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Abstract
While the Influence Maximization (IM) problem has been extensively studied in graph topologies, with numerous

algorithms and heuristics proposed, there has been relatively little focus on exploring this problem in the context

of hypergraphs, which, despite being more complex, offer greater expressiveness. In this paper, we consider the

current IM scenario considering hypergraph topologies, and we discuss two families of algorithms for the IM

problem. The first family uses node importance measures that are specifically defined for hypergraphs, leveraging

both topological characteristics and concepts from cooperative game theory. The second family addresses the

problem through two well-known metaheuristic approaches, namely, hill climbing and evolution strategy. An

initial experimental evaluation demonstrates that these approaches frequently outperform the leading algorithms

currently proposed in the literature.
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1. Introduction

The advent of social media and viral marketing has highlighted the critical need to understand how

information, behaviors, and innovations propagate through networks. Central to this exploration is

the influence maximization (IM) problem, a key concept in network theory, where the objective is to

identify a group of key individuals in a network whose combined influence is maximized [1, 2]. This

problem has attracted substantial attention in different areas, and its implications are broad, impacting

various applications, including opinion formation, combating misinformation, link recommendations,

and even influencing election outcomes on social networks [3, 4, 5, 6, 7]. The primary goal is to identify

the smallest set of nodes (or seeds) in a graph that can maximize the spread of information under specific

propagation models. Traditionally, the IM problem has been studied within the context of standard

networks with dyadic relationships [2, 8], with the seminal work in [1] establishing hardness results and

introducing an algorithm with a (1− 1/𝑒) approximation guarantee under the independent cascade (IC)

and linear threshold (LT) diffusion models. Over time, a variety of approaches tackling the IM problem

have been developed [9, 10, 11, 12]. However, recent advancements in hypernetwork science, a field that

explores higher-order interactions within complex systems [13], have introduced new opportunities.

Hypergraphs, the primary modeling tool in this field, extend traditional graph theory by enabling

edges (which we now call hyperedges) to connect multiple vertices simultaneously, offering a richer

representation of real-world phenomena. While the IM problem has been extensively studied in ordinary

networks, its adaptation to hypergraphs remains a relatively nascent area of research. Early efforts

focused on transforming hypergraphs into simpler structures, such as bipartite graphs, to leverage

existing algorithms [14]. However, this approach often loses critical information encoded in the higher-

order structure of hypergraphs. The computational challenges of IM in hypergraphs were rigorously
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explored in [15], which demonstrated the problem’s NP-hardness and proposed an approximation

framework with a (1− 1/𝑒− 𝜖) guarantee. Building on this foundation, recent studies have developed

specialized algorithms tailored to specific diffusion models. For instance, [16] introduced heuristics under

the LT diffusion model, while [17] proposed a ranking-based approach for the HyperCascade model.

Algorithms like HADP [18] and MEI [19] have sought to minimize overlap between seeds to enhance

influence spread, though both rely on transforming hypergraphs into simpler graph representations.

Direct approaches to IM on hypergraphs have also gained traction. Similarly, [20] modeled hypergraphs

as electrostatic fields, introducing a novel perspective for assessing node influence. Other contributions,

such as [21], extended message-passing techniques from ordinary networks to hypergraphs, focusing on

collective influence within hyperedges. Research on weighted hypergraphs, as in [22], has introduced

adaptive dissemination models to better capture real-world dynamics. Despite these advancements,

many existing methods either specialize in a single diffusion process or require structural transformations

that limit their generality.

Furthermore, it is worth noting that, to the best of our knowledge, several aspects remain under-

studied in this context. First, traditional types of IM algorithms have yet to be thoroughly explored

for hypergraph topologies. Generally, classical IM approaches are categorized into four main types: (i)
simulation-based, (ii) proxy-based, (iii) sketch-based, and (iv) intelligent optimization-based approaches.

The first category includes algorithms that utilize techniques such as Monte Carlo simulations to model

information propagation across individual nodes. A notable example is the algorithm proposed in [1],

which has also been extended to hypergraph topologies. The second category adopts proxy models

to approximate the influence spread of a given seed set, thereby avoiding potentially time-consuming

simulations. Several algorithms in this category, such as those proposed in [18, 19], have been adapted

for hypergraph topologies. The third category encompasses algorithms that evaluate influence spread

by computing sketches based on the given graph and a specific diffusion model. While some classical

approaches, such as reverse influence sampling, have been explored in the literature [18], their applica-

tion to and formalization for hypergraph topologies remains an ongoing area of research. Finally, the

fourth category involves the use of intelligent optimization algorithms, such as metaheuristic methods,

to address the IM problem. Although a plethora of such approaches have been proposed in the classical

setting, relatively few have been developed specifically for hypergraph topologies [23].

In this discussion paper, we illustrate an ongoing work focusing on the design and development of

two families of approaches for tackling the IM problem on hypergraphs. These include node properties-

based algorithms and metaheuristics-based algorithms. The former involves an algorithm that selects

seed nodes by considering different centrality values, some of them also based on cooperative game

theory. The latter consists of two metaheuristics algorithms based on hill climbing and evolutionary

strategy, respectively. Also, we highlight an initial experimental evaluation, in which these algorithms

are used, and we conclude by discussing several research directions that, in our opinion, are worth to

be studied in the future.

The outline of the paper is as follows. In Section 2, we provide the background definitions and the

problem statement. In Section 3, we discuss the two families of algorithms, and we briefly highlight

an initial experimental evaluation assessing their performance. Finally, in Section 4, we draw our

conclusion and discuss a series of future directions regarding this context.

2. Problem Statement

A hypergraph 𝐻 = (𝑉,𝐸) is a pair consisting of a set 𝑉 = {𝑣1, . . . , 𝑣𝑛} of elements called nodes, and a

family of sets 𝐸 = (𝑒1, . . . , 𝑒𝑚) called hyperedges. A hyperedge represents a relation among a subset

of vertices in 𝑉 , i.e., 𝑒𝑗 ⊆ 𝑉 , for all 𝑗 = 1, . . . ,𝑚. The order of a hypergraph is its number of nodes,

i.e., 𝑛 = |𝑉 |, while the size of a hypergraph is 𝑚 = |𝐸|. A node 𝑣𝑖 ∈ 𝑉 belongs to a hyperedge 𝑒𝑗 ∈ 𝐸
if 𝑣𝑗 ∈ 𝑒𝑗 . The degree of a node 𝑣𝑖 is the number 𝑑(𝑣𝑖) of neighbors of 𝑣𝑖; a node 𝑣𝑙 ∈ 𝑉 is the neighbor

of node 𝑣𝑖 iff there exists at least one hyperedge 𝑒𝑗 which 𝑣𝑙 and 𝑣𝑖 both belong to. The hyperdegree
of a node 𝑣𝑖 is the number 𝑑𝐻(𝑣𝑖) of hyperedges to which 𝑣𝑖 belongs. The line graph 𝐿(𝐻) of 𝐻 is



the graph on node set 𝐸′ = {𝑒′1, . . . , 𝑒′𝑚} and edge set 𝑉 ′ = {{𝑒′𝑖, 𝑒′𝑗} : 𝑒𝑖 ∩ 𝑒𝑗 ̸= ∅ for 𝑖 ̸= 𝑗} [24]. In

other words, 𝐿(𝐻) is the graph where nodes represent the hyperedges, and there is an edge between

two nodes if the two hyperedges share at least one common node in 𝐻 . Furthermore, given a set 𝑉 of

nodes and a function 𝜈 : 2𝑉 → R, that assigns a measure of importance to each subset of nodes, the

Shapley value of 𝑣 ∈ 𝑉 [25] with respect to 𝜈 is defined as the average of the marginal contribution

of 𝑣 to the subsets at which she belongs, i.e., how much she increases the importance of these groups.

The Shapley value can be efficiently computed for the following specific choices of 𝜈 [26], namely: (i)
𝜈𝑑𝑒𝑔(𝑆), that measures the importance of a subset 𝑆 of nodes as its size and the number of neighbors; (ii)

𝜈𝑐𝑙𝑜𝑠𝑒(𝑆), that measures the importance of a subset 𝑆 of nodes as the inverse of the minimum distance

between nodes outside 𝑆 from nodes in 𝑆. Given a hypergraph 𝐻 = (𝑉,𝐸), a value 𝑘 ∈ Z>0, and a

diffusion process model on hypergraph 𝜎𝐻 , the Influence Maximization (IM) problem on hypergraphs

consists in finding a subset 𝑆* ⊆ 𝑉 of 𝑘 nodes, called seed node set, such that the expected number

of infected nodes is maximized. Formally, 𝑆* = argmax𝑆⊆𝑉,|𝑆|=𝑘 𝜎𝐻(𝑆), where 𝜎𝐻(𝑆) indicates the

expected influence (i.e., the number of reached nodes) of the seed node set 𝑆 at the end of the process.

In line with the literature [18, 19], we use the Susceptible-Infected (SI) model with Contact Process (CP)

dynamics on hypergraphs (SICP [18]). In this model, a node can be either in a susceptible (S) or infected

(I) state. An S-state node can be infected by each of its neighbors in the I-state with a given infection

rate 𝛽. The model works as follows: (i) nodes in the seed set are set to be infected (I-state), and the

remaining nodes are susceptible (S-state); (ii) at each time step 𝑡, we find the I-state nodes. For each

I-state node 𝑣𝑖, we find all hyperedges 𝐸𝑖 containing the node 𝑣𝑖. Then, a hyperedge 𝑒𝑗 is chosen from

𝐸𝑖 uniformly at random. Then, each of the S-state nodes in 𝑒𝑗 will be infected by 𝑣𝑖 with probability 𝛽;

(iii) the process terminates after 𝑇 steps, and we set 𝜎𝐻(𝑆) to be the number of nodes in I-state.

3. Algorithms and Results

We discuss two families of algorithms to tackle the IM problem on hypergraphs. The first one consists

of an algorithm called SmartPROPS. It leverages node centrality to construct an optimal seed set, based

on a node property function 𝜑 : 𝑉 → R and a threshold function 𝜌 : 𝑉 → R. The idea behind the

algorithm is to use 𝜑 to sort nodes, and then iteratively select the most important one based on 𝜌, which

ensures that nodes with a considerable number of overlapping hyperedges are discarded. We propose

four different variants of SmartPROPS, namely: (i) SmartDEG, in which the seeds coincide with the

top-𝑘 highest degree nodes [2], and 𝜑 is the degree centrality; (ii) SmartHYPERDEG, similar as the

previous one, it exploits the hyperdegree of each node; (iii) SmartSHAPDEG, the Shapley Degree value,

computed on 𝐿(𝐻), is used as the node property; (iv) SmartSHAPCLOSE, here the Shapley Closeness

is used as the node property instead. The second family of algorithms is metaheuristics-based, and

includes two algorithms, HC and ES. The former is based on a random-restart steepest ascent hill

climbing approach. It is a simple yet powerful and versatile metaheuristic optimization algorithm that

iteratively seeks to improve a solution with respect to a given measure of quality; it has been used

extensively in disparate contexts [27, 28, 29]. The algorithm begins by randomly selecting an initial

solution and iteratively improves it by generating neighbor solutions, via a perturbation function, and

upgrading it accordingly to the calculated expected influence. Eventually, a global best solution is

obtained when no further improvements are possible. Four variants can be defined: HC1, where a node

from 𝑅 is replaced with one of its neighbors chosen randomly from the largest hyperedge containing

the former; HC2, similarly as HC1 but the node to be replaced is the one with the smaller degree value;

HC3 and HC4 replace the node having respectively the smallest Shapley Degree value and the smallest

Shapley Closeness value. Instead, ES draws inspiration from a population-based metaheuristic inspired

by the principles of biological evolution, called evolution strategy [30], and it is based in particular on a

variant called (𝜇+ 𝜆) [31], where 𝜇 is the number of candidate solutions in the parent generation, and

𝜆 is the number of candidate solutions obtained from the parent generation. The algorithm iterates for

a given number of generations. At each generation, the best 𝜇 solutions are kept from the 𝜆 candidates

and their parents. At the start, ES initializes a population of 𝜇 individuals, chosen uniformly at random.
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Figure 1: Expected influence 𝜎𝐻(𝑆) obtained with different values of 𝑘 (from 1 to 25), averaged over
100 runs, and with the SICP parameters being 𝛽 = 0.01 and 𝑇 = 25.

In each generation, the algorithms iterates over 𝜆 to generate the same amounts of new solutions via

a mutation operator. This operator implements the same variations proposed for the HC algorithm,

leading to the ES1, ES2, ES3, and ES4 variants.

We now highlight some preliminary results of the proposed algorithms on eight real-world hyper-

graphs used as benchmarks in the literature [18, 19]. Different baselines are considered, namely, Degree,

Greedy, HADP [18], and Adeff [19]
1
. The first is a common baseline based on selecting the top-𝑘

nodes with the maximal degree. The second one is drawn by the approach in [1], and selects the node

with maximal influence in each iteration. The last two are recently proposed algorithms for the problem.

For the discussed algorithms, we set parameters as follows: for HC, we set the number of restarts to

25, while for ES, we set 𝜇 = 4, 𝜆 = 10, and the maximum number of generations to 25. The obtained

influence spread curve is presented in Figure 1, averaged over 100 runs. For variants, we only show HC1

and ES1. The 𝑥-axis refers to the value of 𝑘, while the 𝑦-axis reports the average expected influence

𝜎𝐻(𝑆). Inside each plot, a smaller one reports the obtained value at 𝑘 = 25. We can see how the

metaheuristics-based algorithms generally perform better than the remaining ones. Also, they achieve

the largest expected influence when 𝑘 = 1. Except for some cases where the Greedy reaches similar

values, no other algorithms perform in the same manner. As far as 𝑘 = 25 is concerned, we observe

almost identical behavior to the previous one. Here, HC1 and ES1 perform effectively, together with the

Greedy one.

4. Conclusion and Future Directions

This discussion paper explores the Influence Maximization (IM) problem within hypergraph topologies,

an area that remains largely understudied despite its significant potential for capturing higher-order

interactions in complex systems. In this paper, we critically discuss two families of algorithms, namely,

(i) node properties-based, (ii) and metaheuristics-based ones, designed to address the challenges of the

IM problem on hypergraph topologies. The first family involves an algorithm that leverages hypergraph-

specific features, such as Shapley-based centrality measures, to select the seed set, while the second one

includes metaheuristics algorithms, and in particular hill climbing and evolutionary strategies, to tackle

the problem. Our initial analysis, supported by experimental observations, provides insight into the

potential of these approaches while highlighting areas where further refinement is needed.

As this is an ongoing effort, several directions for future research emerge. First, we aim to deepen our

understanding of the problem by performing a comprehensive evaluation across diverse hypergraph

structures and diffusion models. This includes investigating settings with different conditions, such

as hypergraphs evolving over time, and hypergraphs presenting weights and other dynamic features.

1

All algorithms have been implemented in Python 3.10



Second, a critical area of future work lies in designing scalable algorithms suitable for large-scale

hypergraphs. Indeed, such algorithms could require exploring parallelization techniques and designing

more efficient heuristics. Furthermore, incorporating adaptive mechanisms to optimize parameter

selection dynamically could improve algorithmic robustness and applicability. Third, an understudied

aspect is investigating practical applications of the IM problem in domains such as social influence cam-

paigns, biological networks, and knowledge graph propagation. Bridging the gap between theoretical

discussions and real-world deployment is essential for demonstrating the utility of hypergraph-based

IM approaches. Finally, future work could also explore the integration of these algorithms with machine

learning models to predict influence spread, potentially combining traditional IM techniques with

data-driven approaches.
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