket. In our case however, a 
bucket is of fixed size. This typically equals the size of the 
operating system’s disk page (e.g. 8,192 bytes). A bucket 
is recognized within a cube with its bucket id, which 
encapsulates its record counterpart. 
The file manager communicates with the SSM level with 
record access operations provided by SSM. A typical 
subset of operations offered by the file manager is: 

• Create cube: allocates a new file for the new 
cube and registers the new cube in the catalog 

• Destroy cube: the destruction of a cube. 
• Create bucket: allocate a new bucket for a cube. 
• Destroy bucket: destroy a specified bucket.  
• Bucket scan: iterate through all buckets of a cube 

in the order of their physical storage. 
The next level of abstraction is the buffer manager. This 
level’s basic concern is to hide all the file system specific 
details and give the impression of a virtual memory space 
of buckets, as if the whole database were in main memory. 
It is a client of the file manager in the sense that buckets 
have to be pinned from a cube into a page in the buffer 
pool. The underlying page-oriented SSM buffer manager 
implements the replacement policies and also the 
collaboration with the log manager, for logging of 
transactions and recovery precautions. Typical operations 
offered are: 

• Pin bucket: pins a bucket in the buffer pool. 
Also, locks the bucket with a read (shared) or 
write (exclusive) lock.  

• Unpin bucket:  unpins the bucket from the buffer 
pool and, if it has been updated, it writes it back 
to permanent storage. 

The interface provided by the buffer manager to the next 
higher level is viewing a bucket as an array of chunks. 
Therefore, appropriate chunk-access operations are used 
in this interface.  
 

 
Figure 1: The abstraction levels in SISYPHUS storage 

manager 
 
The access manager is concerned with all the details of 
managing the chunks such as which chunks to place in 
what bucket, etc. A typical sample of these administrative 
operations is the following:                                                

• Create cube: actually this is just a wrapper that 
calls the underlying counterpart offered by the 
file manager.  

• Drop cube: similarly, this method calls the file 
manager’s counterpart. 

• Load cube: receives as input a file containing the 
detailed data and the schema of the cube (i.e. 
dimensions, hierarchies, etc.) and loads these into 
a SISYPHUS cube. 

• Incremental load: receives detailed data that are 
incrementally loaded to an already loaded with 
data, cube. 

 However, the most important responsibility of the access 
manager is to give the illusion of a multi-dimensional and 
multi-level space of cube cells, i.e. cube data points. The 
important thing to emphasize here is that this is also the 
native data space of an OLAP cube consisting of many 
dimensions with each dimension having at least one 
hierarchy of levels.                                                       
Each cell in this data space is characterized by a chunk-id, 
which we will discuss in detail later. The access manager 
provides a set of access operations for seamless 
navigation in the multi-dimensional and multi-level space 
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of cube data cells. These operations are the interface used 
by higher-level access methods, or OLAP operators, in 
order to access the cube data. We defer to mention these 
“access operations” until section 5.1, where we will take a 
detailed look at them.                                                                                                    

4   A chunk-oriented file system 
The basic file system based on fixed size buckets 
mentioned earlier is used as the foundation for 
implementing a chunk-oriented file system. Each chunk 
represents a semantic subset of the cube and therefore, 
chunks are of variable size. The semantics are drawn from 
the parent-child relationships along aggregation paths on 
each dimension. A chunk-oriented file system destined for 
a storage base for OLAP cubes, has to provide the 
following services: 

• Storage allocation: It has to store chunks into the 
buckets provided by the underlying bucket-
oriented file system. 

• Chunk addressing: A single chunk must be made 
addressable from other modules. This means that 
an identifier must be assigned to each chunk. 
Moreover, an efficient access path must exist via 
that identifier.  

• Enumeration: There must be a fast way to get 
from one chunk to the “next” one. However, as 
we will see, in a multi-dimensional multi-level 
space, “next” can have many interpretations. 

• Data point location addressing: Cube data points 
should be made accessible via their location in 
the multi-dimensional multi-level space. 

• Data sparseness management: Space allocated 
should not be wasteful and must handle 
efficiently the native sparseness of cube data. 

• Maintenance: Although, transaction oriented 
workloads are not expected in OLAP 
environments, the system must be able to support 
at least periodic incremental loads in a batch 
form. 

In the following sections we will describe the chunking 
method used, called hierarchical chunking and discuss the 
details of mapping chunks into buckets. However, first we 
begin with a small discussion on how we model dimension 
data. 

4.1   Dimension Data 

In many cases, dimension values are organized into levels 
of consolidation defining a hierarchy, i.e. an aggregation 
path. For example, the Time dimension consists of day 
values, month values and year values, which belong to the 
day level, month level and year level respectively. It is 
typical for a dimension to be comprised of more than one 
aggregation path. In our model, all the paths of a 
dimension have always a common level containing the 
most detailed data possible. We call this the grain level of 
the dimension. 

As an example in Figure 2, we depict a CUSTOMER 
dimension consisting of two paths. We call a specific 
instantiation of a level L of a dimension D a member of L, 
e.g. “1997” is a member of the Year level of dimension 
Date. 
 

Figure 2: An example of a dimension 
 
The chunk-oriented file system will be based on a single 
hierarchy path from each dimension. We call this path the 
primary path of the dimension. Data will be physically 
clustered according to the dimensions’ primary paths. 
Since, queries based on primary paths are likely to be 
favored in terms of response time, it is crucial for the 
designer to decide on the paths that will play the role of 
the primary paths. 
A very useful characteristic in OLAP is that the members 
of a level are typically known a priori. Moreover, this 
domain remains unchanged for sufficiently long periods. 
A very common trend in the literature [Sa97, RoKoRo97, 
DeRaSh+98, MaRaBa99, VaSk00] is to impose a specific 
ordering on these members. One can implement this 
ordering through an integer mapping for the members of 
each level. Obviously, this total ordering among the 
members can be either inherent (e.g. for day values), or 
arbitrarily set (e.g. for city values). Either way, it is very 
useful to assign a distinct value to each member. This 
distinct value can play the role of a surrogate key [Ki96] 
in relational OLAP (ROLAP) systems or the role of an 
index value for computing cell offsets in multidimensional 
OLAP (MOLAP) systems [Sa97]. Moreover, it is far more 
efficient to handle simple integers than non-numeric data 
types e.g. character strings. We will call this distinct value 
the order code of a member. 
In our model, we choose to order the members of a level 
according to the primary path that this level belongs. We 
start from 0 and assign consecutive order codes to 
members with a common parent member. The sequence is 
never reset but continuously incremented until we reach 
the end of a level’s domain. This way an order code 
uniquely specifies a member within a level. Moreover, 
order codes can be easily implemented with common 
RDBMS data types such as sequence, or serial, where the 
increment is taken care of automatically by the system. 
Similar “hierarchical” ordering approaches have been 
used in [DeRaSh+98, MaRaBa99].                                                    

 Country (3) 

    State (2) 

     City (1) 

    Store (0) 

Sales region (3) 

     City (2) 

Sales district (1) 

    Store (0) 

PATH 0 PATH 1 

CUSTOMER dimension  

Grain level 
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Figure 3: A member code denotes the whole path of a 

member in a specific level hierarchy  
 
In order to uniquely identify a member within a dimension 
we also assign to each member a member code. This is 
constructed by the order codes of all its ancestor members 
along the primary path, separated by dots. For example, 
the member code of CityC along path 0 is "0.1.2" 
(Figure 3). 

4.2   The hierarchically chunked cube 

In this sub-section we discuss our proposal for a chunking 
method in order to organize the data of the cube. We 
believe that this method is close to the OLAP 
requirements that we have posed in section 0. Intuitively, 
one can support that a typical OLAP workload, where 
consecutive drill-downs into detail data or roll-ups to 
more consolidated views of the data are common, 
essentially involves swing movements along one or more 
aggregation paths. Moreover, in [DeRaSh+98] this 
property of OLAP queries is characterized as 
"hierarchical locality". The basic incentive behind 
hierarchical chunking is to partition the data space by 
forming a hierarchy of chunks that is based on the 
dimensions' hierarchies. 
We model the cube as a large multidimensional array, 
which consists only of the most detailed data possible. In 
this primary definition of the cube, we assume no pre-
computation of aggregates. Therefore, a cube C is 
formally defined as the following (n+m)-tuple:  

C ≡ (D1,…,Dn, M1,… Mm) 
where Di, for 1<= i <=n, is a dimension and Mj, for 1<= j 
<=m, is a measure. 
Initially we partition the cube in a very few regions (i.e. 
chunks) corresponding to the most aggregated levels of 
the dimensions' hierarchies. Then we recursively re-
partition each region as we drill-down to the hierarchies of 
all dimensions in parallel. We define a measure in order to 
distinguish each recursion step called chunking depth D. 
For visualization reasons we will use an example of a 2-
dimensional cube, hosting sales data for a fictitious 
company. The dimensions of our cube are depicted in 
Figure 4. Namely, these are location and product. In 
Table 1 and Table 2, we can see the members for each 
level of these dimensions, each appearing with its member 
code. 
In order to apply our method, we need to have hierarchies 
of equal length. For this reason, we insert pseudo-levels P 

into the shorter hierarchies until they reach the length of 
the longest one. This "padding" is done after the level that 
is just above the grain level. In our example, the PRODUCT 
dimension has only three levels and needs one pseudo-
level in order to reach the length of the LOCATION 
dimension. This is depicted next, where we have also note 
the order code range at each level:  
LOCATION:[0-2].[0-4].[0-10].[0-18] 
PRODUCT:[0-1].[0-2].P.[0-5] 
In Figure 5, we show the hierarchical chunking of our 
example cube. We begin our chunking method at 
chunking depth D = 1. We choose the top level from each 
dimension and insert it into a set called the set of pivot 
levels PVT. Therefore initially, PVT = {LOCATION: 
continent, PRODUCT: category}. This set will guide 
the chunking process at each step. 
 

 
Figure 4: Dimensions of our 2-dimensional example cube  
 
On each dimension, we define discrete ranges of grain-
level members, denoted in the figure as [a..b], where a and 
b are grain-level order-codes. Each such range is defined 
as the set of members with the same parent (member) in 
the pivot level. Due to the imposed ordering, these 
members will have consecutive order codes, thus, we can 
talk about "ranges" of grain-level members on each 
dimension. For example, if we take member 0 of pivot 
level continent of the LOCATION dimension, then the 
corresponding range at the grain level is cities [0..5].                        
                                                                                          

Table 1: Members of dimension PRODUCT  
 

Category Type  Item                            

Books  
0 

Literature  
0.0 

“Murderess”, A. Papadiamantis 
0.0.0 

    “Karamazof brothers” F. 
Dostoiewsky  

0.0.1 
 Philosophy  

0.1 
“Zarathustra”, F. W. Nietzsche  

0.1.2 
  “Symposium”, Plato 

0.1.3 
Music  

1 
Classical  

1.2 
“The Vivaldi Album Special 

Edition”  
1.2.4 

  “Mozart: The Magic Flute”  
1.2.5 

                                                                                                           

 

CityA 
  (0) 

CityB 
  (1) 

CityC 
  (2) 

CityD 
  (3) 

StateA 
  (0) 

StateB 
  (1) 

CountryA 
      (0) 

 

city  item  

category  

product  

region  

country  

continent  

type  

location  
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Table 2: Members of dimension LOCATION  
 

Continent Country Region City 

Europe 
0

Greece Greece-North 
0.0.0

Salonica 
0.0.0.0

  Greece-South 
0.0.1

Athens 
0.0.1.1

   Rhodes 
0.0.1.2

 U.K. 
0.1 

U.K.-North 
0.1.2 

Glasgow 
0.1.2.3 

  U.K.-South 
0.1.3

London 
0.1.3.4

   Cardiff 
0.1.3.5

North America 
1 

USA 
1.2 

USA-East 
1.2.4 

New York 
1.2.4.6 

   Boston 
1.2.4.7

  USA-West 
1.2.5 

Los Angeles 
1.2.5.8 

   San Francisco 
1.2.5.9

  USA-North 
1.2.6

Seattle 
1.2.6.10

Asia 
2

Japan 
2.3

Kiusiu 
2.3.7

Nagasaki 
2.3.7.11

  Hondo 
2.3.8

Tokyo 
2.3.8.12

   Yokohama 
2.3.8.13

   Kioto 
2.3.8.14

 India 
2.4

India-East 
2.4.9

Calcutta 
2.4.9.15

   New Delhi 
2.4.9.16

  India-West 
2.4.10

Karachi 
2.4.10.17

   Bombay 
2.4.10.18

 
The definition of such a range for each dimension defines 
a chunk. For example a chunk defined from the 2,1 
members of the pivot levels continent and category 
respectively, consists of the following grain data 
(LOCATION:2.[3-4].[7-10].[11-18], 

PRODUCT:1.2.P.[4-5]). The '[]' notation denotes a 
range of members. This chunk appears with gray in Figure 
5 at D = 1. Ultimately at D = 1 we have a chunk for each 
possible combination between the members of the pivot 
levels, that is a total of [0-1]x[0-2] = 6 chunks in this 
example. 
Next we proceed at D = 2, with PVT = 
{LOCATION:country, PRODUCT:type} and we 
recursively re-chunk each chunk of depth D = 1. This time 
we define ranges within the previously defined ranges. For 
example, on the range corresponding to continent 
member 2 that we saw before, we define discrete ranges 
corresponding to each country of this continent (i.e. to 
each member of the country level, which has parent 2). 
Let's look at the chunk defined from the 2.3, 1.2 
members of the pivot levels country and type 
respectively. It consists of the following grain data 

(LOCATION: 2.3.[7-8].[11-14], PRODUCT: 

1.2.P.[4-5]). This chunk is a child chunk of the chunk 
mentioned in the previous paragraph and is also grayed in 
the figure at D = 2.  
Similarly, we proceed the chunking by descending in 
parallel all dimension hierarchies and at each depth D we 
create new chunks within the existing ones. The total 
number of chunks created at each depth D (#chunks(D)) 
equals the number of possible combinations between the 
members of the pivot levels. That is,  
#chunks(D) = card(pivot_level_dim1)x …x 
card(pivot_level_dimN) 
where card() denotes the cardinality of a pivot level. We 
assume N dimensions for the cube. 
If at a particular depth one or more pivot-level is a 
pseudo-level, then this level does not take part in the 
chunking. This means that we don't define any new ranges 
within the previously defined range for the specific 
dimension(s) but instead we keep the old one with no 
further refinement. In our example this occurs at D = 3 for 
the PRODUCT dimension. In the case of a pseudo level for 
a dimension, in the above formula we use the pivot level 
of the previous step for this dimension. 
The procedure ends when the next levels to include in the 
pivot set are the grain levels. Then we do not need to 
perform any further chunking because the chunks that 
would be produced from such a chunking would be the 
cells of the cube. In this case, we have reached the 
maximum chunking depth Dmax. Note that with this 
scheme, we handle chunks and cells in a completely 
uniform way in the sense that the cells of a chunk at depth 
D = d represent the chunks at depth D = d+1. Depth 3 is 
the maximum depth in our running example, since at the 
next step we hit the grain levels of the dimensions. 
If we interleave the member codes of the pivot level 
members that define a chunk, then we get a code that we 
call chunk id. This is a unique identifier for a chunk within 
a cube in our model. Moreover, this id depicts the whole 
path of a particular chunk. Let's look at the previously 
defined chunk at D  = 2 from the pivot level members 
LOCATION:2.3 and PRODUCT:1.2. For an interleaving 
order O = (LOCATION, PRODUCT) (major-to-minor from 
left-to-right), the chunk id in question is 2|1.3|2, with 
“|” character acting as a dimension separator. This id 
describes the fact that this is a chunk at depth D = 2 and it 
is defined within chunk 2|1 at D = 1 (parent chunk). 
Finally, the cells of the cube also have chunk ids, since as 
we have already mentioned, we can consider them as the 
smallest possible chunks. For instance, the cell with 
coordinates (LOCATION:0.1.2.3 and 
PRODUCT:0.0.P.1), can be assigned the chunk id  
0|0.1|0.2|P.3|1. The part of a chunk id that is 
contained between dots and corresponds to a specific 
depth D is called D-domain. 
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Figure 5: The cube from our running example 

hierarchically chunked 
 
The formal definition of a chunk Ch of a cube C, is given 
from the following triplet:  

Ch ≡ (PL,MB,D) 
PL is the set of pivot levels that generated this chunk, MB 
is the set of members, one from each pivot level, that 
define –through member hierarchies- the grain level 
ranges on each dimension of the chunk and D is the 
chunking depth of the chunk. For example the grayed 
chunk at D=1 of Figure 5 is defined as Ch = 
({LOCATION:continent, PRODUCT:category }, {2,1}, 
1}. A cell is a chunk where PL contains all the grain levels 
and D = Dmax + 1.  
Next we will see how the chunks of Figure 5, at D = 3 can 
be stored into the buckets provided by the underlying file 
system. 

4.3   Mapping of chunks into buckets 

We will begin our discussion with a description of the 
internal organization of a bucket, which is our basic chunk 
container. In order to store chunks into buckets, we will 
need some sort of an internal directory that will guide us 
to the appropriate chunk. Moreover, since we have 

devised a unique identifier for each chunk within a cube, 
called chunk id, chunks should be made addressable by 
their chunk id. We have seen that the hierarchical 
chunking method described previously results in chunks at 
different depths (Figure 5). One idea would be to use the 
intermediate depth chunks as directory chunks that will 
guide us to the Dmax + 1 depth chunks containing the data 
and thus called data chunks. This is depicted in Figure 6 
for our example cube. 
In Figure 6 we have expanded our hierarchically chunked 
cube, the chunk sub-tree under the root-chunk cell with 
chunk id 00. Above each chunk we note its chunk id. We 
can see the directory chunks containing “pointer” entries 
that lead to larger depth directory chunks and finally to 
data chunks.  
In general, a chunk sub-tree consists of some directory 
chunks and some data chunks. In Figure 7, we depict the 
structure of a bucket. It is composed of three parts: the 
bucket header and two vectors for storing chunks, one for 
the directory chunks and one for the data chunks. In the 
same figure we can see the implementation of a bucket 
over an SSM record. 
Chunk vectors are essentially arrays of chunks with the 
capability of handling variable size chunk entries. 
Actually, the in-memory structure used for a chunk vector 
is the C++ STL vector container [STL99]. Prior to disk 
storage, we “pack” the whole memory vector to a byte 
stream and then we store it in secondary media.  
The basic idea in this file organization is to try to include 
in the same bucket as many chunks of the same family 
(i.e. sub-tree) as possible. The incentive behind this lies in 
the hierarchical nature of OLAP query loads. By imposing 
this “hierarchical clustering” of data we aim at 
improving query response time by reducing page accesses 
significantly.  
The order in which chunks are laid out in their 
corresponding vector is as follows: When we have to store 
a sub-tree in a bucket, we descend the sub-tree in a depth-
first manner and we store each chunk the first time we 
visit it. The chunk is stored to one of the two vectors, 
depending whether it is a directory or a data chunk. Parent 
cells are visited in the lexicographic order of their chunk 
ids, thus their corresponding child chunks are stored 
accordingly. The discrimination between directory and 
data chunks is done based on the depth depicted on the 
length of the chunk ids. In Figure 6 we show the 
corresponding index value for each directory and data 
chunk respectively. 
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Figure 6: The whole sub-tree up to the data chunks under 

chunk 00 
 
To increase space utilization we have imposed a bucket 
occupancy threshold B. A typical value for B could be 
50%. We distinguish four different cases regarding the 
storage of a sub-tree inside a bucket.  In a bucket we can 
store: 

a) A single sub-tree of chunks. 
b) Many sub-trees of chunks that form a cluster (or 

bucket region). 
c) A single data chunk. 
d) A single tree of directory chunks (root bucket). 

The first case occurs when a sub-tree’s size falls in the 
range between B and the bucket size. The second case 
occurs, when a sub-tree’s size is below B. Then, we look 
for other sub-trees with the same property and we “pack” 
them all in one bucket, calling this grouping of sub-trees a 
cluster or a bucket region. The third case refers to the 
situation where we have descended the chunk-tree, we are 
unable to find a sub-tree that can fit in a bucket, and have 
finally hit a leaf (i.e. a data chunk). In this case, either we 
store the entire data chunk in a bucket, or, if it still does 
not fit we partition it and store it in a bucket overflow 
chain. Last is the case of a bucket used for storing the root 
chunk and also all the “roots” of sub-trees that are stored 
in other buckets. This is called the root bucket. In case of 
an overflow of the root bucket, we resort to a bucket 
overflow chain again. 
 
 

 

4.3.1  Chunk Internal Organization  

The data structure used for implementing a chunk is the 
multidimensional array (md-array). Multidimensional 
arrays are very similar in concept with cubes in the sense 
that values are accessed by specifying a coordinate (index 
value) on each dimension. Moreover, we have seen that 
each chunk corresponds essentially to a data point in the 
multi-dimensional multi-level data space. The chunk id 
that we have assigned to each chunk, contains both 
information regarding the specific level and coordinate 
(i.e. member) within a level for each dimension of the 
cube that a chunk corresponds. Thus, the access-by-
location and not by-content that is offered by md-arrays, 
is native to our case and gives us the chance to exploit 
chunk ids. Moreover, exactly because of the address 
computing accessing, we don’t have to store the chunk id 
for each cell, as would have been the case in a record-
oriented storage manager, where the coordinates of the 
cell would have also been stored with the fact values. In 
addition, the simple offset computation needed in order to 
access an md-array cell is very efficient. 
Clearly, there are several issues that need to be dealt with 
caution concerning md-arrays. For one, not to waste space 
when one has to store a sparse chunk, or for another one, 
to choose such an ordering to set the cells out that will 
minimize dispersed data in range queries.  
 

 
Figure 7: The structure of a bucket 

 
Another argument against would be that md-arrays are not 
so flexible with deletions and updates, because a cell 
rearrangement might be needed. However, since we only 
aim at incremental bulk updating and not transaction 
oriented updating that would require very frequent 
reorganization of each chunk, we thought that we 
shouldn't impose the overhead of using complicated 
structures based on linked lists that would also slow down 
query processing. These were the major justifications for 
our design choice. 
Note that, we don’t allocate all the cells for a data chunk, 
just the non-empty ones. Usually the data cube is sparse, 
so it is reasonable to assume that most of the chunks will 
also be sparse. We have used a simple compression 
method that helps us keep track of the “holes” of each 
data chunk. In particular, we maintain a bitmap for each 
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data chunk indicating which cell is empty and which is 
not.                                                                                                                
Since, all the information of data existence is kept in the 
compression bitmap, we can allocate space only for the 
non-empty cells and still be able to reach a cell on disk 
with just an algebraic computation.  
The “compression” that we apply on directory chunks is 
somewhat different. Likewise, we might find many cells 
with no values. In this case however, an empty cell 
corresponds to the absence of a whole sub-tree of chunks. 
For the directory chunks we allocate all the cells for 
chunks that contain at least one non-empty cell and we 
mark empty cells with a special value. However, no 
allocation is done for empty sub-trees. Therefore large 
families of chunks that end-up to many data chunks and 
are empty will not consume any space.  
Finally, we briefly refer to the issue of maintenance. As 
already mentioned before, an OLAP environment is 
heavily inclined to read operations than it is to transaction 
oriented updates. Moreover, deletions are significantly 
rare in OLAP and data warehousing in general, since we 
are always interested on the history of our data. We 
therefore, anticipate mainly incremental batch updates. A 
typical situation that falls in this category is the loading of 
new data at the end of some time period (e.g. day). 
However, there might be other less frequent updates, such 
as the sales for some new product category, etc. 
In the chunk-oriented file system the advent of e.g. the 
sales of a new day, would trigger the need for creating the 
chunks corresponding to the current month. Therefore, we 
have to spot the directory chunks that contain an empty 
cell entry corresponding to this month. Then we have to 
remove the empty tag from the respective cells and "hang" 
the new sub-tree. Each new sub-tree will be stored either 
in the same bucket as its “parent” chunk or if there is no 
space, in a new bucket allocated for it. This will not result 
to poor bucket space utilization, even if the new sub-tree’s 
size is below the bucket threshold B. This is because we 
will use the new bucket in the future to store more new 
sub-trees corresponding to the other months following up 
and thus form a bucket region. 
In the next section we will discuss the issue of the access 
interface provided by our chunk oriented file system. 

5   Access Paths 
In this section we will look in more detail the access 
manager abstraction level of Figure 1. Essentially, the 
basic operations offered by this module play the role of 
the data access interface of SISYPHUS. As mentioned 
earlier, the primary responsibility of the access manager is 
to provide the illusion of a multi-dimensional and multi-
level space of cube cells, a space that represents naturally 
the OLAP data space. Moreover, we will see that through 
this set of primary access operations more elaborate 
access paths on cube data can be defined. 
 

5.1   Primary access operations to cube data 

In previous sections we have seen that the data space is 
modeled as a hierarchy of chunks (refer to Figure 6). At 
the bottom of this hierarchy lie the actual data of the most 
detailed level, contained inside data chunks. Each chunk is 
assigned a chunk id, depicting its location with respect to 
the dimensions and to the hierarchy levels.  
At the access manager level the access to a cube begins 
with the instantiation of a special Cube class. This class 
implements the notion of the current position in the cube 
file. It simulates a “pointer”, which points to the current 
cell of the current chunk in the hierarchy, which resides in 
the current bucket of the file hosting the cube’s data.  
An instantiation of this class generates an in-memory 
representative of a cube, which normally resides on disk. 
For each cube “opened” for access, it is sufficient to keep 
a pointer to an in-memory instance of the root chunk. This 
discriminates one cube from another, as well as can 
provide access to all the cube’s data. The Cube 

instantiation is achieved with the operation open_cube. 
This operation returns a pointer to an instance of the Cube 
class. open_cube searches by the cube name in the 
SISYPHUS catalog and retrieves an appropriate 
CubeInfo structure containing the cube’s meta-data. 
Then, it accesses the underlying SSM file dedicated for 
this cube, retrieves the root bucket and creates the 
corresponding Bucket object. Finally, it creates a Cell 
object with coordinates set by default to 0 for all 
dimensions of the cube.  
A Cube instance has a state that is characterized from the 
values that are stored in its members. A change in this 
state implements a “move” from the current position in the 
multi-dimensional multi-level space. There are four basic 
operations offered by the access manager level for 
achieving this. Namely these are: move_to(), 
get_next(), roll_up(), drill_down(). In addition, 
there is a read() operation for retrieving the content of 
the cell at the current position, and a write() operation 
for updating the current position’s entry, only if this 
position corresponds to a data chunk cell. These 
operations enable seamless navigation in the cube data 
space and access to any cell of the hierarchically chunked 
cube. We discuss them in more detail next.  
move_to operation  
The primary goal of this operation is to provide an easy 
way to navigate in the hierarchy enabled multidimensional 
space, exploiting the chunk id representation that we have 
proposed. In particular, this method receives as input a 
chunk id corresponding to a specific point in our data 
space (i.e. cell), that we would like to set as the current 
position. The outcome of this operation is a change to the 
state of the corresponding Cube object, in order to reflect 
the new position in the cube file. 
roll_up & drill_down operations  
These two operations provide the ability to navigate along 
the chunk hierarchy. With the former, we "roll up" to the 
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parent cell of the current cell, and with the latter we "drill 
down" to the child chunk node and set the current position 
to the first non-empty cell of this chunk. 
get_next operation 
The get_next operation provides an enumeration facility 
for visiting the cells at a specific depth in the 
hierarchically chunked cube space. Actually this is an 
overloaded method. There are two flavors of get_next. 
The first form of this method offers cell enumeration 
along a certain dimension. The desired dimension is 
specified through its position  in the interleaving order. 
For example, if the interleaving order is (LOCATION, 
PRODUCT), then by position 0 we mean LOCATION and by 
1 PRODUCT. We can get to the “next” cell from the current 
position along a dimension D, if we simply move on to the 
next member in the domain of level L of D that 
corresponds to the current chunk. Note that the “next 
member” has a twofold meaning in this case.  It might 
mean that we have to increase by one the corresponding 
order code, or that we have to decrease it by one, thus 
obtaining essentially the “previous” cell. The input 
arguments consist of the dimension along which we will 
move and a direction specification with possible values 
“above” (default value) and “below” corresponding to 
the two aforementioned cases.   
The second form of get_next receives no input 
arguments. It enables an enumeration of the cells at a 
specific depth in the order of physical storage. A call to 
this get_next will place the current position at the next 
stored non-empty cell within the current chunk. This new 
cell will have the “next” chunk id in the lexicographic 
order, corresponding to a non-empty cell. When we reach 
the end of the current chunk we move to the next stored 
chunk of the same depth in the current bucket. Recall from 
section 0 that chunks are stored in one of the two bucket 
vectors in the lexicographic order of their chunk ids (see 
also Figure 6). When there are no more chunks with the 
desired depth in the current bucket we advance to the next 
stored bucket in the cube (i.e SSM file).  
Finally, there is a read, write, and close_cube 
operation with the obvious meanings. 

5.2   Defining Access Methods 

Next, we will give an example of how the primary 
operations of the previous sub-section can be used in 
order to create access paths2 to cube data. These access 
paths actually correspond to the topmost abstract level of 
Figure 1.  
In our example, we will define a very common access 
method for multi-dimensional data, the Range-scan. The 
operator will be defined with an iterator interface [Gr93]. 
Essentially this means, that it will receive as input a range 

                                                           
2 The terms access path and access method are identical for our 

discussion and will be used interchangeably.  

and then it will provide a “next” operation for iterating 
through the values falling into this range. The range will 
be provided in the form of a chunk id, thus it refers to the 
data cells in the leaves (i.e. data chunks) of a specific sub-
tree hanging from this point.  
Range-scan is made up of three methods: Open, Next and 
Close. Open is responsible for the opening of the cube 
for data access and positioning the current cell at the first 
data cell in the specified range. This can be easily 
achieved with a call to open_cube for initializing data 
access to the cube, then a call to move_to  for changing 
the current position in the cube file to the location 
represented by the input chunk id and finally repeatedly 
drilling down (i.e. calling access operation drill_down) 
until we hit the first non-empty data cell in the specified 
range. 
Method Next returns the data entry at the current position 
and advances to the next cell. If the next cell is out of 
range, or if we have reached the end of data, it fails. The 
preservation of the range limits is guaranteed through the 
chunk id prefixes, denoting chunks of the same sub-tree. 
This can be easily implemented with two calls to 
operations read and get_next respectively and with a 
subsequent check of whether the “new” position’s chunk 
id is not prefixed by the input chunk id or we have 
reached the end of file. Note also that due to the 
hierarchical clustering imposed, the retrieved data points 
are very much likely to reside in the same bucket. Thus, 
this should be quite an efficient operation. Finally, Close 
invokes the close_cube method to perform all cleaning 
up tasks. 
This was a rather simple case of an access path. However, 
other more elaborate access methods can be defined in a 
similar way. For example a range-scan that operates on an 
arbitrary range and not only on the range defined by a 
specific sub-tree. Or, a range-scan-sort could be defined, 
in order the returned values to be sorted along a 
dimension and so on. 

6   Conclusions and future work 
In this paper we have focused on the special requirements 
posed by OLAP applications on storage management. We 
have argued that conventional record-oriented storage 
managers fail to fulfill these requirements to a large 
extend.  To this end, we have presented the design of a 
storage manager specific to OLAP cubes, based on a 
chunk-oriented file system, called SISYPHUS. 
SISYPHUS has been implemented on top of a record 
oriented storage manager [SSMP97] and provides a set of 
typical to storage management abstraction levels, which 
have been modified to fit the multidimensional, hierarchy-
enabled data space of OLAP. 
We have seen the hierarchical chunking method used in 
SISYPHUS and the corresponding file organization 
adopted. The chunk-oriented file system offered by 
SISYPHUS is natively multi-dimensional and supports 
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hierarchies. It clusters data hierarchically and it is space 
conservative in the sense that copes with cube sparseness. 
Also, it adopts a location-based data-addressing scheme 
instead of a content-based one. Finally, we have seen the 
data-access interface provided by SISYPHUS that enables 
navigation in the multi-dimensional and multi-level data 
space of a cube. This interface can be used for defining 
more elaborate cube-oriented access paths.  
In the future, we plan to extensively test experimentally 
the proposed file organization. In addition we will design 
and implement algorithms for typical OLAP operations. 
From the viewpoint of research, several issues remain 
open such as: finding optimal clusters (i.e. bucket regions) 
for a specific workload, developing efficient file system 
operations for typical OLAP updating loads (e.g. slowly 
changing dimensions). Finally, open remains the issue of 
an efficient file organization for dimension data. 
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