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Abstract

Quantitative ecologists use Bayesian net-
works (BNs) to integrate their collective un-
derstanding of system processes, and to adap-
tively investigate management alternatives.
Consequently, subjective probability assess-
ments are often critical for ecological BNs.
Several published probability elicitation tech-
niques were trialled in development of a pro-
totype ecological BN. These included verbal,
numeric, text and matrix formats. Observa-
tions of the participant’s preferences for and
performances under the different formats are
described and discussed.

1 INTRODUCTION

We wanted to construct a BN collaboratively with the
key end-user group for the domain, namely tropical
seagrass managers and scientists in the Great Barrier
Reef World Heritage Area (GBRWHA), in northeast-
ern Australia. In this region elevated nutrient and
sediments entering the GBRWHA from river flows are
considered one of the most important land-based in-
fluences on the system (Brodie et al. 2007), although
the issue has been contentious (e.g. Starck 2005). A
risk-based approach using BNs was considered way to
tackle these problems in the GBRWHA, however data
scarcity meant that experts were required to provide
some of the probability estimations for the BN.

Given the complexity and data scarcity of most ecolog-
ical systems, significant effort is required to maximise
the extraction of information from available data.
Most data types can be adapted to BN analysis this is
one of the reasons why BNs are so appealing to ecolog-
ical risk practitioners. However, rarely in an ecological
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application are all pertinent relationships represented
adequately, if at all, by empirical data. In these in-
stances machine learning and expert knowledge can
be used to quantify these system relationships with
probabilities. Many elicitation methods are available,
but little guidance exists about how to choose between
them or the biases they may introduce. We used our
need for expert probabilities as an opportunity to in-
formally trial several extant techniques. After intro-
ducing our domain, we describe the methods used, and
our observations of participant responses.

2 THE ECOLOGICAL DOMAIN

The effect of land-based activities on marine ecosys-
tems is a matter of global concern (GESAMP 2001).
With the recognition of these persistent problems also
comes acknowledgement that they cannot be properly
managed without understanding the interdependen-
cies that exist between marine and land-based sys-
tems (GESAMP 2001). This is equally true for coastal
lands draining to the GBRWHA, which extends 2,000
km along the coast (Brodie et al. 2001a). The GBR-
WHA contains approximately 3,000 reefs, large areas
of seagrass and inshore mangrove forests (Brodie et al.
2001a).

The region shown in Figure 1 is primarily agricultural,
covering approximately 410,000 km? of land (Ray-
ment 2005) draining directly into the Great Barrier
Reef lagoon. Agricultural runoff containing soil, nutri-
ents and chemicals drains from catchments into rivers
which discharge into the GBRWHA. Elevated turbid-
ity and nutrients levels have been measured in river
plumes extending from many river mouths into the
lagoon (Devlin et al. 2001b, Brodie et al. 2001b, Fur-
nas 2003), however direct linkages between river water
quality and the health of GBR ecosystems remain dif-
ficult to establish (Crossland et al. 1997).

Seagrasses are among the most productive ecosystems
in the world (Duarte & Chiscano 1999). The global
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Figure 1: Catchments of the Great Barrier Reef World
Heritage Area, indicating the study catchment.

ecosystem services provided by seagrasses have been
valued at US$3.8 trillion per year (Costanza et al.
1997). Seagrasses provide connectivity between man-
groves and reefs (Mumby et al. 2004), habitat and
nursery areas for algae, invertebrates and fish (Heck
Jr. et al. 2003), and are the primary food source of
sea turtles and dugong (Marsh et al. 1999, Aragones
et al. 2006). Dugong and sea turtles are vulnerable to
extinction globally (IUCN 2000) and their protection
in the GBRWHA is a condition that must be met to
maintain World Heritage listing.

Threatened species can be conserved if the ecosystems
they use for food and shelter are protected. Ecological
risk analysis can help identify the biophysical factors
and processes that maintain or threaten the health of
these ecosystems (Hart et al. 2006). However, ecolog-
ical knowledge is notoriously insufficient for most eco-
logical risk analysis applications. This is particularly
true in Australia, where landscapes are vast relative
to the resources available to observe them. Subjective
probability assessments are a critical data source to fill
these gaps.

3 PREPARATION

The difficulties of BN graph-building in the absence of
substantial practical guidance has been acknowledged
in the literature (Neil et al. 2000). However, valuable
contributions to the development and communication
of a coherent ecological BN methodology are increasing
(e.g. Cain 2001, Ticehurst et al. 2007). In particular
the Quantitative Knowledge Engineering of Bayesian
Networks (Q-KEBN) methodology (Woodberry et al.
2004, Pollino et al. 2005) provides a broad frame-
work for parameterising and evaluating BNs. Recent
research has seen the development of a new frame-
work for structural elicitation, and the extension of
the parameter estimation and evaluation phases of the
Q-KEBN method (Thomas et al. 2005, Thomas 2008).

The new framework was applied as follows. A tiered
bottom-up approach was used to simplify a complex
descriptive model to a smaller, more focused model
of roughly half the size. The process worked through
a rough hierarchy of system specificity (primary, sec-
ondary and tertiary factors controlling seagrass ecol-
ogy) to create a graphical model of the system. Graph-
ical modelling was followed by a phase of explicit sim-
plification, then a phase of critical review and verifica-
tion. The simplified model provided a starting point
for parameterisation and refinement tasks. Automated
methods were not used to learn the network struc-
ture. Once the qualitative structural characteristics
were identified, relationships were quantified and pa-
rameterised (Thomas 2008).

Figure 2: Seagrass health and abundance submodel

Six seagrass experts were invited to provide subjective
probabilities over nodes relating directly to their area
of expertise (seagrass ecology). These experts had par-
ticipated in structural elicitation workshops and were
familiar with the BN domain. Details of the inter-
viewing process and examples of the Verbal Elicitor
software (Hope et al. 2002) and probability assess-



ment worksheets supplemented the invitation to par-
ticipate, and three experts accepted and participated
in the interviews. Research shows that three to five
good quality experts are often sufficient for similar,
forecasting, tasks (Clemen & Winkler 1999).

Research also shows that if experts are made aware
of potential biases, and are provided with training
and feedback, the incidence of bias is likely to be re-
duced (Kahneman et al. 1982, Merkhofer 1987, List
2001). Accordingly, seagrass experts were provided
with background material describing how heuristics
and biases can influence subjective judgment. Ma-
terials were also provided that described and placed
nodes in the context of the wider BN, and explained
concepts of causal interaction and independence that
were relevant to later CPT partitioning tasks. Ex-
perts were allowed approximately two weeks to digest
and, if required, clarify the material before committing
themselves to the elicitation process. Experts were in-
terviewed once, individually, in private meeting rooms
at or near their workplaces. All experts were inter-
viewed by the same person.

Training sessions were used at the beginning of each
interview to familiarise experts with BN concepts and
allow them to experiment with all response formats.
Training began with a brief explanation of BN con-
cepts and components. The Animals BN (Norsys
2007) and a domain-relevant BN called Simple Eu-
trophication (Webb unpubl.) were used to demon-
strate how BNs work. The Animals BN is a simple,
qualitative school-level animal classification network
and the Simple Eutrophication BN is a scientific al-
gal bloom generation network — a context familiar to
the experts. Experts used these BNs to test run all
formats except the freehand sketch.

‘Test runs’ started with a two-parent node from Ani-
mals, but the CPTs became progressively more com-
plex as the training continued, moving to the Simple
Eutrophication BN. Experts were provided with an ex-
ample of each elicitation format. Parent and child
node details on these examples had been completed
by the knowledge engineer prior to training, ensuring
that all experts were trained on the same information.
The response areas on the forms had been left blank.
The expert was given a copy of each format and for the
first test run they completed each form with as much
assistance as they requested. Subsequent forms were
provided for remaining examples, and the amount of
assistance was progressively reduced until the experts
were confident enough to use each format unassisted.

The efficacy of the training in reducing bias could not
be measured for practical reasons. Similarly cost and
practicality issues prevented feedback being provided

to experts about the accuracy of their subjective judg-
ments. Each interview took up to eight hours, with
breaks provided every two hours.

4 TOOLS

Five nodes required subjective probabilities to be
provided by experts. Three nodes (Future Seagrass
Biomass, Future Seagrass Health, Dugong Grazing)
had a parent node that also required subjective assess-
ment. Probabilities for these three nodes were elicited
last, ensuring that experts thoroughly understood the
parent variables prior to specifying associated child
node probabilities.

Experts were encouraged to complete as many prob-
ability assessments as possible. To facilitate this, the
coding effort required from experts was reduced using
four strategies, presented below.

1. Start with simpler nodes and work up to more
complex assessments. Effort was made to simplify
the range of state combinations (i.e. the size of
the CPT) of the first nodes that were elicited, so
experts did not become overwhelmed by the time
they came to assess the two critical, and com-
plex, endpoint nodes late in the day. To further
insure that endpoint nodes received sufficient as-
sessment, a rough guide to the amount of time
that could be spent on each node was provided.

2. Reduce the number of assessments to those ly-
ing in critical areas of the distribution. This was
achieved either by eliciting the best, worst and
moderate cases or the 10th, 50th and 90th per-
centile regions of the distribution before gather-
ing everything else in between, or by directing
the experts to complete assessments for the cases
they felt most confident about before contemplat-
ing more difficult assessments.

3. If it became clear that an expert could not com-
plete the task within the session, the most difficult
parent state combinations were set aside entirely
and one child state was omitted from the remain-
ing assessments. Omitted child states were later
completed using a simple default rule requiring
that the probabilities of the child states sum to
one.

4. To provide flexibility in probability coding and re-
sponse tasks, five different response formats were
provided. Prior to training, each format was first
explained. Training began with small and concep-
tually simple nodes.

Experts could use any of the five response formats
provided. The formats used were:



e graph paper for sketching probability distribu-
tions and associated parameters. Domain experts
sketch the distribution they believe best repre-
sents the parent-child relationship, indicating per-
tinent parameter values where appropriate (e.g.
mean, maxima).

e the Verbal Elicitor software (Hope et al. 2002;
Figure 3). This software, based on work in van
der Gaag et al. (1999), allows entry of probabil-
ity values in ordinary English. The domain expert
makes qualitative assessments using a scale with
numerical and verbal anchors, by selecting a ver-
bal cue such as ‘unlikely’ or ‘almost certain’. The
associated numerical probabilities are either set
manually or optimised to minimise probabilistic
incoherency.

o text-scale worksheet (Figure 4). This method is
adapted from van der Gaag et al. (1999). The
knowledge engineer reads aloud the description of
the parent-child state combination. The expert
circles the preferred verbal or numeric anchor, or
slashes the scale axis at a preferred point along it.

e matrix worksheet (Figure 6). This method is
adapted from Laskey & Mahoney (2000). Domain
experts complete the full series of dependent vari-
able state responses, given information provided
on the conditioning variables. A copy of the same
verbal-numeric scale used in the above format was
provided to enable choice between verbal and nu-
meric responses.

e partitioned conditional probability table matri-
ces (Figure 5). Domain experts identified con-
ditioning variable states that would not change
the value of the dependent variable response. A
copy of the same verbal-numeric scale used in the
above format was provided to enable choice be-
tween verbal and numeric responses.

Experts could change response formats between nodes
but were discouraged from changing from one format
to another in the middle of a node assessment. Experts
were given the choice of response format only for nodes
with less than three parents. For nodes with more
than three parents CPT partitioning was used. Ex-
perts were encouraged to use verbal-numeric responses
across all formats but were never constrained to do so.

£ yerbal Network Elicitor
VerbalNet Yerballlap

rBemhicLigm r!" ossDiuron rWaierQual |

Certain

Probahle

Likehs
Fifty-fifty
Unlikely

[Consider that: BiomassLossDiuron is O - 1 and BenthicLight is 0 - 40.
How likely is it that WaterQual is Poor?

Improbable

Impossible

| Next State >> ||1|\||| O

Figure 3: Screenshot from the Verbal Elicitor software
(Hope et al. 2000)

senain T w

{aimest)
prehahle T
7E
licely
gy T+
uriliuely
1o
rpmbatlc 15
{aimai)
irpossiie i

Figure 4: Extract from the text-scale worksheet
(adapted from van der Gaag et al. 1999).

yes low ) L) 0110 probable | improbabe | impossible

yes low Oks 101090 probable | improbabe | impossible
yes low Oks 9010100 probable | improbabe | impossible
yes low Gib15 010 probable | improbabe | impossible
yes low Gib15 101090 probable | improbabe | impossible
yes low G135 9010100 probable | improbabe | impossible
yes low 1510100 0w 10 probable | improbabe | impossible
yes low 1510100 | 101090 probable | improbabe | impossible
yes low 1510100 9010100 probable | improbabe | impossible
yes high L) 0110 probable | improbabe | impossible
yes high 0b35 101090 probable | improbable | impossible
yes high 0b35 9010 100 probable | improbable | impossible
yes high G115 0110 probable | improbable | impossible
yes high G115 101090 probable | improbable | impossible
yes high G115 9010 100 probable | improbable | impossible
yes high 1510100 010 probable | improbabk | impossible
yes high 1510100 | 101090 probable | improbabk | impossible
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Figure 5: The CPT for the Habitat Quality node. A
partition over the Cyclone Scour node is indicated with
double lines



5 OBSERVATIONS ON
ELICITATION PROCESSES

5.1 Biases in approach selection

Zimmer (1984) claims that different presentation
modes put different emphasis on different areas of the
problem-space, and Windschitl and Wells (1995) show
that verbal expressions of uncertainty are more af-
fected by presentation format than are numeric ex-
pressions. Our observations appear to support this,
because in our study the response format appeared
to play a role in probability elicitation results. No
single format was collectively favoured by the experts
over the others. Interestingly, the option to sketch the
node’s probability distribution was never taken up by
experts during elicitation. This might indicate that fa-
miliarising experts with training materials before elic-
itations begin has some benefit. However, the effect
of training on format preference was not tested in this
study so we cannot be sure.

Text-scale worksheets and the VE software were gen-
erally preferred in both the training sessions and dur-
ing elicitations of simple BN nodes. As node relation-
ships became more complex, experts tended to prefer
matrix-style formats and were eventually constrained
to CPT partitioning formats for the final two, complex,
nodes (Future Seagrass Biomass and Future Seagrass
Health). Overall, one expert preferred the VE for-
mat and one preferred the text-scale format using ver-
bal responses. The third expert preferred the matrix
worksheet using numeric responses, stating that scien-
tists were more accustomed to receiving information
in numeric/matrix rather than verbal/text formats.

During training assessments with non-matrix formats
(using VE and the text-scale worksheet) some experts
showed a tendency to prefer positive cues. Answers
were often bunched at the upper end of the verbal
scale, with experts showing preferences for cues such
as ‘likely’ and ‘probable’; and avoiding cues such as
‘unlikely’ or ‘improbable’, even though they were at-
tempting to represent small probabilities.

The pattern was not clearly observed during assess-
ments using probability matrix formats, indicating
that the assessment format may influence experts’
probability allocations. However, when reminded that
parent state combinations presented to them were just
scenarios of possible system responses, experts were
able to refocus their assessment on the child state
again, usually resulting in a different assessment value.

If during an elicitation we noticed the expert having
difficulty allocating probabilities coherently, we tried
using a budget metaphor to explain how probabilities

needed to be distributed in the CPTs. Participants
were told they effectively had 100 probability units for
every parent instantiation. It was explained that this
was like a budget that needed to be completely allo-
cated into all available child states, with the largest
number of units going to the best (most likely) child
state choice for that parent instantiation. This ap-
peared to clarify for the expert the problems that en-
sue under/over-specification, if the probability budget
is not balanced appropriately. This usually happened
during elicitation of the larger CPTs.

Subsequent to these discussions, we observed two
things; 1) probability assessments were completed
faster and with reduced under/over-specification error,
and 2) experts became more inclined to use matrix for-
mats. When matrix formats were adopted in this way,
the expert’s mode of assessment changed from one of
sequential consideration of individual parent-child in-
stantiations to a system where they considered sets of
conditioning parent states to contextualise and itera-
tively re-calibrate their child node assessments on the
fly. The experts appeared to first roughly rank instan-
tiations against the available child states then allocate
or calibrate individual probability allocations accord-
ingly. In this sense the experts appeared to be men-
tally creating their own CPT partitioning systems to
reduce the cognitive burden of large elicitation tasks.

This change of approach resulted in substantially fewer
instances of what we suspect to be a positivity bias (de-
scribed in following sections). These reductions were
observed in both verbal and numeric response types. It
is interesting to note that although one expert initially
continued to use verbal responses when switching from
a text-scale to a matrix format, once s/he started rank-
ing responses as relative probabilities across the child
node, numeric responses were preferred for the remain-
der of the interview. These observations indicate that
provision of greater context may improve probability
estimation. Development of interactive online tools or
better utilisation of the BN GUI itself may help par-
ticipants actively reorganise/rank CPTs and may be a
good first step towards testing these observations more
closely.

5.2 Quantifier effect

Verbal and numeric expressions of quantifiers (few, not
all, some) and probabilities contain rhetorical and per-
spectival information (Moxey & Sanford 2000). Conse-
quently, subtle but powerful information can be com-
municated and so can influence the inferences and re-
sponses of readers.

Moxey & Sanford go on to propose that negative quan-
tifiers like not all put a different perspective on the in-



terpretation of events, which can affect the value judg-
ment placed on the outcome.

They give the following example:

“(10) There is a small probability of death, which is
a good*/bad thing.

(10%) Tt is improbable that anyone will die, which is
a good/bad* thing.

(11) There is a small risk of death, which is a
good* /bad thing.

(11°) There is an insignificant risk of death, which is
a good/bad* thing.”

In this example an asterisk denotes an unacceptable re-
sponse. Moxey & Sanford (2000) suggest that negative
quantifiers invite the reader or listener to presuppose
that things are more probable or risky than they actu-
ally are. This pattern is consistent regardless of how
much confidence is being expressed (e.g. not quite cer-
tain vs. small probability; Moxey & Sanford (2000)).

If the phrasing of conditioning statements can affect
the perspectives and inferences of the participants,
then the reasoning processes they use to generate prob-
ability assessments are also likely to be affected. This
may have implications for BN knowledge engineers, be-
cause the example above is an inverse representation of
the kind of conditioning statements used in probabil-
ity elicitation for BNs. Rephrased as a BN elicitation
query of the type used in recent research, the state-
ment could read something like;

“If blood alcohol level is low and the speed
of the car is low, the probability of death is
”

with participants required to complete the statement
with the most accurate of the probability expressions
offered. It is difficult to differentiate instances of the
quantifier effect from positivity bias, which is discussed
in the following section. Examples of possible in-
stances of the quantifier effect are described in the
following section on positivity bias.

5.3 Positivity bias

Teigen & Brun (2003) have shown that participants
choose verbal probability phrases to correspond with
the linguistic rather than the numeric content of pre-
sented information. Their experiments show that sen-
tences containing positive quantifiers — phrases with
positive directionality — will tend to receive posi-
tively framed responses, indicating that probability es-
timates are influenced by the way the conditioning in-
formation is presented.

Participants choose verbal phrases as a function of
their frame; if they want to affirm that a particular
outcome could in fact occur then they will use a term
with positive directionality (e.g. ‘possible’, at the up-
per end of the verbal scale) but if the purpose is to
draw attention to an events non-occurrence then a neg-
ative phrase (e.g. ‘improbable’, at the lower end of the
scale) will be chosen (Teigen & Brun 2003). This may
be because the phrases used in the text-scale work-
sheets and the VE software both request participants
to determine “how likely” a certain response is given
certain conditions. The word ‘likely’ creates a positive
frame for the parent-child state combination requiring
assessment. Positive frames may encourage positivity
bias; a general readiness of participants to prefer pos-
itive over negative descriptive terms, as if positivity is
the rule and negativity must be treated as an exception
(Teigen & Brun 1995).

It may be possible to reduce positive framing by omit-
ting the word ‘likely’ and presenting the parent-child
state combination as a factual statement against which
the expert applies a probability;

“When [parent node 1] is in [state 1] and [par-
ent node 2] is in [state 1], [child node] is [state
3]. What is the chance that this is true?”

This will be tested in future case studies. To our
knowledge the presence of positivity bias in probabil-
ity elicitation for BNs has not been tested directly,
and may not be adequately controlled for in extant
BN elicitation techniques or formats. However our ob-
servations may provide some evidence that these biases
can be reduced.

For example, matrix formats (Figures 5 and 6) present
experts with the entire set of parent-child state com-
binations all at once. So instead of considering each
parent-child state combination in isolation, experts
can choose to view sets of conditioning (parent) states,
including the full range of possible responses (child)
states across which the entirety of the ‘probability bud-
get’ must be allocated. This has the advantage of mak-
ing the assessment context explicit. Matrix formats
may therefore provide a mechanism for participants to
frame assessment requests more broadly.

5.4 Overconfidence/uncertainty avoidance

Although the apparent positivity bias was fairly easily
observed, we believe a different bias was also observed
during elicitations. Some experts expressed aversion
to the absoluteness of the words ‘certain’ and ‘impos-
sible’ because, in the words of one expert “nothing
is certain in ecology”. However, when allowed to use
numeric probabilities, the same expert still responded



with 1 (certain) and O (impossible) values. Expres-
sions of absolute certainty were also common in ver-
bal responses. The result suggests that these experts
may also be displaying overconfidence. There were
many probabilities at the very high or very low end
of the spectrum (near 1 or 0), and instances of com-
plete disagreement were observed; where one expert
assessed a parent-child state combination as ‘certain’
and a different expert assessed the same combination
as ‘impossible’ (divergences between experts’ assess-
ments are discussed in more detail in the following
section). This observation is similar to that described
by Keren & Teigen (2001) as ‘the principle of definitive
predictions’,; or ‘uncertainty avoidance’, where only ex-
treme probabilities are used in responses because par-
ticipants wish to appear quite clear about what will
happen next.

5.5 Aggregating expert results

Subsequent to the elicitation processes described in
this paper, we aggregated (averaged) subjective prob-
abilities and evaluated the responses in two ways.
Divergences between experts’ probability assessments
were analysed using the relative standard deviation
of the average value and the Bhattacharyya distance
measure (Bhattacharyya 1943).

These techniques allowed the experts, nodes and
node elements for which disagreement occurred most
strongly to be identified. This is necessary so that
conflicting assessments can be investigated collabora-
tively with participants to resolve whether the causes
are clerical errors or mismatching assumptions about
context —in which case the distances could be expected
to diminish, or if the cause of the differences is due
to contrasting conceptual models among experts — in
which case structural modificatifation may be required
and parallel models developed.

Further, the technique showed that although each ex-
pert provided different distributions, differences across
experts occurred in equal measure. A demonstrated
lack of systematic bias among experts indicated that
averaging was an appropriate aggregation technique.
Details of this research are reported in Thomas (2008).

6 CONCLUDING REMARKS

There is currently little guidance about how to choose
between subjective elicitation methods. Preferences
and responses of ecological managers and scientists
were informally field-trialled using a selection of prob-
ability elicitation formats. Expert’s format preferences
appeared to be influenced by their familiarity with the
format and the complexity of the elicitation problem.

Our observations indicate that none of the trialled
techniques are likely to be completely impervious to
bias and overconfidence. Positively framed text-based
descriptions of parent-child state combinations may
have contributed to the observed bias.
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Figure 6: Example matrix worksheet, adapted from

Laskey & Mahoney (2000).



