
Towards Adaptive Service Development

Aries Tao Tao
supervised by Jian Yang
{tao, jian}@ics.mq.edi.au

Computing Department, Macquarie University, Australia
http://www.mq.edu.au

Abstract. In the dynamic e-Business environment, it is desirable for a
service to meet the requirements of different users. The current available
technologies rather supports a service with a single fixed business process
without considering user needs. Such design makes it difficult for user
to integrate the provided service, hence obstruct the service provider to
expand the business. In this paper we proposed an alternative service
design method - Adaptive Service Design. Inspired by the concept of
Abstraction and Polymorphism in Object Oriented Computing, service
adaptation allows an Abstract Business Process class to be configured by
Policy and user required interface, hence dynamically generate multiple
business processes to meet different user interaction requirements.

Key words: service differentiation, service adaptation, matchmaking

1 Introduction

While improvement in Service Oriented Computing (SOC) has proved effective
for integration at lower levels (e.g. wrap traditional software component up to
be service), service integration through service interface is till a challenge due
to the heterogeneity of service specification. Service interface is a specification
for user (client program) to interact with the service. It is supported by under-
lying business process(es), and consisted of activities which are implemented by
corresponding tasks of the business processes.

In e-business world, it is common for a set of service consumer with similar
service requirements to have different interfaces. The differences could be caused
either by user contexts [1] (1) at business level such as different physical lo-
cations, market conditions, policy regulations, competitive threats, or by service
implementation (2) at application levels such as different message formats or
sequences. All of these situations and more drive the need for a service design
which enable the service provider to respond quickly in support of diverse service
users’ requirements.

On the other hand, ignoring the user heterogeneity, the current service is
designed to be context free which supports the fixed monolithic business process
and interface to all users. This inflexible design makes it difficult for service con-
sumer to perform service integration with the provided service, hence obstruct



the service provider to expand the business. SOC research community has been
aware of the issue. The solutions are proposed which mainly use process match-
making [2] to identify the mismatch patterns, and adapter [3] to overcome the
mismatch. However, as functionality of adapter is to split/combine messages
or swap message sequences, such solution only resolve the certain mismatch at
application level.

To overcome the problem with current service design, we propose a new
design that supports policy negotiation, process modification, and interface al-
ternation according to use needs, hence cater service to quickly adapt to diver
service consumer requirements. We refer this design as Adaptive Service De-
sign (ASD). An User Adaptation mechanism is developed based on ASD which
enables the service provider to:

– identify user functionality and interaction requirements from the user’s in-
terface.

– dynamically generate the business process and service interface to meet the
specific requirements.

The basic design philosophy of ours, and one that distinguishes us from oth-
ers, is that the ASD supports service provider to easily vary the policy, business
process and service interface to dynamically adapt different user integration re-
quirements in terms of functionality and interaction patterns.

This paper is organized as follows: Section 2 discusses the related work. The
structure of Adaptive Service Design (DSD) are specified in Section 3. We finally
concludes our work in section 4.

2 Related Work

The related work can be divided in following areas: (1) Service Description which
focuses on enriching the service interface for user accessibility; (2) Service Dif-
ferentiation which supports services to provide different functionalities to users;
(3) Service Matchmaking which allows the mismatches between provided service
and user required services to be identified; (4) Service Adaptation overcomes the
mismatches identified by the Service Matchmaking.

We now look at the work that has been done in the area of service interface
design. Chiu et al [4] presented a meta-model for service interface as workflow
views, which provided a novel approach to derive workflow view from a workflow.
By abstracting service interface as a subset of service, it allows internal infor-
mation to be hidden from external users. However, the work only focused on ab-
stracting a single service interface. In order to support users playing different role
in Business Collaboration, Zhao et al [5] proposed the concept of relative work-
flow view by explicitly specifying visibility constraints (Invisible, Traceable,and
Contactable) on activities of workflow. Based on different visibility constraint for
different users over the same workflow, multiple relative workflow views could be
derived for different users that have different relationship with the service (e.g.
the retailer service has different relationship with customer and wholesaler).



The idea of applying the concept of differentiation in software filed was firstly
proposed by Kang et al [6] in the study of Feature-Oriented Domain Analysis
which was based on Abstraction and Refinement in a domain. In their work, Ab-
straction represented generic domain products; Refinement was used to extend
the Abstraction to support different domain applications. Cao et al [7] further
extended the work in Feature-Oriented Domain Analysis by providing an al-
gorithm to automate abstraction refinement. The idea of service differentiation
(DiffServ) was firstly proposed in the area of managing traffic streams in net-
working applications [8]. For example, certain traffic is treated better than the
others in terms of faster handling, more average bandwidth, and lower average
loss rate. Veryard [9] argued that the differentiated services should be used as a
design pattern in SOC area. He pointed out the need for service differentiation in
E-business using an airport example - the airport service needs to meet different
requirements of passengers in terms of security, performance and etc. However,
no design method is provided to realize the service differentiation. In our pre-
vious work [10] [1], a Differentiated Service Design that use policy to control
the service to provide differentiated functionalities to users, hence realize service
differentiation.

Wombacher et al [2] used finite state machine based model to describe service
interface, a matchmaking algorithm was provided based on the model to identify
if provided interface is compatible with the user required interface. However,
simply showing compatible (or incompatible) is insufficient to help resolve the
mismatches. Benatallah et al [11] [12] further classified the compatibility into
several categories. Aalst et al [13] define the conformance of service behavior
based on fitness and appropriateness. All these work provides a foundation to
service adaptation which overcomes the incompatibilities identified.

Based on the matchmaking research work been done, Benatallah et al [14]
[15] [3] developed adapter based mechanisms that split/combine messages or
swap message sequences to resolve certain types of mismatches. Because the
adapter is developed only based on the interfaces, it can not support policy
negotiation or process modification to overcome mismatches at policy or process
level. Using a totally different approach, we propose Adaptive Service Design
(ASD) for service provider. The ASD supports policy negotiation and process
modification to overcome the mismatches that can not be resolved by adapters.

3 Adaptive Service Design

Instead of supporting a service with one monolithic business process and single
service interface, our design method is to separate the generic tasks that are
available to all users from the specific tasks with certain context dependent re-
quirements. The design consists of four components: Abstract Business Process,
Policy, Policy Configured Business Process (PCBP) and User Oriented Business
Process (UOBP).

Abstract Business Process (ABP) consists of a set of activities and relevant
edges linking between activities. There are two types of activities: (1) concrete



activity that actually performs general tasks for all users; and (2) abstract activity
that executes different tasks or even execute different processes depending on
Policy. Abstract activities are linked to Policy which defines how contexts aware
tasks (or processes) should be performed.

Policy provides the mappings between usage contexts and tasks (or external
business processes). Take online shopping service as an example, in the Check-
out process, the ”customer profile” as an usage context can be retrieved from
the ”login” activity. By applying ’provide discount’ policy, ”VIP customer” will
get further 15% discount by invoking the ’offer 15% discount’ task. Depending
on the usage context values, the policy determines how to plug different tasks
(or business processes) into the ABP, and generate Policy Configured Business
Processes (PCBP) which perform different business functions.

After introducing the basic elements of ABP and Policy in the previous
sections, we can now provide a complete picture of how a ’concrete’ business
process - Policy Configured Business Process (PCBP), is generated. As discussed
before, an ABP is a process that contains abstract activities, which refer to policy
templates. A template consists of a set of mappings between context values
and business processes (or tasks in a simple situation). The number of tuples
(mappings) in a template determines the number of tasks can be performed
for the corresponding abstract activity. By replacing all the abstract activities
in ABP with policy specified tasks that come with different context conditions,
multiple PCBPs can be generated. PCBPs support users with different functions,
and thus realizes differentiated services based on usage contexts. For example,
in Checkout process, the loyal customer and normal customer will be supported
by different Context Configured Business Processes. We regard the process the
generate different PCBPs as Service Differentiation. The details of the Service
Differentiation can be found in our previous work [1].

Currently we are focus on constructing a mechanism to derive User Oriented
Business Process (UOBP) based on PCBP for User Required Interface (URI).
Each UOBP corresponds to one URI, it is totally compatible with the specific
URI. The mechanism consists of three steps:

1. Generating User Service Interface Execution Paths. In this step a infinite set
of execution paths [2] can be derived from the user service interface.

2. Each execution path will be matched by the PCBP. If there is any mismatch,
the mismatch would be identified as one of followings: message mismatch,
process mismatch, and policy mismatch. Solutions as adapter development,
process modification and policy negotiation would be suggested correspond-
ingly to resolve the mismatch. An Adaptation Effort List is hence derived
to illustrate the total amount work needs to be done in order to adapt the
specific execution paths.

3. An Adaptation Effort Tree can be derived by combining all the Adaptation
Effort Lists for the execution paths. The tree illustrate the total work needs
to be done to adapt the how service interface. User could also choose only
certain branches of the Adaptation Effort Tree to partially adapt the user
service interface.



4 Conclusion

Service users or applications can often have the same goal but different interac-
tion requirements. In this paper, we proposed and argued the need for service
adaptation to serve the purpose mentioned above. We believe the adaptive ser-
vice should dynamically derive multiple User Oriented Business Processes for
different users required interfaces. The design is related with following research
areas: service description, service differentiation, service matchmaking and ser-
vice adaptation.

References

1. Tao, A.T., Yang, J.: Context aware differentiated services development with con-
figurable business processes. In: EDOC, IEEE Computer Society (2007) 241–252

2. Wombacher, A., Mahleko, B., Neuhold, E.J.: Ipsi-pf - a business process match-
making engine based on annotated finite state automata. Inf. Syst. E-Business
Management 3(2) (2005) 127–150

3. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In Williamson, C.L., Zurko, M.E.,
Patel-Schneider, P.F., Shenoy, P.J., eds.: WWW, ACM (2007) 993–1002

4. Chiu, D.K.W., Cheung, S.C., Karlapalem, K., Li, Q., Till, S.: Workflow view driven
cross-organizational interoperability in a web-service environment. In Bussler, C.,
Hull, R., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J., eds.: WES. Volume
2512 of Lecture Notes in Computer Science., Springer (2002) 41–56

5. Zhao, X., Liu, C., Yang, Y.: An organisational perspective on collaborative business
processes. In van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F., eds.:
Business Process Management. Volume 3649., Springer (2005) 17–31

6. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Uni-
versity Software Engineering Institute (November 1990)

7. Cao, F., Bryant, B.R., Burt, C.C., Huang, Z., Raje, R.R., Olson, A.M., Auguston,
M.: Automating feature-oriented domain analysis. In Al-Ani, B., Arabnia, H.R.,
Mun, Y., eds.: Software Engineering Research and Practice, CSREA Press (2003)
944–949

8. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: Rfc247: An
architecture for differentiated services. Available from: http://rfc.net/rfc2475.html
(1998)

9. Veryard, R.: Design pattern: Differentiated service (fewer interfaces than compo-
nents). CBDI (December 2000)

10. Tao, A.T., Yang, J.: Supporting differentiated services with configurable business
processes. In: ICWS, IEEE Computer Society (2007) 1088–1095

11. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: Compatibility and replaceability
analysis for timed web service protocols. In Benzaken, V., ed.: 21èmes Journées
Bases de Données Avancées, BDA 2005, Saint Malo, 17-20 octobre 2005, Actes
(Informal Proceedings)(BDA). (2005)

12. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-grained compatibility and
replaceability analysis of timed web service protocols. In Parent, C., Schewe, K.D.,
Storey, V.C., Thalheim, B., eds.: Conceptual Modeling - ER 2007, 26th Interna-
tional Conference on Conceptual Modeling, Auckland, New Zealand, November



5-9, 2007, Proceedings (ER). Volume 4801 of Lecture Notes in Computer Science.,
Springer (2007) 599–614

13. van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, E.: Con-
formance checking of service behavior. ACM Trans. Internet Techn. 8(3) (2008)

14. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing
adapters for web services integration. In Pastor, O., e Cunha, J.F., eds.: Ad-
vanced Information Systems Engineering, 17th International Conference, CAiSE
2005, Porto, Portugal, June 13-17, 2005, Proceedings (CAiSE). Volume 3520 of
Lecture Notes in Computer Science., Springer (2005) 415–429

15. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An aspect-oriented
framework for service adaptation. In Dan, A., Lamersdorf, W., eds.: ICSOC. Vol-
ume 4294 of Lecture Notes in Computer Science., Springer (2006) 15–26


