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Abstract

Accurately estimating the cardinality of aggregate
views is crucia for logical and physical design
of data warehouses. While the warehouse is un-
der development and data are not available yet,
the approaches based on accessing data cannot be
adopted. This paper proposes an approach to es-
timate the cardinality of views based on a-priori
information derived from the application domain.
We face the problem by first computing satisfac-
tory bounds for the cardinality, then by capital-
izing on these bounds to determine a good prob-
abilistic estimate for it. Bounds are determined
by using, besides the functional dependencies ex-
pressed by the multidimensional scheme, addi-
tional domain-derived information in the form of
cardinality constraints which may bound either
the cardinality of agiven view or theratio between
the cardinaities of two given views. In particular,
we propose a bounding strategy which achieves
an effective trade-off between the tightness of the
bounds produced and the computational complex-

ity.

1 Introduction and Motivation

The multidimensional model is the foundation for data
representation and querying in multidimensional databases

* Thiswork has been partially supported by the D2| MURST project.

and data warehouses [AGS97]. It represents facts of inter-
est for the decision process into cubesin which each cell
contains numerical measuresvhich quantify the fact from
different points of view, while each axis represents an in-
teresting dimensiorfor analysis. For instance, within a 4-
dimensional cube modeling the phone calls supported by a
telecommunication company, the dimensions might be the
calling number, the number called, the date, and the time
segment in which the call is placed; each cube cell could
be associated to a measure of the total duration of the calls
made from a given number to another number on a given
time segment and date.

The basic mechanism to extract significant information
from the huge quantity of fine-grained data stored in base
cubes is aggregation according to hierarchies of attributes
rooted in dimensions [GL97]. In most application cases,
cubes are significantly sparse (for instance, most couples
of telephone numbers are never connected by a call in a
given date), and so are the aggregate views.

Accurately estimating the actual cardinality of each
view iscrucia for logical and physical design aswell asfor
query processing and optimization [Vas00]. As a relevant
case, consider the view materialization problem, where the
aggregate views which are the most useful in answering
the workload queries have to be selected for materializa-
tion (see [TBOQ] for a survey). Since the number of pos-
sible views which can be derived by aggregating a cube is
exponential in the number of attributes, most approaches
assume that a constraint on the total disk space occupied
by materialization is posed, and attempt to find the subset
of views which contemporarily satisfies this constraint and
minimizes theworkload cost [GR0OO, Gup97, HRU96]. An-
other case where estimation of view cardinalitiesisrel evant
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If the data warehouse has already been loaded, view car-
dinalities can be quite accurately estimated by using sta-
tistical techniques based, say, on histograms [MD88] or
sampling [HO91]. However, such techniques cannot be
applied at al if the data warehouse is till under develop-
ment, and the estimation of view cardinalitiesis needed for
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design purposes. To obviate this, current approaches are
based on estimation models that only exploit the cardinal-
ity of the base cube and that of the single attribute domains
[RS97, SDNR96], which however leads to significant over-
estimation.

In this paper we propose a novel approach to estimate
the cardinality of views based on a-priori information de-
rived from the application domain. Similarly to what is
done when estimating the cardinality of projectionsin re-
lational databases [CM95], we face the problem by first
computing satisfactory bounds for the cardinality, then by
capitalizing on these bounds to determine a good proba
bilistic estimate for it. Besides the functional dependen-
cies expressed by the multidimensional scheme, the bounds
we determine also take into account additional domain-
derived information expressed in the form of cardinality
constraints namely, bounds of the cardinality of some
views and bounds (called k-dependencig@won the ratio be-
tween the cardinalities of two views. The computation of
bounds is based on a bounding strategywhich isaimed at
achieving an effective trade-off between thetightnessof the
bounds produced and the computational complexity.

The paper isorganized asfollows. After providing some
basic definitionsin Section 2, in Section 3 we introduce k-
dependencies. In Section 4 we outlineour overall approach
to estimation and show its benefits with an example. Sec-
tion 5 introduces the basic properties of bounds, proposes
an efficient bounding strategy, and sketches a branch-and-
bound approach to determine the upper bound of the car-
dinality of a given view when the cardinality constraintsin
input do not contain k-dependencies; besides, it discusses
how the strategy introduced can be improved. Section 6
shows how the bounds derived may be used to improve the
cardinality estimates. Finally, Section 7 discusses the most
interesting open issues.

2 Background and Working Example

In this section we formalize the concept of view, define a
partial ordering on the set of views, and present the appli-
cation domain we will use as an example.

Definition 1 (Dimensional Scheme)We calldimensional

scheme D a couple(U, F) whereU is a set of attributes

andF = {A; — A; | A;, A; € U}is a set of functional
dependencies (FD’s) which relate the attribute$/ahto a
set of pairwise disjoint directed trees. We ddilinensions

the attributes4, € U in which the trees are rooted, i.e.,

such thatvA; € U (A, — Ax) € F; letdim(D) C U
denote the set of dimensionsiof

Definition 2 (View) Let D = (U, F) be a dimensional
scheme. We calliew onD any subset of attributds C U
such thatvA;, A; € V (A4; — A;) € FT, whereF+

It should be noted that we are using the term view to de-
note the set of grouping attributes used for aggregation,
while the “actual” views will typically include also one or
more measures. This dight abuse in terminology is possi-
ble since we are interested in determining the cardinality of
views, which only depends on the grouping attributes.

Definition 3 (Roll-up) Given the setVp of all possible
views onD, we define onVp theroll-up partial order <
as follows: VW iff VA; € V IA; e W | (A; — A;) €
Ft, ie., iff W — V. We callmultidimensional lattice

for D the corresponding lattice, whose top and bottom el-

ements arelim(D) and the empty viewW}, respectively.
We will denote with/ @1 the view that is the least upper
bound ofl” and W in the lattice; given a set of views,
we will briefly denote withs(S) the view that s their least
upper bound.

Example 1 Consider an enterprise with branchesin differ-
ent cities. A simple dimensional scheme Transfersmod-
eling the transfers of employees between offices might in-
clude:

U = {date, month, year, fromOffice, fromDept, fromCity,
toOffice, toDept, toCity, employee}

F = {date — month, month — year,
fromOffice — fromDept, fromOffice — fromCity,
toOffice — toDept, toOffice — toCity}

thus dim(D) = {date, fromOffice, toOffice, employee}.
Examples of views on the Transfersscheme are

V' = {month, fromOffice, toCity, employee}
W = {month, fromCity, fromDept}
7 = {year, fromOffice, toCity}

It is W&Z = {month, fromOffice, toCity}, with
(WaZ)=V. ]

The following notation is used throughout the rest of the
paper. Uppercase letters from the beginning of the alpha-
bet (A4, B, ... ) denote dimensions. Attributes which are
functionally determined by another attribute, i.e. attributes
other than dimensions, are denoted by the corresponding
primed letters (e.g., A — A, A — A”). Setsof attributes
are represented by omitting braces, thus writing ABC for
{A, B,C}. V isthe view whose cardindlity is to be es-
timated, while W, X, Y, and Z, possibly with subscripts
(W1, Wy, ...), denote generic views in Vp. Findly, low-
ercase |etters are used for the cardinalities of views and at-
tributes (e.g., w is the cardinality of view W, abe is the
cardinality of the view with attributes A BC', and so on).

3 The k-dependencies

denotes the set of all functional dependencies logically im-A k-dependency is arelevant case of cardinality constraint

plied by F.
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which naturally generalizes afunctional dependency. Inthe
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authors' experience, k-dependencies are particularly use-
ful to characterize the knowledge of the business domain
held by the experts in the field. For instance, in the trans-
fer domain, we might have some information concerning
the number of destination cities for an employee, or on the
number of distinct areas moved to from each area. If such
information is in the form of bounds, it can be effectively
used to improve the bounds of view cardinality.

Definition 4 (k-dependency) Let X and Y be two views
onD. We say that &-dependency (kD) holds betweerX’
andY’, and denote it withY = V', whenk (k> 1)isan
upper bound of the number of distinct tuplesYofwhich
correspond to each distinct tuple &f within viewX @Y.

Example 2 In the Transfersscheme, assume the domain
expert provides the following information: The maximum
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Figure 1: Overall architecture for logical design

our approach works in two steps. First, the bounder uses
the set 7 of cardinality constraints supplied by the user to

number of inter-department transfers of an employee durdetermine effective bounds for the cardinalities of a proper

ing one year is 2 This constraint can be formalized by
the following kD: X 2V, where X = {year, employee},
Y = {toDept}. Intuitively, from this we can derive that
the cardinality of the view {year, employee, toDept} can-
not exceed twice the cardinality of X.

The kD’s have been studied in the context of relational
database theory, where they are also known as numerical
dependenciesGrant and Minker [GM83] proved that kD’s
are not finitely axiomatizable, thus no fixed set of inference
rules can be used to determine whether or not a given kD
is logically implied by a set of kD’s. Nonetheless, a ba-
sic set of rules, which naturally extend those for FD's, was
proposed in [GM83]. The rules we use, generalized to the
multidimensional lattice, are:

RI : X5y xez 5 vaz
R:XEvAYy L2 X Eyez
RS : X5vezr x5y

RE: X Syvaxhzr xByaz

Notethat the “union” rule R4 isnot strictly needed, sinceit
can be derived from rules R1 (“extension”), R2 (“transitiv-
ity”), and R3 (“ decomposition™).

4 A Framework for Estimation

The framework for thiswork is the logical design of mul-
tidimensional databases carried out off-line, i.e. assuming
that the source data cannot be directly queried to estimate
the cardinality of multidimensional views. Without |oss of
generality, in the following we consider that estimates are
needed for the purpose of view materialization, thus reli-
able information on the size of the candidate views has to
be supplied to the materialization algorithm.

As sketched in Figure 1, whenever the materialization
algorithm requires information about a candidate view V/,
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set of views; then, the estimator uses these boundsto derive
a probabilistic estimate for the cardinality of 1. Note that
this two-steps approach generalizes well-known paramet-
ric models for the estimation of the cardinality of relational
queries[MCS88], and in particular thosefor projectionsize
estimation [CM95], for which boundsare typically givenas
input parameters.

The different forms of cardinality constraints we will
consider are:

1. alower (w™) and/or an upper (w*) bound of the car-
dinality w of aview W;

2. ak-dependency (X LA Y') expressing an upper bound
of the ratio between the cardinalities of two views X
andY.

We will assume that at least the upper bounds of the car-
dinaities of al the single attributes in the dimensional
scheme are known. This assumption, which is perfectly
reasonable in all application domains, is necessary in order
to guarantee that at least one upper bound can be deter-
mined for each view.

The set 7, together with the dimensional scheme D, uni-
vocally determines two bounds for the cardinality of V/,
which are called the greatest lower bound and the least
upper bound, denoted as v~ and vt, respectively.! The
interpretation of such boundsis as follows:

1. in each instance of D that does not violate any con-
gtraint in Z, the cardinality v of V' is such that v €
[v=,vT]; and

2. there exist two instances, both compatible with Z,
where v equals v~ and v, respectively.

We say aconstraint ¢ € 7 is redundant iff all the greatest
lower bounds and the least upper bounds determined by 7
are equal to those determined by 7 — {c}.

LFor simplicity of notation, in denoting bounds we omit the depen-
denceonD and 7.
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Definition 5 (Sound and Minimal Input) Let 7 be a set
of cardinality constraints on dimensional scheme D. We
say 7 is sound iff there exists at least one non-empty in-
stance of D which satisfies all the constraintsin Z. We say
Z isminimal iff no constraintin Z is redundant.

In this paper we will assume that the input Z is sound and
minimal. It is straightforward to derive that, in this case,
all the boundsin 7 are either greatest lower bounds or least
upper bounds (whereas the oppositeisnot necessarily true).

Computing the bounds implied by Z turns out to be
a challenging combinatorial problem, even for “simple”
forms of cardinality constraints. For instance, it is known
that the problem is NP-hard for arbitrary patterns of func-
tional dependencies[CM92]. Furthermore, the actual com-
putational effort needed to compute these bounds might
limit applicability in real-world cases. For thisreason, the
bounder isbuilt around the concept of bounding strategy. A
bounding strategy s is characterized by a couple of bound-
ing functionsthat, given Z, D, and V', compute bounds v ;-
and v} such that v, < v~ and v* < v both hold. In
other terms, a bounding strategy never computes bounds
which are more restrictive than the ones logically implied
by the input constraints, trading-off accuracy for speed of
evaluation. We say that a strategy s is decoupled iff com-
puting v for an arbitrary view 1 only requires the knowl-
edge of upper boundsw of other views W, but no knowl-
edge of lower bounds w, and vice versa. Thus, for a de-
coupled bounding strategy, the two bounding functions can
be defined independently of each other.

Turning to the estimator, our framework supportsdiffer-
ent probabilistic models. A probabilistic model is a func-
tion that, given Z, D, V', as well as bounds computed by
the bounder, provides an estimate, v, for the cardinality of
V. In genera, this step can use further information from
the application domain that is not suitable to derive bounds.
Typicaly thisisthe case with information concerning aver-
age values (e.g., the number of transfers of each employee
on each year is 1.5, on the average).

Example 3 Let 10* bethe number of employeeswho have
been transfered at least once, and let the enterprise con-
sist of 103 offices distributed over 10 cities and belong-
ing to one of 10 departments; let 103 days be the observa-
tion period. Let V' = {date, fromOffice, toOffice}. Since
each office isinvolved in transfers at most with every other
office on each date, the first trivial upper bound of v is
103103 - 10% = 10°. If the maximum number of transfers
for an employee during one year is 2, and since we con-
sider 3 years, it is derived that the cardinality of the base
cubeisat most 2 - 3 = 6 times the number of transferred
employess, i.e. 6 - 10%. Thus, the upper bound of v can be
improved to 6 - 10* as well (the cardinality of aview can-
not exceed that of its base cube). On the other hand, if we
assume that each office isinvolved in at least one transfer,
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itisv > 103. Finally, by using the model in Section 6, the
cardinality of V isestimated asv = 3.8 - 10%. m]

5 The Bounder

The basic observation to determine bounds for view car-
dinalities using bounds of the cardinalities of other views
is that the multidimensional lattice induces an isomorphic
structure over such cardinaities. In fact, from Definition
3itfollowsthat W <7 impliesw < z in each instance of
D, since Z — W holds. This inequality also applies to
bounds.

Lemmal f W=<Z,thenw™ < z~ andwt < zt.

Proof: (w™ < z7) Assume w~ > z~. Then, thereis
aninstanceof Dinwhichw > w™ > z > 27, thusw > z,
which isa contradiction. Similarly for wt < z+. |

As to k-dependencies, their influence on the determina-
tion of boundsis summarized by the following lemma.

Lemma2 Let Z = Xa&V. If X 5V thenz= > 2= /k
andzt < k- zt.

Proof: From Definition 4 it followsimmediately that, if

x5 Y, the cardinality » of 7 isrelated to the cardinality
z of X by inequdlity z < k - z. The inequalities on bounds
follow immediately. |

In the rest of this section we first propose a decoupled
strategy to compute upper bounds (Section 5.1), then we
discuss some issues related to coupled strategies (Section
5.2).

5.1 A Decoupled Upper Bounding Strategy

The bounding strategy we propose in this section, called
cover-based, relies on the concept of cover of a view to
compute upper bounds. The following are two preliminary
definitions whose aim isto precisely characterize how sets
of views and kD’s can be sinergically combined together.

Definition 6 (Graph of a set ofkD’s) Let K = {X; i\

Yi,...,X, 3 V,} beaset of kD's. The (labelled ori-
ented) graph of K isG(K) = (N, E), with set of nodes
N = U AX:,Yi}, setof edges & = {e; = (X;,Y;),¢ =
1,...,p},andlabeling function A such that A(e;) = k;.2

Definition 7 (K-set of views) Let .S = {W;,... , W}
be a non-empty set of views, and let K = {X; Ey
Yi,... X, @) Y,} be a set of kD'’s. The couple C =

2Technicaly, G(K) is a multi-graph, since two edges may share the
same couple of nodes. This, however, does not influence the following
arguments.
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(S,K) iscalled a k-set of views iff Vi = 1,... ,pitis
k

Y; € S and there exists a set of kD's, K/ = {W;, =

Vi, W, 3y}, suchthat 1)¥i = 1,... pitis
Xi=W;, withW;, € S,and2) G(K') = (N’, E') isafor-
est, i.e, aset of digointdirected trees. We call S-compliant
aset K’ with such properties.

Each kD inan S-compliant set X’ isderived from acor-
responding kD in K by applying rules R1 and R3 (since,
by hypothesis, it is X;4W;, = W;,). Notethat N C S
alwaysholds and that, in general, multiple S-compliant K’
sets can be derived from the same C, depending on how
each IV, € S ischosen.

Example 4 C; = ({A'B,C, D}, K),with K = {A’'B 13
oNe LE D}, isak-set of views, since K is S-compliant.
The same istrue for C; = ({AB,C, D}, K), since K/ =
{AB 5 ¢ ¢ 53 D} is S-compliant (in fact, A’ B<AB).
On the other hand, C3 = ({B,C, D}, K) is not a k-set
since no S-compliant set of kD's can be found.

It is important to remark that Definition 7 requires K/,
and not necessarily K, to be a forest. For instance, the

couple ({A}, {A A A}) isnot ak-set, though G ({ A’ A
A}) isaforest, since G({A LA A}) iscyclic. On the other
hand, C; = ({A, A", B}, {A’ 3 B, B 13 A"}) isak-set
(after deriving A 5y B from A" B) even if G({A’ Ey
B,B% A'})iscydlic.

Finaly, for the k-set Cs = ({4, A'B, A'C} {4 &
A}), two S-compliant sets, K| = {A'B A A} and
Ky ={AC LA A}, can be derived. O

Definition 8 (Cover) Let V € Vp be a view on D and
C = (S, K) be ak-set of views. C iscalled a V-cover iff
V=a(5).

As the following example suggests, a V'-cover can be
used to bound from above the cardinality of 1/ by generaliz-
ing Lemma 1 to the case of multipleviews (since V<&(.5)
holds). When aso kD's are present, Lemma 2 can be ex-
ploited toimprove the bound. Since a cover must be ak-set,
we are guaranteed that the cardinalities of some viewsin S
can be safely “replaced” by the k;'s of thekD’sin K.

Example5 Let V' = ABC. Below we consider some no-
table examples of V'-covers and show how each of them
can be used to derive an upper bound for ». In order to
help the reader, Figure 2 depicts the roll-up relationships
between the viewsinvolved.

e C; = ({ABCD},0) isaV-cover since V=&(S;) =
ABCD. From Lemma 1itisderived abc < abedt.

e C; = ({AB, BC},0) isaV-cover since V<a(52) =
ABC'. Since the natural join between two viewsis a
subset of their Cartesian product, itisabe < ab™ -bct.

P. Ciaccia, M. Golfarelli, S Rizz

Figure 2: Roll-up relationships of viewsin Example 5

e C3 = ({AB,C},{AB LA C'}). From Lemma 2 it
immediately followsabe < ab™ - k.

e Cy=({A,B,C}, {4 ky B, B Lk} C'}). By applying
rule R2, we derive A Fake BC, thusabe < at -kq - k-.

o Cs = ({A,B,C},{A 5 B, 45 C}). RueR4is

now used to derive A “5* BC, thus abe < at -k ko

o Co = ({4, A'B,C},{A" 5 A}). According to rule
Rlitis A'B & AB, and from Lemma 2 abt < k -

a’bt. Ontheother hand, abc < ab™ - cT, thusabe <
k-a'bt . ct. O

The following theorem precisely characterizes how
bounds are related to the graph of K.

Theorem 1 (Cover-based bounding)Let IV beaview and
C = (S,K) be aV-cover, with S = {Wi,... Wy}

and K = {X; 5 vi,... X, 3 v,}. Let K" bean
S-compliant set, R(G(K')) be the set of root nodes of
the forest G(K') = (N’, E') associated to K’, and let
Sp = S — N’ stand for the set of views which are not nodes
inG(K'). Then:

P
v<u(C, K') = HkZ : H w}" Q)

=1 Wi eR(G(K")US,

Proof: The intuition behind the proof is that each tree
G = (N/, E}) of G(K') contributesto «(C, K') with the
upper bound of the cardinality of itsroot 1/, times all the
k;’swhich label the edgesin E;.

Since by Definition 8 it is V=@(.5), it is sufficient to
prove that «(C, K’) is an upper bound of &(S). Since the
size of the natural join of a set of views can never exceed
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that of their Cartesian product, itis

card((S)) < card((#(S0))B(B(N))
< card($(So)) - card(®(N'))

< H w}"~1:[card(@(]\7t/))

W;€So

Sincethe &;'s are partitioned over the trees, it isenough to
prove that w” [];¢ », ki, where 1¥; istheroot of G, and A]
istheset of labelsinG,, isan upper bound of card(®(N/)).
Thisis proved by induction on the number 7. of levelsing .

Base step(L=2). 2 In this case G; corresponds to the

setof KD's {W, 2 Wy, ... W, 242 W, ). Fromthe
union rule R4 it immediately followsthat card(®(N{)) <
wy - {2y ki

Inductive step (L — 1 = L). Let N/(L — 1)
be the set of nodes in the first L. — 1 levels. By in-
ductive hypothesis it is card(B(N/(L — 1)) < wit -

LTI kg Adding the L-th level introduces new
edges with labels k. 1, ...,k 4, and corresponding ter-
minal nodes Wy, 1, ..., Wt 4, . From the i-th of the corre-
sponding kD’s we can derive (using rules R1 and R3) the

KD & (N/(L — 1)) ™% Wy ;. From the union rule R4 it is
derived:

9L kr
s(N(L— 1) T e ((We, . W)

which, due to Lemma 2, leads to:

card((®(N/(L = D))S@HWr 15, Wrg 1)) =
= card(®(N{(L)))
qr L-1 q L a
< HkL,i cw H Hkl,i = w; HHk’u 0
i=1 =2 i=1 1=2i=1

It is possible to prove that (1) isvalid even if G(K') is
not a forest, provided that R(G(K')) contains (at least) a
set of nodes from which every other nodein G(K”) can be
reached through a directed path. On the other hand, the
bounds determined by such “non-forest” V' -covers are al-
ways redundant, meaning that a proper V' -cover yielding a
better bound for v can aways be found.

Example 6 Let V = ABC, and consider the couple
({A,B,CY,K)with K = {4 % ¢, B 5 ¢}), which
is not a k-set since the graph of K’ = K has two roots (4
and B). The bound returned by (1) isv < kq - ko -a™ - b7
which is redundant, since a better bound is obviously ob-

tained throughthe V-cover ({4, B, C'}, {4 i\ chH. O

The following lemma shows that, when multiple S-
compliant sets exist for a given cover, the bound returned

3Thecase L = 1 cannot arise, since each G ; has at |east one edge.
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by (1) is actualy independent of the one chosen. For in-
stance, the reader may immediately verify that, in Example
4,itisu(Cs, K1) = u(Cs, K}) = k -a’bt -d’c™.

Lemma3 Let C = (S, K) bea V-cover, and let K{ and

K, be two arbitrary S-compliant sets. Itisu(C, K}|) =

u(C, K4) E u(c).

Coherently with Theorem 1 and Lemma 3, the cover-
based bounding strategy cb computes v, as:

ifvt €7,

if vt ¢ 7. @)

+
+ )Y
Ueb {min{ucb(C) | CisaV -cover}

where u,(C) is obtained by replacing w with w} , in
u(C). In general, evaluating the cover-based bound leads
to arecursive computational flow; note that the “ case-0” of
recursion, v}, = v, iscorrectly defined since we assumed
the input Z to be minimal.

The space of the V'-covers to be analyzed in order to
determine v} has exponential size. On the other hand, the
followingtheorem showsthat, under some circumstances, a
V-cover C, can be discarded from the search space without

even computing ucy (Cz).

Theorem 2 Let C = (Sl,[(l) and Cy = (SQ, [(2) be two
V-covers. If Sy C Ssand Ay = Ky or 5y = S, and
[(2 g [(1, then ucb(Cl) S ucb(Cz).

5.1.1 Reasoning without k-dependencies

When no k-dependencies are included among the input
constraints Z, covers degenerate into sets of views, which
allows us to precisely characterize the set of V'-covers
that can provide useful (non redundant) bounds. To see
how such covers are determined, two orthogonal aspects
are considered: a domination relationship between sets of
views and the input information, Z. While the former in-
duces a partia order on the bounds obtainable from /-
covers, regardless of the specific input Z, the latter can be
used to restrict the set of useful 1/-coversto thoseincluding
only viewsinZ.

In this section, since we assume K = 0, we will work
only with the S part of V-covers. Consequently, in (2),
uep(C) can be replaced by

u(S) = ] wi ©)

W;es

Definition 9 (Domination between sets of views)

Let 57 = {W1,1,~~~ ,Wl,i,~~~,W1,m} and S, =
Waor,... ,Waj, ... ,Ws,} betwo sets of views. We
say that S; dominates S,, written S1C.S,, iff S; can
be partitioned into m subsets S 1,...,S5%,, such that
leij@(kgzyi) Vi=1,...,m.
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For instance, {A'B,C}C{AB,CD,E}. Note that if
S;E.S; then ©(.S;)<®(S;) necessarily holds, whereas the
opposite is not always true (e.g., {AB, BC}Z{ABCD}
though ABC<ABCD).

Lemma4 Let S; and S5 be two sets of views. If S1C.S,
then Ucb(Sl) < Ucb(SZ)-

Definition 10 (Ground Views and Covers) We say that a
view W is ground iff wT isin Z. A V-cover is said to be
ground when all the views it includes are ground.

Lemma5 Let S be anon-ground V' -cover. Then there ex-
istsa ground V' -cover S such that ucy(S1) < ueb(S).

Proof (sketch): Since S is not ground, at least one view
in S isnot ground. By recursively applying (3), « ¢y (:S) will
be eventually expressed as a product of boundsin Z. The
case of strict inequality (uch(S1) < ueb(S)) can arise since
in this recursive process there is no guarantee that a given
ground view will be generated just once, thusits|east upper
bound might appear more than once in uy(5). ]

Definition 11 (Minimal Cover) A ground V-cover S is
minimal iff there is no other ground V-cover S such that
S1ES holds.

The following theorem immediately derives from Lem-
mas 4 and 5.

Theorem 3 (Sufficiency of Minimal Covers) Itis:

min{uc(S) | S isaV-cover} =
= min{ue(S) | Sisaminima V-cover}. (4)

For instance, let 7 = {ab’+, edt, d'det at,a't b,
yt et dt et} and V. = A'BCD. The min-
imal V-covers are {AB',CD}, {A’, B ,CD}, and
{A'DE,B',C}.

From the above results, severa facts can be easily de-
rived, which can be exploited to efficiently generate mini-
mal V'-covers by means, say, of a branch-and-bound algo-
rithm:

1. A ground view 1/ such that V<11 is a ground V-
cover (from Definition 8).

2. A ground view W such that arity(W) = 1 and
W NV = ( does not belong to any minimal V -cover*
(from Definitions 9 and 11).

3. A ground view W such that arity(W) > 1 and YWV’
for which W’/<W itis arity(W’' NV) < 2 does not
belong to any minimal V'-cover (since C includes the
cardinalities of all the attributes).

4arity(W) denotesthe number of attributesin W.
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Figure 3: Roll-up relationships between views in Lemma
6, inthecase n = 3

4. If Sisaground VV-cover, no set S’ suchthat S C 5’
isaminimal V'-cover (from Definitions9 and 11).

5. If aminima V'-cover S contains a ground view W,
it cannot contain any other ground view W’ such that
W=<W’ (from Definitions 9 and 11).

5.2 Towards a Coupled Bounding Strategy

The bounds we derive through the strategy described in
Section 5.1 are not necessarily the tightest possible ones.
In fact, more complex and effective bounding strategies
can be defined to the detriment of computational speed.
Basically, in these strategies the concept of cover may be
extended by considering more complex patterns of views,
where upper and lower bounds are used jointly. In this sec-
tion we present some preliminary considerations on cou-
pled strategies; for simplicity, we will assume that the input
does not contain k-dependencies.

As to upper bounding, the cover-based strategy can be
improved by exploiting results from majorization theory,
which state that the size of the natural join between two
relations is majorized when the distributions of the join at-
tribute(s) in thetworelationsare maximally skewed [|C91].
The extension of this argument to the multidimensional
lattice is as follows. Given two views 1//; and W, such
that WlﬁWQ and WzﬁWl, lee Y = W, oW, and let
7 = W1@W,, where ® is the greatest lower bound op-
erator on the lattice; it can be proved that

y<wi-wd — (T =D +wf-27) ()

It should be noted that, when W;®W-, = {}, since the
empty view {} has cardinality 1, (5) correctly reduces to
).

This result can be extended to a V'-cover whose views
are connected by alinear join graph.

Lemma6 LetS = {Wy,...,W,}beaV-cover; let 7; =
VVZ'®VVZ'+1, t=1,...,n—1,Y = Wy, andYH_l =
Yi®eWipr,i=1,...,n—1. Then:
y;—+1 Sy;— 'w;_+1_(zi__1)(y;_+w;_+1_zi_)
fori=1,...,n—1; (6)
v<yt
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The pattern consisting of views Y;, W;y1, Z;, and
Yi+1, depicted in Figure 3, can in principle be extended
to take into account also size informationon Y; — 7; and
Wit1 — Z;, thatis, on non-join attributes; thiswill further
strengthen the upper bound. At present, we guess that the
exact computation of v+ might involve taking into account
patterns that can extend over the whole lattice. However,
besides the theoretical interest, it is important to trade-off
the increased complexity with the actual gain that could be
obtained by having more accurate bounds, considering also
how bounds can be used by the estimator.

A coupled strategy requires also lower bounds to be
computed, which isradically different from computing up-
per bounds. In fact, while computing an upper bound cor-
responds to bounding the size of ajoin, computing a lower
bound corresponds to bounding the size of a projection,
where the relevant difference is that projection is a unary
operator. This leads to a much simpler situation to deal
with, in which Lemma 1 is exploited and the lower bound
of v iscomputed as max{w™ | w~ € Z,W=V}. Differ-
ently from upper bounds, no combinatorial issues arise in
computing lower bounds through this strategy; thus, com-
plexity islinear in the cardinality of Z.

A better bound can be obtained by using information
associated to “sibling” views. Let 1V be a view such that
VW =0,and 7 = VW, then:

_ z
vo2 s (M
Infact, if v < z~ /w™, then the size of the Cartesian prod-
uct of VV and 1/ would belessthan = ~, whichisimpossible.

6 The Estimator

Assuming that effective bounds have been derived, cardi-
nality estimation must be based on a probabilistic model
to derive an estimate, v, of the cardinality of view V. The
model we adopt here is based on the Cardenas' formula
[Car75], which states that, when throwing NV distinct ob-
jects into B buckets, the expected number of buckets in
which at least one object will fall can be estimated as:

®(B,N) < B. (1 _ (1 _ %)N) < min{B, N}

(€)
Within the approach proposed in [SDNR96], (8) is used to
estimate v by relying on the maximum cardinality of V/,
defined as the Cartesian product of the cardinalities of the

attributesin V', vpmae = [ 4,¢y @i, and on the cardinality
of the base cube, d = card(dim(D)), thatis:

Usdnr = q)(vmaxa d) < min{vmam d} (9)

This formula turns out to significantly overestimate the
cardinalities and can easily lead to violate the constraint
Usdnr S U+.
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In our approach, denoted se (“ safe-estimate”), the above
estimate is improved in two ways: by replacing v, With
the upper bound computed for v, for instance v, asamea-
sure of the maximum cardinality of 1/, and by replacing the
cardinality of the base cube d with an estimate, w,., of the
cardinality of aview W such that V<W. Thisleads to:

Vse = ®(vh, Wee) < min{v}, Wee} (10)

Since both v}, and w,. can be considerably lower than
vmae aNd d, respectively, it is usualy the case that 7, <
Tsdnr- The rationale for (10) is that we can view the prob-
lem of estimating v as the one of distributing the tuples of
view W, which are estimated to be w,., over a number of
v “buckets’.

Due to the need to know s, it is obvious that our es-
timation process must move downward from the top of the
lattice (whose cardinality d istypically known) following a
path leading to V. Clearly, this represents a simplification
of the correct estimation procedure, which would requireto
determine by following all the paths from dim(D) to V.
On the other hand, thiswould lead to combinatorial explo-
sionand necessitate of highly complex probabilisticmodels
that are well beyond the current state-of-the-art knowledge.

From a more practical (numerical) point of view, it
should be noted that moving from upper bounds to esti-
mates leads to significant differences under specific condi-
tionsonly. Two relevant cases should be considered, which
arise from the limit behavior of Cardenas’ formula:

1. Whenwee < 0.1 - v itiSTse &~ Wee

2. Whenw,, > 3 - v:[) itiSTse ~ v;]r

The values 0.1 and 3 can thus be used to predict whether

the estimator will deliver results which substantially differ
from those directly obtainable from the bounder.

Example 7 In the Transfers scheme, we consider three in-
put situations:
I :{{date}+ =10°, {year}" =3, {employee} = 10%,
{fromOffice}™ = {toOffice}* = 10°,
{fromCity}* = {toCity}" = 10,
{fromDept}t = {toDept}* = 10}

Iy =11 U {{employee, year} A {fromOffice, toOffice, date}}

Is =TI, U {{fromCity,fromDept}+ =40,
{toCity, toDept}+ =40,
{fromCity, fromDept } N {toCity, toDept},
{fromCity, fromDept} 3 {fromOffice},
{toCity, toDept} 3 {toOffice} }
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Table 1: Improving upper boundsand estimatesfor increas-
ing domain-derived information

mput w:[) v:[) Wee Use
71 1013 10° 1013 10°
I 1.2-10° [ 1.2-10° | 1.2-10° | 7.6 - 10%
I3 1.2-10° [ 7.2-10% | 1.2-10° | 5.8-10%

Let W = dim(D) = {date, employee, fromOffice, toOffice}
be the base cube and V' = {fromOffice, toOffice} be the
view whose cardinality is to be estimated. Table 1 shows
how the upper bound w, of W, the upper bound v, of V/,
and the estimate 7, improve as new cardinality constraints
are progressively supplied. The estimate 7, is based on
the estimate of w, e, Which is assumed to be equal to its
upper bound w . i

7 Conclusions and Open Issues

In this paper we have shown how cardinality constraints
derived from the application domain may be employed to
determine effective bounds on the cardinality of aggregate
views and how, in turn, such bounds can be used to esti-
meate the cardinality of the views. In order to improve the
approach effectiveness, someissues till need to be investi-
gated. In the following we briefly discuss those we believe
to be crucia:

e Domination. A characterization of domination be-
tween k-sets of views, similar to that reported in Def-
inition 9 for sets of views, needs to be developed in
order to reduce the complexity of computing upper
boundsin presence of k-dependencies.

e Minimality. Throughout this paper we assumed that
the cardinality constraints supplied by the domain ex-
pert are sound and non redundant. Of course, this
gives rise to the problem of determining, given an in-
put Z, if Z issound and minimal, which we argue can
be dealt with as done for, say, functional dependencies
(whose inference rules can be used both for schema
normalization as well as for input minimization).

o Cardinality constraints. The input knowledge may be
further extended by considering other forms of car-
dinality constraints which are typically known to the
experts of the application domain. For instance, while
in this paper we have defined k-dependencies to ex-
press bounds on the ratio between the cardinalities of
two views, they may aso be used to denote the aver-
age of such ratio; while thiskind of knowledge cannot
be used by the boundey, it allows the cardinality esti-
meations to be improved. For instance, knowing that
the average number of transfers for each employee on

P. Ciaccia, M. Golfarelli, S Rizz

each year is 2, would allow the cardinality of the base
cube to be estimated as twice the cardinality of view
{employee, year}.

o Probabilisticestimates. Estimates based on Cardenas
formula can be improved in several ways. In particu-
lar, information on lower bounds could be considered
by exploiting the results in [CM95], as well as infor-
mation concerning the distribution of attribute values
over their domains. For this, the challenge isto derive
new models that can be applied when the data ware-
house has not been |oaded yet.
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