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Abstract. Sequential pattern mining is a major research field in knowl-
edge discovery and data mining. Thanks to the increasing availability of
transaction data, it is now possible to provide new and improved services
based on users’ and customers’ behavior. However, this puts the citizen’s
privacy at risk. Thus, it is important to develop new privacy-preserving
data mining techniques that do not alter the analysis results significantly.
In this paper we propose a new approach for anonymizing sequential
data by hiding infrequent, and thus potentially sensible, subsequences.
Our approach guarantees that the disclosed data are k-anonymous and
preserve the quality of extracted patterns. An application to a real-world
moving object database is presented, which shows the effectiveness of our
approach also in complex contexts.

1 Introduction

In the last decade, many KDD techniques have been developed that provide
new means for improving personalized services through the discovery of pat-
terns and models which represent typical or unexpected customer’s and user’s
behavior. The exponential growth of available personal data, as well as the re-
finement of data mining techniques, lead to new and intriguing possibilities. On
the other hand, the collection and the disclosure of personal, often sensible, in-
formation increase the risk of citizen’s privacy violation. For this reason, many
recent research works have focused on privacy-preserving data mining [5, 24, 16,
18], proposing novel techniques that allow to extract knowledge while trying to
protect the privacy of users and customers (or respondents) represented in the
data3. This may involve techniques that return anonymized data mining results,
or that provide anonymized datasets to the companies/research institution in
charge of their analysis.

3 In statistics, the problem has been extensively studied in the field of statistical dis-
closure control.



A major and rising field in data mining research concerns the analysis of
sequence databases. User’s actions as well as customer transactions are often
stored together with their timestamps, making the temporal sequentiality of
the events a powerful source of information. For instance, web logs provide the
full activity of each website visitors during each browser session. Moreover, the
spreading of mobile devices, such as mobile phone, GPS devices and RFIDs,
has become a great source of spatio-temporal data. Companies and public in-
stitutions can now study the sequential behavior of their customers/citizens to
improve their offers and services. A lot of advanced techniques have been investi-
gated to extract patterns and models in databases of sequences [4, 27, 23], as well
as in databases of moving objects (trajectories) [13]. For both legal and ethical
reasons, the data owners (or custodians) should not compromise the privacy of
their customers and users, and therefore should reveal as little as possible their
personal sensible information. Hiding personal identifiers, such as personal IDs
or quasi-identifiers (i.e., attributes that can be linked to external information to
re-identify the individual to whom the information refers) may not be sufficient
in the case of sequential data. If a small sequence of actions is easily referable to
a few persons, an attacker may access to the whole action sequences involving
these persons. For instance, if a malicious data user has access to the daylight
city traffic data, and he knows that John Smith often goes from the commercial
zone A to the general hospital B, and the sequence A ⇒ B appears few times
in the dataset, he can easily identify the entire sequence of locations crossed by
John Smith during the day, and guess his daily behavior. Existing k-Anonymity
techniques do not take into consideration the intrinsic sensibility of sequential
data. Some other approaches have been proposed that requires that sensible se-
quences have to be pre-defined [2, 1]. Other approaches use collaborative data
mining techniques [17], or propose to mine models instead of the data [15], but
they do not ensure that sensible sequences can not be extracted.

In this paper, we propose a new technique that provides an anonymized
dataset of sequences, while preserving sequential pattern mining results. We use
a method which combines k-anonymity (the disclosed dataset is such that any
sequence is undistinguishable with at least k − 1 other sequences) and sequence
hiding approaches. Our approach consists in a reformulation of the anonymiza-
tion problem as the problem of hiding k-infrequent sequences, i.e., transforming
the original sequence database in such way that the sequences with support less
than k in the original dataset can not be mined any longer. In the hypothesis
that an attacker knows part of the sequence belonging to a person, and that
s/he also know that this person is present in the database, s/he has a prob-
ability of 1/k of reconstructing the entire sequence. Our approach is formally
defined in the general setting of sequences of items, or events. To illustrate its
effectiveness and practicality in a realistic and complex domain, we put at work
our anonymization technique in the scenario of moving object data analysis,
and applied it to a large-scale, real-life dataset of GPS trajectories of vehicles
with on-board GPS receivers, tracked in the city of Milan, Italy. The results
of our experiments, where we compare the set of sequential patterns obtained



before and after the application of our anonymization technique, show that we
can substantially preserve such frequent sequential patterns, while guaranteeing
that the disclosed data are k-anonymous.

The rest of the paper is organized as follows. Section 2 briefly discusses the
relevant related works on privacy-preserving data mining. Section 3 introduces
and explains our Privacy-Preserving k-Anonymization (P2kA) framework. The
algorithmic details are given in Section 4, together with explanations on a toy
example consisting of a small set of sequences. The experimental results of our
application to a moving object dataset are presented and discussed in Section 5.
Finally, Section 6 concludes.

2 Related works

A lot of recent research works have focused on techniques for privacy-preserving
data mining [5] and for privacy-preserving data publishing. Important techniques
include perturbation, condensation, and data hiding with conceptual reconstruc-
tion. The first step before data publishing is to remove the personally identifying
information. In [24] (and much earlier in statistics by T. Dalenius [9]), it has
been shown that removing personally identifying information is not enough to
protect privacy. In this work, Samarati and Sweeney propose a classification of
the attributes in quasi-identifiers (i.e., attributes that can be linked to external
information to re-identify the individual to whom the information refers, a con-
cept that was already present in [10]), and sensitive attributes. Moreover, they
propose the k-anonymity to generalize the values of quasi-identifier attributes in
each record so that it is indistinguishable with at least k − 1 other records with
respect to the quasi-identifier, Recently, privacy-preserving data mining has been
studied in conjunction with spatio-temporal data and trajectory mining [12, 8].
In the work presented in [3], the authors study the problem of anonymity pre-
serving data publishing in moving objects databases. They propose the notion
of (k, δ)−anonymity for moving objects databases. In particular, this is a novel
concept of k-anonymity based on co-localization that exploits the inherent un-
certainty of the moving objects whereabouts. The k-anonymity notion is also
used in [22], where authors address privacy issues regarding the identification
of individuals in static trajectory datasets. They provide privacy protection by:
(1) first enforcing k-anonymity, meaning every released information refers to at
least k users/trajectories, (2) then reconstructing randomly a representation of
the original dataset from the anonymization. Although it has been shown that
the k-anonymity framework presents some flaws and limitations [20], and that
finding an optimal k-anonymization is NP-hard [6], the k-anonymity model is
still practically relevant and in recent years a large research effort has been
devoted to develop algorithms for k-anonymity [16, 18].

Existing work about anonymity of spatio-temporal moving points has been
mainly developed in the context of location based services (LBS) [21, 26, 14, 7].
Works in [21, 26] use perturbation and obfuscation techniques to de-identify a
given request or a location. In [14], anonymity is enforced on sensitive locations



other than user location points or trajectories. In [7], anonymization process
enforces points referring to same set of users to be anonymized together. How-
ever this work considers the anonymization of a request rather than the whole
trajectory anonymization. In order to preserve the privacy for moving object
data in [1] the authors propose a hiding technique. In particular, they address
the problem of hiding sensitive trajectory patterns from a database of moving
objects. A similar technique is used in [2], where Abul et al. address first the
problem of hiding patterns that are a simple sequence of symbols and then they
extend the proposed framework to the case of sequential patterns according to
the classical definition [5]. A first work attacking the problem of limiting dis-
closure of sensitive rules by reducing their significance, while leaving unaltered
or minimally affecting the significance of others, non-sensitive rules is [6]. One
of the most important contributions of this paper is the proof that finding an
optimal sanitization of a dataset is NP-hard. A heuristic using greedy search
is thus proposed. In the work [11] the objective is to hide individual sensitive
rules instead of all rules produced by some sensitive itemsets. The work in [25]
proposes two distortion-based heuristic techniques for selectively hiding sensitive
rules. An interesting work is presented in [15], where Jacquemont et al. propose
a costless solution to privacy preserving for problems that may be stated as flow
control problems, that is the case of frequent path discovery in Web sites and
frequent route discovery in towns. They propose to model this flow of data in the
form of a weighted automaton, for which they provide a probabilistic solution
to discover frequent patterns (potentially with gaps) under constraints, without
any information about the original data.

Essentially, in our work we present a new anonymization technique for pre-
serving privacy and at same time, preserving also frequent sequential patterns
(FSP) obtained by mining the anonymized data. The basic frequent sequential
pattern problem, originally introduced in [4], is defined over a database of se-
quences D, where each element of each sequence is a time-stamped set of items
— i.e., an itemset. Time-stamps determine the order of elements in the sequence.
Then, the FSP problem consists in finding all the sequences that are frequent in
the database, i.e., appear as subsequence of a large percentage of sequences of
the database. Since its first definition, many algorithms for sequential patterns
have been proposed, from the earliest in [4], to the more recent PrefixSpan [23]
and SPADE [27].

3 Problem Definition

Let L = {l1, l2, . . . , ln} denote a set of items (e.g, spatial locations or regions).
A sequence S = s1s2 . . . sm (si ∈ L) is an ordered list of items, and an item can
occur multiple times in a sequence. A sequence T = t1t2 . . . tw is a subsequence
of S (T ¹ S) if there exist integers 1 ≤ i1 < . . . < iw ≤ m such that ∀1 ≤ j ≤ w
tj = sij . A sequence database D is a set of sequences D = {S1, S2, . . . , SN}.
The support of a sequence T in a database D is the number of sequences in the



database containing T , i.e.:

suppD(T ) = |{S s.t. S ∈ D ∧ T ¹ S}|
Given a support threshold σ, a sequence T is called a σ-frequent sequential pat-
tern in a sequence database D if suppD(T ) ≥ σ. The collection of all σ-frequent
(sequential) patterns in D is denoted by S(D, σ). The set of all subsequences
supported by D is denoted by S(D).

Our goal is to provide an anomymized version of D that preserves as much as
possible the collection of frequent patterns. We use a method which combines k-
anonymity and sequence hiding approaches. Put in other words, we reformulate
the anonymization problem — in the case of sequential data — as the problem of
hiding k-infrequent sequences, i.e., transforming the original sequence database
in such way that the sequences with support less than k in the original dataset
can not be mined any longer. The disclosed dataset is such that any sequence
is undistinguishable with at least k − 1 other sequences. This goal is achieved
by hiding all the subsequences which are not supported by at least k sequences
in the database. Let D′ denote the disclosed dataset. Given a positive integer k,
the disclosed dataset D′ is such that

∑

T∈S(D′)
δ[suppD(T ) < k] · suppD′(T ) = 0

where δ[condition] is the Dirichlet function (which is equal to 1 if condition is
true, 0 otherwise). In this paper we consider that any infrequent subsequence of
items can potentially lead to the identification of the user (respondent). Thus,
we do not need to specify any sensible subsequence preliminarily, as in [2, 1].
Moreover, we want to preserve frequent pattern mining results, in order to let
the analysts investigate over frequent and interesting/unexpected behavior. The
optimal pattern-preserving k-anonymization problem can be formulated
as follows:

Definition 1 (optimal P2kA problem). Given a sequence database D, and
a positive integer k, find a database D′ such that

1. D′ is k-anonymous, i.e.:
∑

T∈S(D′)
δ[suppD(T ) < k] · suppD′(T ) = 0

2. the collection of all k-frequent pattern in D is preserved, i.e.:

S(D′, k) = S(D, k)
∀T ∈ S(D′, k) suppD′(T ) = suppD′(T )

In this paper we present an algorithm which assures that (i)D′ is k-anonymous
and (ii) S(D′, k) and S(D, k) are ”similar”. In particular the second condition
of Definition 1 becomes:

S(D′, k) ⊆ S(D, k)
∀T ∈ S(D′, k) suppD′(T ) ' suppD′(T )



Algorithm 1: BF-P2kA(D, k)
Input: A sequence database D, a minimum support threshold k
Output: A k-anonymous sequence database D′
PT = PrefixTreeConstruction(D);
PT ′ = PTAnonymization(PT , k)
D′ = SequenceGeneration(PT ′);
return D′

Algorithm 2: PTAnonymization(PT , k)
Input: A prefix tree PT , a minimum support threshold k
Output: A k-anonymous prefix tree PT ′
Lcut = ∅;
foreach n in Root(PT ).children do

Lcut = Lcut ∪ TreePruning(n,PT , k);
end
PT ′ = TreeReconstruction(PT ,Lcut);
return PT ′

In the experimental section (see Section 5) we will express this similarity in
terms of two measures which quantify how much the pattern support changes,
and how many frequent pattern we miss. As a preliminary step towards an
”optimal” algorithm, we will show that our algorithm provides good results in
term of pattern similarity (see Section 5), and guarantees that the disclosed
dataset is k-anonymous.

4 The BF-P2kA algorithm

In this section we present our BF-P2kA (Brute Force Pattern-Preserving k-
Anonymization) algorithm (Algorithm 1), which allows to anonymize a dataset
of sequences D. Our approach consists of three steps. During the first step, the
sequences in the input dataset D are used to build a prefix tree PT . The second
step, given a minimum support threshold k, anonymizes the prefix tree. This
means that sequences whose support is less than k are pruned from the prefix
tree. Then part of these infrequent sequences is re-appended in the prefix tree.
The third and last step post-process the anonymized prefix tree, as obtained in
the previous step, to generate the anonymized dataset of sequences D′.

Step I: Prefix Tree Construction The first step of the BF-P2kA algorithm
(Algorithm 1) is the construction of a prefix tree PT , given a list of sequences
D. The created prefix tree is a more compact structure than a list of sequences.
It is defined as a triplet PT = (N , E , Root(PT )), where N is a finite set of
labeled nodes, E is a set of edges and Root(PT ) ∈ N is a fictitious node and
represents the root of the tree. Each node of the tree (except the root) has
exactly one parent and it can be reached through a path, which is a sequence of



Algorithm 3: PrefixTreeConstruction(D)
Input: A sequence database D
Output: A prefix tree PT
foreach T in D do

LP = LongestPrefixSearch(Root(PT ), T );
Append T to LP ;
foreach v in LP do

v.support = v.support + suppD(T );
end
foreach v in T \ LP do

v.support = suppD(T );
end

end
return PT

edges starting with the root node. An example of path for the node d (denoted
P(d,PT )) is the following:

P(d,PT ) = (Root(PT ), a), (a, b), (b, c), (c, d).

Each node v ∈ N , except Root(PT ), has entries in the form 〈id, item,
support, children〉 where:

– id is the identifier of the node v
– item represents an item of a sequence
– support is the support of the sequence represented by the path from Root(PT )

to v
– children is the list of child nodes of v.

The PrefixTreeConstruction algorithm (see Algorithm 3) for each sequence of
items T searches in PT the path which corresponds to the longest prefix of
the sequence T . Next, it appends, to the last node of the longest prefix found,
a branch which represents the remaining elements of T , updating the involved
node attributes accordingly. In particular, it updates the support of each node
belonging to the common prefix by adding the support of the sequence T in D,
and sets the support of the remaining nodes to suppD(T ).

Step II: Prefix Tree Anonymization The main phase of our approach is
the second one. This phase is described by the Tree Anonymization Algorithm
(Algorithm 2). Before describing this algorithm we introduce some notions which
are needed to better explain our method.

Definition 2 (minimum prefix). Let S = s1s2 . . . sn and T = t1t2 . . . tk be
two sequences such that T is a subsequences of S and sp is the first item of S
such that T ¹ s1s2 . . . sp. The sequence S′ = s1 . . . sp is the minimum prefix of
S containing the sub-sequence T .



Algorithm 4: TreePruning(n, PT , k)
Input: A node n, a prefix tree PT , a minimum support threshold k
Output: A list of infrequent sequences Lcut

Lcut = ∅;
if n.support < k then

Lcut = the set of all sequences in PathTree(PT , n);
foreach j ∈ P(n,PT ) do

j.support = j.support− n.support;
end
PT = PT \ the subtree induced by n;

else
foreach j ∈ n.children do

Lcut ∪ TreePruning(j,PT , k);
end

end
return Lcut

Example 1. Let us consider the sequences

S = ABCDECDF
T = ACD

The sequence S′ = ABCD is the minimum prefix of S containing the sub-
sequence T .

Definition 3 (path tree). Let PT be a prefix tree, let n be a node in the prefix
tree PT . The path tree of n in PT (denoted by PathTree(PT , n)) is the sub-
tree induced by the set of nodes belonging to P(n,PT ) plus the subtree induced
by n.

We recall now the well-known notions of Levenshtein distance [19] and Longest
Common Subsequence, which are used in our algorithm.

Definition 4 (Levenshtein distance). Let S and T be two sequences. The
Levenshtein (edit) distance between S and T is given by the minimum num-
ber of operations needed to transform a sequences into the other, where an oper-
ation is an insertion, deletion, or substitution of a single element.

Definition 5. Let T be a set of sequences. The Longest Common Subse-
quence (LCS) is the longest subsequence common to all sequences in T .

The first step of the Algorithm 2 is the pruning of the prefix tree with respect
to the minimum support threshold given in input. This operation is executed
thanks to the TreePruning function (see Algorithm 4). Indeed, this function
modifies the tree by pruning all the infrequent subtrees and updating the sup-
port of the path to the last frequent node. In particular, it visits the tree and,
when the support of a given node n is less than the minimum support thresh-
old k, it computes all the sequences represented by the paths which contain



Algorithm 5: TreeReconstruction(PT , Lcut)
Input: A prefix tree PT , a list of infrequent sequences Lcut

Output: An anonymized reconstructed prefix tree PT ′
foreach distinct S ∈ Lcut do

cand = ClosestLCS(S,PT );
L = the set of nodes in PT belonging to the first minimum prefix
containing cand;
if L is not empty then

foreach node ∈ L do
node.support = node.support + suppLcut(S);

end

end

end
return PT

the node n and which start from the root and reach the leaves of the sub-tree
with root n. Note that for construction each node of this sub-tree has support
less than k. All the computed sequences and their supports are inserted in to
the list Lcut. Next, the subtree with root n is cut from the tree. Therefore, the
procedure TreePruning returns a pruned prefix tree and the list Lcut. After the
pruning step, the algorithm redistributes the infrequent sequences in Lcut into
the pruned tree, using the TreeReconstruction function (see Algorithm 5). In
particular, for each infrequent sequence S in Lcut, it computes the LCS between
S and every sequence represented by the tree. Suppose that T is the sequence
such that the computed LCS is subsequence of T . Thus, the TreeReconstruction
function selects the path of the tree that represents the minimum prefix of T
containing the LCS, and increases the support of the related nodes by adding
the support of S in Lcut. If there are more LCSs having the same length, the
function ClosestLCS function returns the LCS and the sequence in PT such
that the Levenshtein distance between them is minimum. This choice allows to
increase the support of a limited set of nodes not belonging to the LCS, thus
reducing the noise.

Step III: Generation of anonymized sequences PTAnonymization algo-
rithm returns an anonymized prefix tree, i.e., a prefix tree where only k-frequent
subsequences are represented. The third step our method allows to generate
the anonymized dataset D′. This phase is performed by the SequenceGenera-
tion procedure, which visits the anonymized prefix tree and generates all the
represented sequences. Of course, while a sequence is generated the Sequences-
Generation procedure considers the support of this sequence.

We show now that (i) our approach guarantees that the disclosed dataset
D′ is k-anonymous (i.e., patterns whose support is less than k in the original
dataset D are not represented in D′) and (ii) the set of sequential patterns in D′
is a subset of those in D.



s1 A B C D E F
s2 A B C D E F
s3 A B C D E F
s4 A D E F
s5 A D E F
s6 A D E F
s7 B K S
s8 B K
s9 B K
s10 D E J F

(a) A dataset of sequences

s′1 A B C D E F
s′2 A B C D E F
s′3 A B C D E F
s′4 A D E F
s′5 A D E F
s′6 A D E F
s′7 A D E F
s′8 B K
s′9 B K
s′10 B K

(b) Anonymized dataset of sequences

Fig. 1. A toy example

Theorem 1. Let D be a dataset of sequences. Given a minimum support thresh-
old k, the dataset D′ returned by Algorithm 1 satisfies the following conditions:

1. D′ is k-anonymous, i.e.:
∑

T∈S(D′)
δ[suppD(T ) < k] · suppD′(T ) = 0

2. S(D′, k) ⊆ S(D, k)

where S(D, k) and S(D′, k) are the collections of k-frequent patterns respectively
in D and D′

Proof. (sketch)

1. By construction, the pruning step in Algorithm 2 prunes all the subtrees
with support less than k, then the prefix tree PT only contains k-frequent
sequences. Nevertheless, the reconstruction step (see Algorithm 5) does not
change the tree structure of PT , it only increases the support of existing
sequences which are already k-frequent in D. In conclusion, at the end of the
second step of Algorithm 1, the sequential patterns which are represented in
PT ′ are at least k-frequent in D.

2. At the end of the pruning step in Algorithm 2, all infrequent branches in PT
are cut off. However, this could also imply that some k-frequent sequential
patterns are pruned out, if they are only supported by multiple infrequent
paths in the prefix tree PT . Then, the prefix tree PT contains a subset of
the S(D, k). Moreover, as already stated, during the reconstruction step the
tree structure of PT is unchanged, i.e., patterns represented in PT ′ were
still represented in PT after the pruning step. Finally, the set of sequential
patterns supported by D′ is a subset of those supported by D.

Even if our approach does not assure that S(D′, k) = S(D, k), we will show in
Section 5 that the difference between the two sets can be very small in practice.
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Fig. 2. Prefix tree processing

4.1 A running example

We present now an example which shows how our approach works. We consider
the dataset of sequences in Figure 1(a) and a minimum support threshold equal
to 2. During the first phase of our method the PrefixTreeConstruction algorithm
builds the prefix tree depicted in Figure 2(a), which represents the sequences in
a more compact way.

During the anonymization step, the prefix tree is modified by the TreePruning
procedure with respect to the minimum support threshold. In particular, this
procedure searches the tree for all nodes with support less than 2:

<12, S, 1> <13, D, 1>.

Next, it selects the paths that contain these nodes and which start from the
root and reach each leaves belonging to the subtrees of these nodes. Then, it
generates all the sequences represented by these paths and inserts them into the
list Lcut:

(B K S, 1) (D E J F, 1).

Finally, the TreePruning procedure eliminates from the tree the subtrees
induced by the infrequent nodes listed above and updates the support of the



remaining nodes. The prefix tree obtained after the pruning step is shown in the
Figure 2(b).

The infrequent sequences within Lcut are then redistributed in this way:

1. (B K S, 1) increases the support of the following nodes
<10, B, 2> <11, K, 2>

and thus we obtain
<10, B, 3> <11, K, 3>

2. (D E J F, 1) increases the support of the following nodes of the tree
<1, A, 6> <7, D, 3> <8, E, 3> <9, F, 3>

therefore we obtain
<1, A, 7> <7, D, 4> <8, E, 4> <9, F, 4>.

The prefix tree obtained after the anonymization step is shown in Figure 2(c).
Finally, the SequencesGeneration procedure provides the anonymized sequence
dataset shown in Figure 1(b).

5 Experiments & Results

In this section, we present an application to a moving objects dataset. Object
trajectories are first transformed into sequences of crossed locations, and then
processed with our anonymization approach. In the following, we discuss the
results over multiple instances of the original data, for different anonymization
degrees.

5.1 Data Preparation

In this section, we explain the procedure used to obtain the input datasets. We
got a set of GPS trajectories of cars from the european project GeoPKDD4 that
cover a week of traffic in Milan. Essentially, each trajectory is a sequence of
pairs of coordinates x and y with relative timestamp. Obviously, performing our
algorithm over sequences of points is practically useless because it is impossible
to find a set of points that exactly matches enough times for being considered
frequent with respect to any values of k. Thus, to overcome this problem, we use
the definition of Regions of Interest given in [13], where the authors discretize the
working space through a regular grid with cells of small size. Then the density
of each cell is computed by considering each single trajectory and incrementing
the density of all the cells that contain any of its points. Finally a set of RoI’s
is extracted by means of a simple heuristics using a density threshold.

As a result, a set of Roi’s provides a coverage of dense cells through different
sized, disjoint, rectangular regions with some form of local maximality. In par-
ticular, for each region they consider the average density of its cells, instead of
its overall density (which is generally higher), and larger rectangles are preferred
only if they add dense regions.
4 http://www.geopkdd.eu



(a) (b)

Fig. 3. Trajectories and regions.

Once the set of RoI’s has been extracted, we preprocess all the input tra-
jectories translating each one from a sequence of points to a sequence of RoI’s.
The order of visit is maintained by means of timestamps. An example of this
simple procedure of translation is shown in Fig. 3 — on the left we can see all
the trajectories and a set of RoI’s extracted; on the right we show a trajectory
and we evidence which RoI’s it crosses. This new dataset represents the input
dataset for the anonymization algorithm.

The datasets used in our experiments are built using all the trajectories in
the dataset described above with different density thresholds. These values have
been chosen in order to obtain an adequate number of RoI’s, since low density
values correspond to few big regions, and higher values produce few small regions.
In that way, we obtain different sets of RoI’s meaning different sets of items in
the input sequences. Table 1 summarizes the datasets used in our experiments.
Notice that the number of trajectories is different among the datasets because
we lose those trajectories that do not cross any region.

5.2 Results and discussion

Since our goal is to preserve local patterns (i.e., local subsequences) as much
as possible, we compare the collections of pattern extracted before and after
the anonymization process. To measure the similarity between two collection of
patterns, we define two metrics:



Dataset Density threshold N. of Regions N.of Trajectories Avg. Length

1 0.01 113 82341 8.327

2 0.035 31 28663 9.152

3 0.037 21 24995 7.519

4 0.038 16 23744 6.239

5 0.039 10 10604 6.687

6 0.04 8 9213 6.863
Table 1. Input parameter

– SIM1 (Frequent Pattern Support Similarity): defined as

1
|S(D′, σ)|

∑

s∈S(D′,σ)

min{freq(s,D′), freq(s,D)}
max{freq(s,D′), freq(s,D)}

– SIM2 (Frequent Pattern Collection Size Similarity): defined as

min{|S(D′, σ)|, |S(D, σ)|}
max{|S(D′, σ)|, |S(D, σ)|}

All these measures are defined between 0 and 1. When two collections of subse-
quences are identical, the two measures are all equal to 1.

Our experiments were conducted as follows: we first anonymized the six
datasets using values of k between 10 and 1000. Then, for each value of k we
compared the collection of frequent patterns extracted from the original dataset
and the collection extracted from the k-anonymized dataset. In all these exper-
iments, we used PrefixSpan [23] and the minimum support threshold was set
to k.

In Figure 4 we report the results of all the experiments. We were unable to
compare results for k < 50 and k < 200 for the two first datasets, since the re-
lated pattern collections are too huge and then untractable. As expected, some
frequent patterns in D are missing in D′. This is more evident in the first two
datasets (see Figure 4(a) and 4(b)), while for higher density thresholds (Fig-
ure 4(c) to 4(f)) the value of SIM2 is closer to the maximum. This is in part
due to the fact that when data are sparser, the anonymization algorithm tends
to prune more sequences. Concerning the effective support similarity (SIM1),
the results show that the higher the k threshold, the more similar the relative
frequencies. Moreover, the SIM1 measure is quite high in general (the only ex-
ception is for the 0.035 dataset).

It is interesting to notice that, for some datasets, it is possible to identify
an ”optimum” minimum value of k. For instance, if we look at the similarity
measures for the last dataset (see Figure 4(f)), k = 300 that preserves the
number of frequent patterns, as well as their support. For the first dataset (see
Figure 4(a)), two good choices are k = 100 and k = 500. This may possibly help
the data publisher in deciding of a suitable value of k. A possible methodology
would consist in finding the best tradeoff (w.r.t. the application) between the
anonymization degree and the number of preserved patterns.
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Fig. 4. Values of SIM1 and SIM2 for different location datasets



6 Conclusion and future work

In this paper, we introduced a new approach for anonymizing sequential datasets.
Our approach provides k-anonymous data generalizing the sequence hiding ap-
proach. Through an experiment of application to a real-life mobility dataset, we
showed that the proposed technique preserves sequential pattern mining results
both in terms of number of extracted patterns and their support.

Further research will investigate over new approaches to preserve pattern
mining results also in other hard contexts, such as sparse datasets or long se-
quences. One possible strategy might require the usage of a different and more
compact data structure, instead of the prefix tree which is used here. Moreover,
another investigation possibility could be oriented to a relaxed privacy con-
straint. Instead of guaranteeing the full satisfaction of k-anonymity, we could en-
able better pattern mining results despite of a less aggressive (and slightly more
risky) pruning step. Concerning the application to mobility data, our approach
does not consider yet the precious information carried by temporal annotations
as well as the geographical proximity of locations/regions. A deep research ef-
fort will be undertaken to investigate on the possible extension of our approach
towards a comprehensive privacy-preserving spatio-temporal framework.

Acknowledgements The authors wish to thank the anonymous reviewers for
their precious comments, and Roberto Trasarti for his technical support. This
work has been carried out within the European project GeoPKDD, which ac-
knowledges the financial support of the Future and Emerging Technologies (FET)
programme within the Sixth Framework Programme for Research of the Euro-
pean Commission, under FET-Open contract number 014915.

References

1. Osman Abul, Maurizio Atzori, Francesco Bonchi, and Fosca Giannotti. Hiding
sensitive trajectory patterns. In ICDM Workshops, pages 693–698. IEEE Computer
Society, 2007.

2. Osman Abul, Maurizio Atzori, Francesco Bonchi, and Fosca Giannotti. Hiding
sequences. In ICDE Workshops, pages 147–156. IEEE Computer Society, 2007.

3. Osman Abul, Francesco Bonchi, and Mirco Nanni. Never walk alone: Uncertainty
for anonymity in moving objects databases. In ICDE, pages 376–385. IEEE, 2008.

4. R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of ICDE,
1995.

5. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data (SIGMOD
2000), pages 439–450, 2000.

6. M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. S. Verykios. Disclosure
limitation of sensitive rules. In Proceedings of the 1999 IEEE Knowledge and Data
Engineering Exchange Workshop (KDEX’99), pages 45–52, 1999.

7. Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Protecting privacy
against location-based personal identification. In Proceedings VLDB Workshop
SDM 2005, volume 3674 of LNCS, pages 185–199. Springer, 2005.
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15. Stéphanie Jacquemont, François Jacquenet, and Marc Sebban. Sequence mining
without sequences: A new way for privacy preserving. In ICTAI, pages 347–354.
IEEE Computer Society, 2006.

16. Roberto J. Bayardo Jr. and Rakesh Agrawal. Data privacy through optimal k-
anonymization. In ICDE, pages 217–228. IEEE Computer Society, 2005.

17. Seung-Woo Kim, Sanghyun Park, Jung-Im Won, and Sang-Wook Kim. Privacy
preserving data mining of sequential patterns for network traffic data. Inf. Sci.,
178(3):694–713, 2008.

18. Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Mondrian multi-
dimensional k-anonymity. In Ling Liu, Andreas Reuter, Kyu-Young Whang, and
Jianjun Zhang, editors, ICDE, page 25. IEEE Computer Society, 2006.

19. Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

20. Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan
Venkitasubramaniam. L-diversity: Privacy beyond k-anonymity. TKDD, 1(1),
2007.

21. S. Menon, S. Sarkar, and S. Mukherjee. Maximizing accuracy of shared databases
when concealing sensitive patterns. Information Systems Research, 16(3):256–270,
2005.

22. Mehmet Ercan Nergiz, Maurizio Atzori, and Yucel Saygin. Perturbation-driven
anonymization of trajectories. Technical Report 2007-TR-017, ISTI-CNR, Pisa,
Italy, 2007. 10 pages.

23. J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In
ICDE, pages 215–225, 2001.

24. P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
report, SRI International, March 1998.
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