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Abstract

OLAP defines a set of data warehousing query
tools characterized by providing a multidimen-
sional view of data. Information can be shown at
different aggregation levels (often called granular-
ities) for each dimension. In this paper, we try to
outline the benefits of understanding the relation-
ships between those aggregation levels as Part-
Whole relationships, and how it helps to address
some semantic problems. Moreover, we propose
the usage of other Object-Oriented constructs to
keep as much semantics as possible in analysis di-
mensions.
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Nowadays, there is a wide interest in information system
that help companies in their decision making processe
At the core of such systems we find tbata Warehouse
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where we keep all data that could be useful for that pur-
pose. However, storing that data is not enough, we also
need query tools. Probably, the most popular of these tools
are On-Line Analytical ProcessinOLAP) applications,
firstly identified in [CCS93]. The main characteristic of
OLAP tools, besides being fast and easy to use, is that they
offer a multidimensional view of the subject of analysis.

Offering a multidimensional view means conceiving
the subject of analysis asmultidimensional spacéalso
known ascubeor hypercubg containing the measures of
the facts we want to analyze. The dimensions of that space
are the different points of view we are going to use to ana-
lyze it. For instance, if we want to analyze company sales,
we could do it attending to four dimensions, i.e Time (when
something was sold), Store (where it was sold), Product
(what was sold), and Customer (whom it was sold). Bene-
fits of a multidimensional conception are twofold. On the
first hand, it helps users to understand data. On the other
hand, it helps computers to “understand”, in advance, what
users want to do, allowing to improve performance.

1.1 Related work

In the last years, lots of efforts have been devoted to multi-
dimensional modeling. Those efforts have been clearly re-

Ylected in literature. [ASSO01a] contains a survey of some

representative multidimensional data models.
emphasize some of them.

Previous to multidimensional models, and even to the
definition of OLAP tools, [SR91] presents a statistical
model (resembling those multidimensional). The first for-
mal approach to present a multidimensional data model
was that in [AGS97]; it proposes a minimal, closed set of
operations on theypercube [Kim96], in a logical phase of
design, represents thg/percubeby means of a relational

Here, we
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problems by showing aggregation semantics and naviga-

aneiT;e tion paths along the dimensions. The importance of se-
Day — mantically rich relationships and their usage in conceptual
Year Locationld modeling is outlined in [Sto93]. A first approach to how
C"u'smmer sl / o multidimensional modeli.ng could benefit from O-O seman-
Customertd~—___| Locationid State tics was already shown in [ASS01b].
Zproce Customerld — Most of those models mentioned in section 1.1 provide

Clerid T pracucd some way to represent aggregation hierarchies. ' Neverthe-
Clork / Color less, we argue that those papers treat semantics of con-
Clerkld ceptual modeling constructs rather superficially, often just
pointing to a general idea.

We want to dig into the usage of certain modeling ab-

stractions to solve some well identified semantic prob-
Figure 1: Example o$tar schema lems enumerated in section 2. They are addressed from
star schemdlike that depicted in figure 1), having one cen- an O-O point of view in section 3. Specifically, the us-
tral Fact Table(containing measures) surrounded by multi- age of Part-Whole Simple-Aggregationand Specializa-
ple Dimension Tablegcontaining descriptive attributes).  tion/Generalizationrelationships will be studied. Other
concepts from the O-O paradigm that could also be used

e o Cityl‘;“y o (for instance attaching methods to aggregation levels defi-
Day Size Saed [ | nitions) have been left out of the scope of this paper. Con-
Monthid Cityld . . .
Weekid Sales clusions are found in section 5, followed by acknowledge-
Customer e o ments and bibliography.
gi:cl:z:“u g:lostﬁ::ntle;d Colored Coll?.rld . - .y

Cledd | .| Produc 2 Semantic problems in present multidimen-

Amount Productld . .
Colorid sional modeling

Clerk Kindld Kind Family
Clerkid K g =] Feme This section outlines some problems found in existing mul-

Weight tidimensional models. Some of them were already identi-

fied in [SR91], [Leh98] and [PJ99]. Even though [SR91]

Figure 2: Examole ofnowflake schema can be found out of place, most of the problems it iden-
9 ' P tifies in statistical modeling are also applicable in multi-

Some authors argue that itis also important to normalizj ensional context. The problems, related to modeling
schemas (also known as “snowflaking”). As a side eﬁECtdimensions are grouped into five sections.

it shows aggregation hierarchies in the dimensions, as can

be seen in figure 2.. [HS97] presents' a despription Iogicsz_l Aggregation levels graph

model, which describes aggregation hierarchies as partially _ .

ordered sets wittPart-Wholerelationship being its strict At first glance, one could think that aggregation levels
order. In [TBC99], a multidimensional model, which al- 9raphs are quite simple. Data about Stores is aggregated
lows the usage of specialization, aggregation, and membe@ftending to the City they belong to, data about Cities is
ship relationships, is proposed. It is said that dimensiongdgregated attending to the State they belong to, and so on.
are usually governed by associations of type membershi§ 100ks linear and simple. However, we just need to look
forming hierarchies that specify granularities. [TPG00]at the ColoredProduct dimension to find that products can
also used Object-Oriented (O-O) concepts to model dimenP€ aggregated either by Color or Kind. We can see other
sions. Specifically, associations (in UML - Unified Model- €xamples of multiple aggregation paths in [Tho97].

ing Language - sense) define a directed acyclic graph be- Some OLAP tools justimpose the constraint that an ag-
tween aggregation levels, and generalization represents c&ttegation graph must be connected and show parent-child
egorization of aggregation levels, allowing to define addi-relationships between attributes. [LAW98] imposes the ex-
tional features of the subtypes. There are also some papdfience of a common top aggregation level (calfd),

specifically related to aggregation hierarchies in analysiglefining a lattice of aggregation levels for every analysis
dimensions, like [JLS99], and [PR99]. dimension; and identifies relationships between levels as

functional dependencies. [PJ99] also identifies multiple ag-
gregation paths in the same dimension, and presents the dif-
ferent aggregation levels forming a lattice, being related by
This work is devoted to investigate problems at representgreater tharrelationships (meaniniggical containmenof

ing analysis dimensions, and their aggregation hierarchiethe elements at one level into those at the other). It could
at conceptual level. The stress is on how to solve thosalso be the case that our information sources feeding the

1.2 Aim of this paper
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Data Warehouseollect data at Month, and Week level, but and restricting the usage of these attributes to selection

not at Day level. Therefore, we could define a commorof instances (forbidding grouping by them). Solution in

aggregation top, but not a common bottom for both aggre{BHLOO0] is much more elegant. It proposes to define dif-

gation paths. ferent relations for every set of instances sharing the same
To the best of our knowledge, there is no justificationattributes.

in literature of the structure of aggregation levels into a di-  Itis not enough to solve this atlogical level (by means of

mension and the relationships among them being a latticeglations). Modeling the concepts so that more semantics

semi-lattice, or just a directed graph. It is necessary to fincire captured is also important.

a wide accepted definition of analysis dimensions. This is

the first step to state its structure and properties. 2.4 Reuse of dimensions

Multidimensional cubes are conceived in an isolated man-
ner. However, when we use them, we want to navigate
Due to one reason or another, almost everybody argues thfitbm one cube to another one (knowndagl-across). This
aggregation hierarchies are formed by “to-one” relation-means we are analyzing data in a cube from a given point of
ships. It means that an element at a given level is relatediew, and want to view data in another cube from the same
to exactly one element of the next level in the hierarchy.point of view. Thus, cubes need to have equivalent points
A Store corresponds to exactly one City; it, in turn, to ex- of view (dimensions). Moreover, we can also find the same
actly one State; and so on. As pointed outin [LAW98], this dimension playing different roles in a cube. For instance,
provides nice aggregability properties. in a sale, people dimension plays two different roles (i.e.
However, we can find examples where hierarchies ar€lerk and Customer).
not defined by “to-one” relationships in [SR91], [Kim96], Most multidimensional models ignodgill-across If it
and [Tho97]. [PJ99] also presents examples where this considered, like in [Kim96], this operation is restricted
dimension hierarchies, besides possibly being “to-many”to the case that both cubes have common dimension tables.
can be non-covering. In general, the most common (anés exemplified in [SBHD99], two cubes could also use the
computationally comfortable) cardinalities are 1..N-1..1same dimension at different aggregation levels, still allow-
and 1..1-1..1 (meaning minimum..maximum cardinalitiesng drill-across
at lower-higher aggregation levels). Multidimensional analysis and research use to be re-
A difficulty slightly related to this is that of having dif- stricted to one cube. Representing inter-dimension rela-
ferent path lengths between instances at two aggregatidionships would allow more powerful analysis by relating
levels in the dimension hierarchy. An instarecat levelL;  data in different cubes. The more semantically rich these
is part ofb at levelLs, which in turn is part o at level relationships are, the better for the analyst.
L3. However, there is another instaneat levell; that is
directly part ofd at levelLs. This is identified by [PJ99] as 2.5 Correlated dimensions
non-onto hierarchies.
In general, we could find sixteen different cardinalities
between two levels (i.e. tw- 0 or 1 forminimum, and 1 or

2.2 Relationship cardinalities

In general, analysis dimensions use to be independent.
Thus, the point of view chosen at one of them does not
. . restrict those possible values available at others. However,
N for maximum - raised to the power of four), most of them : . .

we can find some cases where there exist meaningless com-

presenting summarizability problems. Thus, itis needed tq .~ ~: . :
. ) . L L inations of dimension values (they are correlated). For
clearly identify meaningless cardinalities to avoid misun-. .
instance, it may be that all products are not on sale every-

derstgndlngs on designing, as well as the meaningful ONShere. Depending on the product characteristics, it is sold
to strive to solve problems they generate.

in a store or not. Some other examples of this situation can
be found in [Kim96], referring the problem as “many-to-
many relationships”. If values in two dimensions are corre-
[SR91] detects a problem referred as “non-homogeneouated, we could choose to keep both in the same dimension
statistical objects”. This means having objects at the sam&ble.
aggregation level that have different attributes. To the best of our knowledge, there is no multidimen-
In [Leh98], it is solved by defining the attributes at in- sional conceptual model able to capture this kind of rela-
stance level. However, as pointed out by some authorgonship. However, we think that it is needed to capture,
(see [BSHD98]), explicit separation of cube structure andat conceptual level, the possibility of combining different
its contents is a desirable model feature. In this sense, atimensions to give rise to a new one. Representing both
taching specific attributes to every instance, does not seedimensions together, at logical or physical level, would de-
a good solution. [LAW98] also tackles the problem, andpend on the number of meaningful combinations with re-
proposes to solve it by means of attributes with “null” gard to the number of elements of the correlated dimen-
values (showing that a given attribute is non applicable)sions.

2.3 Heterogeneous aggregation levels
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3 How to solve them

We argue that relationships between aggregation levels 1. EXISTS. If A is part of B, both A and B exist
should be interpreted d@art-Whole(also known as com- 2. ANTISYMMETRY. If A is part of B, B is not part of A
position) relationships. This allows us to use “Classical Ex-
tensional Mereology” (CEM) axioms and other concepts in
[GP95] to address problems stated in previous section.

2

3. TRANSITIVITY. If A'is part of B and B is part of C,
then A is part of C

4. SUPPLEMENTATION. If A is a proper-part-of B, then

MASS COLLECTION COMPLEX another individual C exists which is the missing part
(homogeneous) (uniform) (heterogeneous) from B
W w w 5. EXTENSIONALITY. A and B have the same parts, if

and only if A and B are the same individual

6. SUM. There always exists the individual composed|by

2N 11/ 12/ 13 rA r any two individuals of the theory

P P P P P PL P2 P3 P4 P5

QUANTITIES ELEMENTS COMPONENTS Figure 4: Classical Extensional Mereology axioms

[GP95] also explains that there might be more than one
Figure 3: Types of wholes way to decompose the same whole, i.e some objects could
As depicted in figure 3, we find three different, domain-be understood as collection of different kinds of elements
independent, kinds d?art-Wholerelations induced by the (for instance, a year being a collection of either trimesters
compositional structure of the whole (i.e. Mass, Collec-or four-month periods).
tion, or Complex). If there is no compositional structure,
the whole is consjdered hf_’moge,”em,’s (ex. an amount. R Relationships inside an analysis dimension
rice). If we take into consideration different elements, it
is understood as a collection having a uniform composi-Some models, like [CT98], and [GMR98], already stated
tional structure (ex. a convoy of trucks). If we see differentthat dimensions contain different levels which represent do-
parts playing different roles, we have a complex with anmains at different granularities. Those granularities show
heterogeneous compositional structure (ex. the pieces inow elements are grouped to apply aggregation functions.
an engine). Mass, Collection, and Complex represent exFhus, relationships are defined among elements at different
treme cases on a scale leading from a total lack of composievels standing for composition.
tional structure to wholes with complex internal organiza- We understand by Simple-Aggregation those aggrega-
tion. Different people could conceive a composed elementions that do not give rise to a new instance. Those ag-
at different points of that scale. gregation relationships that do not reflect composition, are
The main objective of defining relationships betweenSimple-Aggregations. In this kind of relationship, an in-
different instances in an analysis dimension is to show howstance is related to another just to show a property of the
to apply aggregation functions (i.e. sum, min, max, avgsecond one. Every instance in an analysis dimension will
etc.). Since these functions consider instances as equdis related to some instances because of those being its
(playing the same role in the aggregation), we maintairparts, and to other instances because of those simply show-
that those relationships should be conceived as collection#g its properties.
From here on, we will refer to Part-Whole relationshipsbe- We contend that it is essential to distinguish both kinds
tween aggregation levels in an analysis dimension assunof aggregation in a multidimensional model, since they will
ing they form collections. allow to understand what was intended on defining a given
In case of having collections, [GP95] considers that theschema. Part-Whole relationships will show how differ-
axiomatic system of CEM (as stated in figure 4, that is alsgnt elements are grouped together in a dimension, while
explained in [AFGP96]) seems to be ideally suited, excepSimple-Aggregation will indicate which are the different
for axiom 6. In our case, axiom 6 also perfectly suits, sincecharacteristics available to select instances. Thalsup
a user can always be interested in considering a given send drill-down operations will be performed along Part-
of elements as a whole, in order to apply an aggregatioiVhole relationships, while selection (knownsle-dicg
function. Semantically, axiom 5 is not true, since the samevill be performed by means of Simple-Aggregation rela-
collection of elements could compose different wholes (i.etionships.
two clubs, at a given point in time, can have the same set In this section, we assume a minimum definition that ev-
of members). However, in order to apply aggregation funcerybody could agree in roder to deduce some controversial
tions both collections would give the same result. Thus, weproperties of an analysis dimension using CEM axiomatic
would not be talking about clubs, but just sets of memberssystem. Firstly, on referring to aggregation levels in multi-
which would be the same individual. dimensional analysis, there is a misuse of language on say-
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ing, for instance, “A City decomposes into Stores”. Theare not collected by instances at any other aggregation
real meaning is easily inferred, but it is important havinglevel; b) This aggregation level has exactly one instance;
in mind that it should be said “A set of Stores in a City and c) Itis unique in the dimension.

decomposes into Stores”. . o .
We define an analysis dimension as follows: Proof 3 By successively considering axiom 6 we can con-

struct an instance E composed by all elementary instances
Definition 1 An analysis dimensionis a connected, di- in the dimension. a) If E would be a proper-part-of ah E
rected graph. Every vertex in the graph corresponds tdoy axiom 4 there would be an elementary instance that is
an aggregation level containing instances, and an edge renot in E. Therefore, E is at a level whose instances are
flects that every instance at target level can be decomposetbt part of any other instance in the dimension. b) If this
as a collection of elements at source level (i.e. edges reflet¢vel would contain two instances, both containing all ele-
Part-Whole relationships between instances in aggregatiommentary instances, by axiom 5 they would be the same in-
levels in the dimension). stance. c) This level is unique, since if there were another
level whose instances collect all elementary instances, they

Colored product would be the same instance we already havélinlevel
Colored

by axiom 5).
ProduCtN Kind H Family ‘ ( y )
Property 4 Those levels whose instances are not collected

Figure 5: Example of analysis dimension by instances of any level (i.e. they are not source of edges
In 0-O terminology, aggregation levels would be in the dimension graph) can be connected with an edge to

classes, and their instances would be objects. Figure gvelAll.

shows an example of analysis dimension. It contains . :
graph with four aggregation levels (i.e. Product, Color,%’mo”r The instance of levelll can be decomposed into

instances at any level coverisigomic level. If there is a

Kind, and Family), and three edges showing that familieﬁ vel not coverindtomic level llection can be added
of products can be decomposed into different kinds of prod-e.e otcove Gt clevel, a collection ca .
it, by axiom 6, collecting every elementary instance miss-

ucts, and these into colored products which can be groupet8
by color. 'Ng.

From definition 1 and CEM axioms, some properties carp,, ety 5 Every instance in an aggregation level, that is
be deduced with regard to analysis dimensions: not Atomic, has at least a part

Property 1 A dimension does not contain cycles. Proof 5 An instance without parts is elementary, and all

Proof 1 Let us suppose thata cycle in the dimension graphelementary instances are Atomic level, by property 2.

exists. By successively considering axiom 3 on any instanvFeroperty 6 Every instance in an aggregation level that is
A of a level forming the cycle, we would obtain that EXiStSnotAtomic might have more than one part.

another instance B of another level forming the cycle so

thatAis partof B and B is part of A. This contradicts axiom proof 6 If the part-of relationship between two instances is
2, then a cycle can not exist in the graph of a dimension. g proper-part-of, by axiom 4 the collection will have more

. . . . than one part.
Property 2 For every dimension, there exists a unique ag-

gregation leveAtomic which contains elementary (i.e. that Product Kind Family
can not be broken down) instances. Notice that elementary
instances could be unknown in a given database.

Ferrero Rochet

Proof 2 By property 1, there is at least a level whose in-
stances do not have parts. If there is more than one of those
Atomiclevels, since a dimension is connected and axiom 3, Rubik’s cube
there will exist an instance E conceived as composition of
elementary instances at each one of temic levels. By
axiom 5, all those collections of elementary instances com-  Figure 6: Example of overlapping classifications
posing E must be the same collection of elements. There-

fore, there exists only on&tomic level. Property 7 An element might be part of several collections

at the same time.
Property 3 For every dimension, there might exist a level

All containing instances composed by all elementary inProof 7 There is no mereological axiom forbidding the
stances in the dimension. If this level exist, a) Its instancesharing of elements among several collections, in spite of

A. Abelb, J. Samos, F. Saltor 4-5



it is a necessary condition to ensure summarizability (aspletely agree that specialization is an essential relationship

shown in [LS97]). We argue that allowing this case is notato be shown in multidimensional schemas. Nevertheless,

conceptual, but a computational problem (addressed as swe argue that isolated aggregation levels can not be spe-

in [PJ99]). If, as depicted in figure 6, a given product (at cialized. They must be considered inside a dimension.

level Product) is allowed to belong to two different kinds of

products at the same level Kind, some derived attributes oProperty 9 In general, a level and its specialization can

instances of level Family (which are composed by elementsot belong to the same analysis dimension.

at level Kind) must be calculated from elements at level

Product (ex: cardGifts) # card(Candie$+card(Toys).  Proof 9 Let us assume that both a level L and its special-
. i . . ization Ls are in the same dimension. In order to define

Propgrty 8 IHEVEIA," eX|§tS|nthed|menS|qnzthe graphis a lattice with levelAll, since in this case 4 must cover

a lattice, and collecthns in eac'h [eyel are disjoint; thep for Atomic level, we could be forced to have some instances

every level S, every instance in '|t is part of a collection f"‘tin Ls. Those instances we are forced to have éndould

each and every other level T being target of edges Ie""Vmﬂot fulfill specialization criterion. Therefore, it is not al-

level S. ways possible to have both aggregation levels in the same

Proof 8 A lattice withAll level at top, by axiom 3, implies dimension.

that every elementary instance is collected in at least one

. i . . . People

instance of any other level. By imposing that collections in /AgeGroup\

a level are disjoint, we obtain that every element in S must Person | Al
be collected exactly in a collection in T. If elements were ™ saleRole

not disjoint, there could be an instance of S overlapping
several collections in T, so that it would not be completely
contained into any of them.

With regard to problems stated in section 2.1, from def- ‘
inition 1 and properties 1 and 2 we ensure that, in general, Clerk Al
those aggregation levels in a dimension form a semi-lattice.
Moreover, properties 3 and 4 show tht level can al-

] ; _ : Figure 7: Example of dimension specialization
ways be defined in order to obtain a lattice. Those prob- Ei 7 sh le where Peoole di .
lems about relationships cardinalities, in section 2.2, are ' 'dU'€ / SNOWS an exampl€ where Feople dimension 1S

explained by the other properties. Properties 5 and 6 im'_specialized at SaleRole level (solid arrow) to have a Clerks

ply that the relationships between two levels will involve dlmelnsmn: This TpiCIallzatlon ﬁontalns :';}[hlevell with aIII

1..N parts for every whole. Property 7 explains that a parPeOp e acting as clerk, an another one with only one ele-
could participate in more than one whole or not. Propert)/nent repregentlng'th'e sgt of all clerks. Dashed arrows show
8 shows that if we have a lattice with levéll, and parts do that a level is specialization of another one. AgeGroups ag-

not participate in more than one whole; there is a whole fo@regation level is not of interest in Clerks dimension. No-

every part (i.e. we have cardinality 1..N-1..1). If the samdice that if it would, it would not be specialization of the

part can participate in more than one whole at the sam ame level in People dimension since its instances would
ge different (they would collect less people).

level we can not guarantee that there is a whole for ever
part (even ifAll exists in the dimension, we have cardinal- _ . o i )
ity 1..N-0..N). In any case, axiom 6 shows that the needed€finition 2 If Ds is the specialized dimension of D at

instances could be obtained to have 1..N wholes for everlfEV€! L. Ds contains at least the aggregation leved (spe-
part (so that we have 1..N-1..N). cialization of L), and a specialization of every level in D

containing parts of instances okL These specialized lev-

3.2 Relationships between dimensions els contain exactly those instances of the corresponding

) ) o ) _level of D being part of any collection ind. Besides those
Itis not eno.ugh showmg relatlopshlps inside a d'mens'or‘mandatory levels in B itis also possible that Bcontain
or aggregation level. Itis also important to analyze rela-giher jevels (that are not specialization of any level in D)
tionships between elements analysis dimensions in diffefy;ith elements not in D.
en't cubes or even in the Same one. In Fh',s sect|on. WE aré Al instances of an aggregation level will have common
going to consider tyvo kinds of relationship i.e. Spec'al'za'properties, since it represents a given class of objects able
tion, and Aggregation. to play the same role in a collection. By specializing an
analysis dimension, we will be able to show attributes com-
mon only to a subset of instances, besides their specific
The usage of specialization relationships between aggreg&art-Whole relationships, which solves problems stated in
tion levels is proposed in [TBC99], and [TPGO00]. We com- section 2.3. Simple-Aggregations, as well as Part-Whole

Clerks

Specialization

A. Abelb, J. Samos, F. Saltor 4-6



relationships are inherited along specializations. Therea reduced set of specific cases. From their point of view,
fore, it also addresses problems stated in section 2.4. #ven though it saves some (negligible) storage space, it in-
is not only possible tdrill-acrossfrom acube G to acube timidates users by unnecessarily complicating the schema,
C2 when both share dimensions, but also when the dimenand slow down most forms of browsing among dimensional

sions ofC; are specialization of those @p. attributes (joins are slower and less intuitive than selec-
tions). The point is that normalization explicits aggregation
Aggregation hierarchies, which show how measures can be summarized

: . . : : known - ill- .
Another interesting relationship to be shown is that of el-( own astoll-up) or decomposgd (knqwn atsill-down) :
. . . . . .~ Nevertheless, they argue that hierarchies are necessary nei-
ementary instances in a dimension being aggregated in el- ; ) L
. . . . : ther toroll-up, nor todrill-down, since they are implicit in
ementary instances in another dimension. This means ex-

. . . : . . attribute values.
pressing aggregation relationships between dimensions.

) ) . . However, some people disagree with those ideas (see
Property 10 If elementary |n§tanpes ina dimension D are [PJ99] or [LAW9S], for instance), and contend that aggre-
part of elementary instances in dimension, the graph of - 441ion hierarchies should be explicit; since they provide ba-

D will be a subgraph of 2. Notice thatinstances in Dwill - g or gefining aggregate data, and show navigation paths
not be those in , but part of them. in analysis tasks.

Proof 10 Elementary instances in/Dcan be grouped SO From our point of view, the context makes the differ-
that the same elementary instance in D is part of everyence. If we are at a |Ogica| or physica| design phase, as
element in each collection. By axiom 6, these collectiongy [Kim96], it is possible to obtain better performance or
can become instances imDThen, instances inDcan be  ynderstandability by denormalizing some tables. However,
grouped by the same criteria used on grouping elements iat a conceptual level, we must represent aggregation paths
D. besides their different semantics. If this puts obstacles in
. the way of non-expert users understanding schemas, the
Product kinds . . . .
Product : user interface can hide as much information as necessary
Kind =1 Family —= Al to make it understandable to a given user. Performance
problems of the system will be addressed at further design
phases (i.e. logical and physical).

Colored products
A P&?ﬁ(‘;‘“e Family |\ As already stated in literature, it is important to separate
Pcrg'é’l;ﬁ?s\ A Al conceptual and physical components. Logical or physical
Color |- Range models are semantically poorer than conceptual ones. That
is why conceptual models are so important. They give to
\ Colors the user much more information about the modeled reality,
and are closer to his/her way of thinking. This is specially

Color =/ Range| = All

necessary in analysis tasks, because of the unpredictable
nature of user queries in these environments. This kind
Figure 8: Example of dimension aggregation of users can not be restricted to a small set of predefined
Besides having Sales by ColoredProduct, we could obgueries. Indeed, they need to generate their own queries,
tain data in another star by Color, or ProductKind. In- most of times based on metadata. Thus, it is essential for a
stances in these dimensions would be aggregated to shawenceptual model to provide means to show aggregation hi-
the kind of product sold, and the color of that product. Aserarchies, and as much semantics as possible. For instance,
depicted in figure 8, the composed dimension would conshowing that two analysis dimensions are specialization of
tain, at least, the graph of each one of the parts, joialhg another one, means that their instances (i.e. customers and
levels, plus a commoAtomic clerks) can be compared.
By means of aggregation relationships between analysis )
dimensions, we address the problem found in section 2.5. Semantics are not only useful for users, but they can also
Two dimensions aggregated to generate a new one medfProve query performance. In our example, Clerks and

that there is a relationship between them that should be corfzUStomers are specialization of the same class, i.e. People.
sidered, at design and query time. Comparing instances in those dimensions if the specializa-

tion is disjoint means they will always be different. Just
knowing whether it is covering or not, would allow to ob-
tain thresholds of aggregation results. The specialization
[Kim96], as well as other authors (like [Gio00]), argue that being covering and disjoint also suggest parallel comput-
normalizing dimension tables is a serious mistake, but iring.

4 Discussion
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5 Conclusions [ASS014]

There is some controversy about whether aggregation hier-
archies must be implicit or explicit. In this paper we argue
that, at conceptual level, it is essential to explicit aggrega-
tion hierarchies, and as much information as possible about
analysis dimensions. That information will ease the user
to understand data, and pose ad-hoc queries. Users coyldsso1p]
classify and group data sets in an appropriate manner.

We identified some problems on explicitly modeling ag-
gregation hierarchies. We contend that those problems
can be addresses by providing Part-Whole semantics to
relationships between aggregation levels, and considering
mereology axioms. Thus, we defined an analysis dimen-
sion as a connected, directed graph of aggregation levelfBHL0O]
and for each one of the problems, some mereological prop-
erties were inferred to solve it. To the best of our knowl-
edge, this is the first work deducing properties of analysis
dimensions instead of just imposing them.

Not only Part-Whole, but other kinds of relationship
were found interesting for analysis dimensions (i.e. Spe-

A. Abelb, J. Samos, and F. Saltor. A Frame-
work for the Classification and Description of
Multidimensional Data Models. IRroc. of the
12th Int. Conf. on Database and Expert Sys-
tems Applications (DEXABpringer, 2001. To
be published.

A. AbelB, J. Samos, and F. Saltor. Benefits
of an Object-Oriented Multidimensional Data
Model. InObjects and Databases - Int. Sympo-
sium 5 volume 1944 of NCS pages 141-152.
Springer, 2001. ECOOP’00, Sophia Antipolis
(France).

A. Bauer, W. Himmer, and W. Lehner. An
Alternative Relational OLAP Modeling Ap-
proach. InPrc. of the 2nd Int. Conf. on Data
Warehousing and Knowledge Discovemol-
ume 1944 olLNCS pages 189-198. Springer,
2000.

cialization/Generalization, and Simple-Aggregation). [t[BSHD98] M. Blaschka, C. Sapia, G.dfling, and B. Din-

was also shown how different dimension can be related and
the consequences that relationships have in aggregation hi-
erarchies.

It is important to notice that, as can be read in
[AFGP96], Part-Whole and Simple-Aggregation relation-
ships are closely related. Namely, there are some propertifécs%]
that the whole inherits from its parts (ex. being defective),
others that the parts inherit from the whole they are part
of (ex. location), and some properties in the parts which
are systematically related to properties of the whole (ex.
weight of parts being less than weight of the whole). ThishCTQS]
has implications on the aggregability of measures, as we
as the inheritance of properties between parts and wholes.
However, this was left out of the scope of this paper, and
will be tackled as future work.
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