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Abstract
In physical therapy, understanding and analyzing patient movements, especially impaired gait patterns, is crucial for effective
rehabilitation. Traditionally, trainee therapists acquire these skills through hands-on experience with real patients and
textbooks. However, these methods are limited by the availability of patients and the variability of impaired motions that
therapists can observe. To address these limitations, we propose a novel system that allows therapists to learn from a wide
range of impaired gait motions without being restricted by time, place, or patient availability. This system utilizes the
HumanML3D dataset and a two-step framework combining text2length sampling and text2motion generation. In the
first step, a classification model predicts motion length based on the input textual descriptions. For the second step, we use
a temporal variational autoencoder (VAE) for generating varied and consistent 3D motion sequences. A key component
of our approach is the utilization of residual vector quantization (RVQ) from the MoMask framework, which minimizes
errors and enhances the precision of motion generation. Furthermore, a Masked Transformer ensures that the synthesized
motion tokens are temporally consistent and contextually accurate. Our system, validated through the HumanML3D dataset,
provides an immersive and interactive tool for physical therapists, enabling dynamic, patient-specific motion simulations in
mixed reality environments. By bridging the gap between conventional methods and MR-assisted training, this approach
uses interactive 3D representations to transform how therapists learn. It aims to revolutionize therapeutic training, making
rehabilitation strategies more effective and personalized.
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Figure 1: Comparison of traditional and our mixed-reality-based gait observation. (A) The therapist observes a real
patient’s gait in a conventional setting. (B, C) A therapist views a virtual patient’s gait on a head-mounted
display, which enhances learning and diagnosis.
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1. Introduction
One of the main goals of stroke rehabilitation programs
is the recovery of gait, which is often an important goal
for patients as well. Post-stroke functional recovery typ-
ically involves both natural processes and therapeutic
interventions. While the majority of stroke survivors
regain the ability to walk, many fail to achieve sufficient
endurance, speed, or stability to perform daily activities
independently and safely. After a stroke, falls are still a
major problem for people who live in the community [1].

In conventional therapy training, trainee therapists
rely primarily on textbooks and hands-on experience
with real patients to understand impaired gait motion.
More recent studies used mixed reality (MR) to develop
the therapist’s ‘clinical eye,’ enhancing their assessment
through overlaid visualizations of patient data during re-
habilitation [2, 3]. However, a limitation of this method
is the availability of patients restricts the variety and
frequency of learning opportunities, limiting exposure
to different types of impairments and hindering skill de-
velopment. Building upon our prior work on a virtual
reality (VR)-based medical training simulator [4], which
demonstrated the efficacy of immersive 3D modeling and
robotic systems in enhancing medical training and re-
mote surgery, this study extends these principles to aug-
ment therapeutic learning with patient-specific motion
simulations in MR. In contrast to traditional methodolo-
gies, this research investigates how the incorporation
of MR-based simulations of impaired gait motion can
improve learning outcomes for therapists undergoing
training by providing increased exposure to a variety of
gait impairments.

As illustrated in Fig. 1, when provided with the in-
put description, “a man walks forward with a noticeable
limp due to pain, favoring his right leg as he moves, his
steps are uneven, and his body tilts slightly with each
step, reflecting discomfort,” our system generates multi-
ple unique three-dimensional (3D) impaired human mo-
tions that closely correspond to the given textual input.
This approach significantly enhances traditional train-
ing methods by offering immersive, repeatable learning
experiences, leading to improved diagnostic accuracy
and therapeutic outcomes. The system aims to faithfully
replicate a wide range of realistic 3D human motion dy-
namics that precisely adhere to the specified directions,
actions, timing, speed, and style described in the text.

Applications in robotics, human-machine interface,
and virtual content creation, among others, could be
greatly impacted by this automated process. Making
use of different approaches such as motion capture has
its negative aspects which are the high costs and long
time taken, therefore the automatic text to motion gen-
eration is more feasible and cost effective. Despite this,
such a task is quite difficult due to the nature of words

and motion data being heterogeneous in many aspects.
With this, a number of attempts have been made in recent
years, such as the use of an encoder with recurrent neural
networks (RNNs)[5], variational autoencoders (VAE)[6],
and transformer networks aiming to embed the language
and motion in the same space converting them into a
unified approach[7, 8]. Although these methods have
proved effective with small units of text, the downside
is that text of a larger length projecting complex ideas
does not produce good sequences of motion. Moreover,
while existing diffusion processes have shown effective-
ness for image generation and motion generation from
text descriptions[9, 10], it remains unclear whether such
improvements within one architecture come at a reason-
able cost compared to more traditional Vector Quantized
Variational Autoencoder (VQ-VAE) based approaches.

In this work, we leverage the MoMask method in-
troduced by Guo et al. [7], which combines hierarchi-
cal quantization with generative transformer models to
address the limitations of previous techniques. While
traditional methods like Residual Vector Quantization
(RVQ)[6] attempt to reduce quantization errors by embed-
ding motion tokens multiple times, MoMask offers a more
advanced solution. As the first generative masked mod-
eling framework for text-to-motion generation, MoMask
features a hierarchical quantization generative model and
a dedicated mechanism for precise residual quantization,
base token generation, and residual token prediction. Ad-
ditionally, we integrate the HumanML3D[11] dataset,
which contains 14,616 annotated motion clips and 44,970
text descriptions, providing a comprehensive resource
for generating and evaluating human motions. To facil-
itate seamless impaired humanoid motion retargeting,
we develop a headless Blender Python API script that
enables mapping between different humanoid rigs and
allows for local saving of bone mappings. Moreover, we
implement a FastAPI backend that allows users to stream
data directly from Unity3D and use them for real-time hu-
manoid animation visualization with an HMD, ensuring
smooth integration and display.

2. Related Work
Existing work relating to our research mostly fall into
domains of (2.1) 3D human motion generation, (2.2) text-
motion generation, and (2.3) language models and human
motion captioning.

2.1. 3D Human Motion Generation
Significant advancements have been made in 3D human
motion generation, utilizing various approaches that
leverage action learning, audio, and text inputs. Tra-
ditional methods often employ a hidden state vector to
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Figure 2: System Overview: The system converts therapist’s input description into impaired motion using MoMask models
in a FastAPI backend. Retargeted animations are converted to FBX and visualized in Unity3D with Meta Quest 3 for real-time
analysis and therapeutic decision-making.

generate sequential states. Basic approaches, such as
those by Cai et al. [12] and Wang et al. [13], utilized
GAN algorithms to extend partial sequences with newly
generated states. In contrast, more advanced methods
like Yu et al. [14] employed GCNs to capture the spatial
and temporal dynamics of human motion. Furthermore,
VAE and transformer-based models have been applied to
better capture temporal dependencies, as demonstrated
by Guo et al. [15, 16] and Petrovich et al. [17]. For
audio-driven motion generation, techniques often trans-
form acoustic features into human poses. Studies such as
Takeuchi et al. [18] utilized two-way LSTMs to generate
gestures from speech, while Shlizerman and Tang et al.
[19, 20] investigated song and dance motion generation.
Recent models, such as Lee et al. [21], also focused on
the stochastic aspects of movement, which introduced
uncertainty in dance movements.

2.2. Text-motion Generation
Text-motion generation has become increasingly popular
due to the ease of using natural language input. Previous
studies [22, 23, 24, 25, 26] used mainly deterministic mod-
els, which typically average or blur the motion output.
More recent stochastic models, such as those in T2M[27]
and TEMOS[28], introduced more realism and variety
into motion generation by using VAE structures and
transformers to provide the shared transition between
speech and motion [29, 30, 31, 32, 33, 34]. Recent inno-
vations, such as autoregressive models [35, 36, 8, 37, 38]
have gradually increased the quality of motion synthesis
dramatically through denoising or motion suspension.
Generative masked modeling inspired by BERT [39] have
also been developed for human motion generation, using
techniques such as residual quantization [40, 41, 42] to
improve motion discretization and reduce quantization

errors.

2.3. Language Models and Human Motion
Captioning

The translation from natural language to human motion
have evolved from mathematical models [43] to advanced
neural networks like TM2T [36], which provides two-
way visualization between text and movement. Major
language models such as BERT [39], T5 [44], and Instruct-
GPT [45] have pushed the boundaries of understanding
across sectors. In multimodal learning, models like CLIP
[46] have linked images with text, inspiring similar ad-
vancements in human motion tasks, such as MotionCLIP
[47]. Despite this progress, language models still remain
underutilized in human motion tasks. Our research seeks
to integrate them into motion generation, leveraging pre-
trained models to create diverse motions.

Moreover, while existing work predominantly focuses
on generating normal human motions, our system specif-
ically targets the generation of impaired motions crucial
for physical therapy training and rehabilitation.

3. Method

3.1. System Overview
The proposed system combines text-to-motion genera-
tion, motion retargeting, and 3D animation export to
create realistic human motion sequences from textual
descriptions. As illustrated in Fig. 2, it features a back-
end powered by a Python server using FastAPI and a
frontend in Unity3D, allowing therapists to interact with
animations via a Meta Quest 3 headset. The backend pro-
cesses input prompts with MoMask model checkpoints
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Figure 3: The system generates the impaired motion region based on the therapist’s input description, allowing the therapist
to interactively observe and analyze the impaired motion for enhanced both diagnostic precision and therapeutic decision
making.

to generate patient-specific impaired motions, saved in
‘.npy’ or ‘.bvh’ format.
In general, our system is comprised of the following core
components:

Backend: The backend features a FastAPI-based
Python server responsible for processing the motion gen-
eration pipeline. It utilizes pre-trained models from the
MoMask framework, which transform therapist input
prompts into impaired motion representations. This in-
cludes generating motion sequences that reflect specific
conditions or impairments, ensuring realistic and appli-
cable outputs for therapeutic use.

Frontend: The frontend is built on the Unity3D en-
gine, which is employed to visualize the generated ani-
mations. It is designed to interface seamlessly with the
Meta Quest 3 headset, enabling immersive interaction for
therapists. This integration allows users to experience
the animations in a three-dimensional space, providing a
more intuitive understanding of the impaired motions.

API Endpoints: The system utilizes two key API end-
points to manage communication between the frontend
and backend. The first endpoint, “/gen_text2motion”,
takes the therapist’s input prompt and triggers the mo-
tion generation process. The backend processes the
prompt through the MoMask model, which translates
the text description into a motion representation in for-
mats like ‘.npy’ or ‘.bvh’. Once the motion is generated
and retargeted, the second endpoint, “/download_fbx”, al-
lows the frontend to retrieve the final FBX animation file.
This file is then used to visualize the impaired motions
in the MR interface. These API endpoints ensure smooth
and efficient interaction between the components, allow-
ing the system to generate and deliver animations in
real-time based on simple text input, thereby enhancing
the rehabilitation experience for therapists.

3.2. Text-to-Motion Generation
Our system builds upon the state-of-the-art techniques
for text-driven motion generation, particularly drawing
inspiration from the MoMask framework. The text-to-
motion process is detailed below:

Tokenization of Motion Sequences: The textual
descriptions are transformed into a sequence of discrete
motion tokens using a vector quantization process. This
process tokenizes complex human motion into a hier-
archical structure of motion segments, each capturing
different facets of the described action.

Masked Motion Prediction: A Masked Transformer
is employed to predict masked motion tokens conditioned
on the input text. During the training phase, the model
is trained to fill in randomly masked tokens from incom-
plete motion sequences. In the inference phase, it gen-
erates entire motion sequences by iteratively predicting
missing tokens, ensuring global consistency and fidelity
to the input description.

Residual Refinement: After the base-layer motion
is generated, a Residual Transformer is used to progres-
sively refine the motion by predicting additional motion
tokens that capture higher-order details. This step is
crucial for enhancing the granularity and subtlety of the
generated motion, ensuring fine control over aspects such
as posture and movement transitions.

Motion Generation Output: The final output is a
continuous 3D human motion sequence generated in
‘.npy’ or ‘.bvh’ formats. These motion sequences repre-
sent high-quality, realistic animations that can be further
processed or directly visualized.



(A) “A man walks forward with a noticeable
limp due to pain, favoring his right leg as he
moves, his steps are uneven, and his body tilts
slightly with each step, reflecting discomfort.”

(C) “A man walks forward, they swing their left leg outward,
causing their body to lean slightly to the right, after the left foot
touches the ground, the right leg smoothly swings forward.”

(B) “A person stands up from the ground, walks in a clockwise 
circle, and then sits back on the ground.”

The motion matches the 
text description but both 
feet are bent.

The motion doesn't match 
the text description 
because the avatar's body 
is straight.

The motion matches the text 
description, and the avatar's 
body movement is also good.

Figure 4: Impaired motion animations generated from textual descriptions using the HumanML3D dataset. The animation
in (A) aligns well with the text description, with the avatar’s movements accurately reflecting the specified actions. In (B),
while the motion generally corresponds to the description, there is a minor discrepancy in the animation, as both feet appear
bent. In (C), although the described leg movement is captured, the avatar’s posture does not match the expected slight lean,
remaining too straight.

3.3. Motion Retargeting and Animation
Transfer

After generating the motion sequences, the system ap-
plies a motion retargeting process to map the generated
motion onto the target 3D model’s skeleton. This is done
using ‘keemap.rig.transfer’, a precision retargeting tool
within Blender, which ensures accurate bone mapping
and preserves key motion attributes such as foot posi-
tioning and overall balance. By retargeting the motion,
we ensure that the animations are properly transferred
to any humanoid rig, allowing seamless integration into
various 3D models.

3.4. Export and Visualization in Unity
Once the motion has been retargeted, it is exported in
FBX format, which contains both the 3D model and its
associated animation. This format is then imported into
Unity 3D, where additional adjustments to model posi-
tioning and animation playback can be made. A custom
Unity frontend was developed to provide an intuitive
interface where users, such as physical therapists, can in-
teract with and visualize the generated motion sequences
in real-time, enhancing their ability to analyze and eval-
uate generated impaired motions.

In Fig. 3, the interactive process of generating impaired
motion regions based on the therapist’s input description
is demonstrated. The sequence of images illustrates a
physical therapist utilizing a head-mounted display to
observe the virtual patient’s motion in real-time. The left-
most frame captures the therapist’s perspective, showcas-
ing the virtual patient within a simulated environment.
The subsequent frames display the progression of the
patient’s movement, with impaired regions clearly high-
lighted to indicate abnormalities in motion. This system
enables therapists to interact with and analyze the im-
paired motion sequences in real-time, providing an im-
mersive, hands-on approach that significantly enhances
both diagnostic precision and therapeutic decision mak-
ing.

4. Pilot Experiment
In the pilot experiment, we assessed the ability of our
text-to-motion model to generate impaired gait motions.
Fig. 4 highlights several outcomes from the experiment,
showcasing both well-matched and mismatched anima-
tions.

In well-matched animations Fig. 4(A), the motion
aligned well with the text description. The avatar showed



a noticeable limp and discomfort, with uneven steps and
a tilted posture—accurately portraying the described im-
pairment. In some animations Fig. 4(B), the generated
motion mostly matched the description, but the avatar’s
bent feet introduced a small inconsistency, detracting
from realism. In mismatched animations taking Fig. 4(C)
as an example, although the left leg’s outward movement
is captured, the avatar’s body remained too straight, fail-
ing to show the expected slight lean.

The integration of the HumanML3D dataset, paired
with pre-trained model checkpoints from MoMask,
greatly improved the quality of the generated motions.
These findings highlight the effectiveness of text-to-
motion generation techniques. Additionally, the combi-
nation of Residual Vector Quantization-VAE (RVQ-VAE)
and Transformer models contributed to the model’s abil-
ity to capture both coarse-grained and fine-grained mo-
tion details, further enhancing the fidelity and accuracy
of the animations.

5. Future Work
Looking ahead, we plan to broaden our research by devel-
oping a custom dataset composed of textual descriptions
extracted from the Electronic Health Records (EHRs).
This domain-specific dataset will enable the model to
generate motions that are more relevant to medical and
therapeutic applications. Once this dataset is constructed,
we will retrain our model to improve its performance in
these specialized contexts.

Currently, we have not tested the effectiveness of the
virtual motions in MR environments, which is another
key feature of our system. In the future, we also intend to
conduct more extensive user studies with a large cohort
of therapists to evaluate the long-term impact of using
our MR system on their training outcomes. Furthermore,
we will incorporate user feedback to refine the user in-
terface and enhance the system’s overall functionality.

Finally, we aim to develop additional features within
the MR environment, such as the simulation of real-world
therapeutic scenarios and the ability to track the thera-
pists’ performance over time. These advancements will
ensure that our system continues to be a valuable tool for
therapist training and ultimately contributes to improved
patient care.

6. Conclusion
This study have introduced a system for enhancing phys-
ical therapy training through MR simulations of patient-
specific walking motions. By utilizing the HumanML3D
dataset and advanced techniques like RVQ and Masked
Transformers, the system generates realistic impaired
gait patterns from textual descriptions. The system is

aimed to provide therapists with immersive and repeat-
able training experiences, leading to improved diagnostic
accuracy and therapeutic outcomes.

Future work will focus on developing a dataset from
EHR and conducting user studies to assess the system’s
effectiveness in therapist training. Overall, our system
has the potential to significantly improve how therapists
learn and analyze gait impairments.
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