
Designing a Development Environment for
Logic and Multi-Paradigm Programming

Giulio Piancastelli1 and Enrico Denti2

1 DEIS – Alma Mater Studiorum – Università di Bologna
via Venezia 52, I-47023 Cesena, FC, Italy

2 DEIS – Alma Mater Studiorum – Università di Bologna
v.le Risorgimento 2, I-40136 Bologna, BO, Italy

Abstract. The Eclipse platform has been extended to provide inte-
grated development environments for many different languages and sys-
tems. Declarative programming, however, and in particular logic lan-
guages, has still to benefit from the state-of-the-art Eclipse infrastruc-
ture supporting a huge number of development activities. We set out to
design an environment for logic programming built around tuProlog, a
Java-based light-weight Prolog engine that provides seamless integration
into the platform and promotes an innovative form of interaction with
the interpreter, allowing a multiplicity of independently configurable in-
stances to be exploited within the same project. Moreover, we use the
Java/Prolog multi-paradigm capabilities of tuProlog as a case study for
discussing the integration of two different programming languages in a
single environment. Finally, we compare our environment to some related
projects in the logic programming context.

1 Motivation and Background

Eclipse is well-known as an open and extensible integrated development environ-
ment (IDE) [1] supporting many languages and systems with varying degree of
quality and completeness—from Java and C/C++ with official Eclipse packag-
ing and download, to scripting languages such as Python and Web programming
languages such as PHP, up to niche languages such as Fortran, directly incubated
within the Eclipse Foundation. However, languages inspired to the declarative
programming paradigm, and in particular logic programming languages such as
Prolog, have still to benefit from the extensive support given by the Eclipse
platform to build full-fledged open source development environments.

Indeed, among the major Prolog implementations [2], the interaction with
the interpreter is typically reduced to a command line prompt in a text-based
console, with no support for writing simple programs or more complex software;
when an editor is available, it often suffers from the many limitations and short-
comings of in-house applications, each being rebuilt from scratch and following
its own conventions; useful and innovative tools are provided only in few rare
cases. Instead, building an IDE on top of Eclipse would mean not only to exploit



a state-of-the-art infrastructure for the support of a huge number of program-
ming activities, but also to follow a series of user interface standards and usage
workflow guidelines that should ease the impact of the tool on developers and
make them feel more comfortable working with it.

The purpose of our research is to build a development environment for
both logic and multi-paradigm logic/object-oriented programming on top of the
Eclipse platform. To this aim, we mean to exploit tuProlog,3 an open source
light-weight Prolog engine, as a case study to analyse and evaluate the many pe-
culiarities of the integration of a logic-based language and support within Eclipse.
We chose tuProlog both because it is written in Java, thus representing the eas-
iest choice for platform integration, and for its engineering properties, which
seemed ideal to explore innovative forms of interaction with the interpreter: in
particular, minimality and configurability [3] let developers spawn a multiplicity
of tuProlog engines, each with its own set of libraries and theories, within the
same Prolog project, with the aim of exploring, tracing, or comparing different
programming solutions. Moreover, multi-paradigm Java/Prolog support on the
tuProlog side [4] calls for an adequate counterpart on the development environ-
ment side, introducing further requirements that a high quality instrument such
as the JDT (Java Development Tools) plug-in helped satisfy.

In this paper, we discuss the features, the objectives, and the design of such
a logic-based multi-paradigm IDE: we first present the design of the whole en-
vironment supporting multi-paradigm Java/Prolog programming (Sect. 2), then
illustrate the different parts composing the current prototype for the logic side of
the IDE, emphasising the innovative way of interacting with multiple tuProlog
engines embedded in Eclipse (Sect. 3); finally, we briefly discuss some related
projects (Sect. 4), and draw some conclusions for future work (Sect. 5).

2 An Environment for Multi-Paradigm Programming

A programming paradigm is a style to represent and organize computations.
For example, logic programming [5] realises computations as deductions over a
knowledge base formed by facts (also known as extensional knowledge) and rules
(intensional knowledge) representing relations on which queries can be issued;
object-oriented programming [6] organises computational activities into hierar-
chies of entities (objects) which encapsulate state and methods to manipulate
it. Multi-paradigm programming is the integration of two or more paradigms in
a unique model [7] that may be realised within a single language by following a
multi-style approach, or within a system by following a multi-language approach.

tuProlog supports multi-paradigm programming by integrating the logic and
object-oriented paradigms of Prolog and Java at two different levels [4]: at the
system level, where Java and Prolog can be combined to build tuProlog libraries,
which can therefore be designed taking the best of both worlds; and at the
application level, where bidirectional Java/Prolog integration can enable both

3 http://tuprolog.alice.unibo.it



Java items to be effectively accessed from a Prolog program and Prolog engines
to be dynamically exploited from a Java program.

Multi-paradigm programming achieved by integrating two or more languages
needs to be directly supported in its own right by a development environment,
next to tools provided for the combined languages on their own. In the case of
tuProlog, the integration at the application level is managed by the environments
dedicated to each language, granting access to Java resources on the Prolog side
and to Prolog engines on the Java side. Instead, the combination of Java and
Prolog at the system level needs to be explicitly supported as a multi-paradigm
programming feature in an IDE, supporting the creation of libraries and making
them available within the environment. Thus, an IDE designed to enable multi-
paradigm Java/Prolog programming based on tuProlog has to supply tools for:
(i) Java development; (ii) Prolog development; (iii) supporting the integration
of the two languages by exploiting the tuProlog library mechanism.

The Java Development Tools (JDT) available within the Eclipse platform
already deliver a set of high quality instruments that help developers deal with
the many activities of Java programming. On the Prolog side, the objective is to
provide a comparable set of tools for tasks related to logic programming. Such a
set would include wizards for the creation of the basic building blocks of Prolog
software: new projects, as containers of all the resources needed for a certain
application; new logic theories/modules, and new predicates that would also
possibly need a visibility indicator in order to be imported/exported. Modules
and theories need to be navigated with ease independently from the amount
of code they contain: for this purpose, an outline view should provide a list of
defined predicates (further subdivided in facts and rules) next to another view
integrating cross-reference functionalities, so as to allow developers to reach the
clauses of a predicate used in a theory but possibly defined in a different module.

Editing Prolog programs should be supported by syntax highlighting, and by
a code completion feature triggered to automatically enter the invocation of a
predicate and step through the insertion of parameters by means of a template.
General useful mechanisms for code editing include checking for predicates de-
fined in some module but not used anywhere in the application, and for invoked
predicates that have never been defined, alongside automatic importing manage-
ment for any given theory. Syntax errors and possible suggestions for corrections
should be indicated on the fly, while the developer is typing code in the editor.
Among syntax warnings, specific logic programming issues should be considered,
such as the use of singleton variables in the definition of a predicate clause.

More advanced features include refactoring and debugging. Refactoring is a
technique for improving code design without altering its external behaviour; such
technique is a preliminary step to take before performing changes required to
add new functionalities or improve efficiency [8]. From the object-oriented field,
this practice recently came to prominence for Prolog programming [9]. Similarly
to the JDT, Prolog development tools should include a facility to automate code
refactoring, from simple renaming to predicate extraction, up to more complex
transformations involving cut, if-then-else, and unification. Debugging should



Fig. 1. The design of Java/Prolog multi-paradigm environment based on the Eclipse
platform. Components of the final tuProlog plug-in are underlined by white background.

exploit the instruments supplied by the Eclipse platform to improve the current
state of inspection and manipulation of the demonstration process, also allowing
dynamic configuration of the tool, possibly by means of a special logic theory.

The Java/Prolog multi-paradigm programming support has to be placed on
top of the JDT and the above-cited set of Prolog development tools. The inte-
gration between the Java side and the Prolog side of the environment needs to
be first performed at the nature level. A nature is used to configure the capa-
bilities of a project, typically to associate behaviour and functionalities in the
form of builders that process modified files at specific times [10]. The Eclipse
concept of natures is the straightforward counterpart of the multiple traits of a
programming system involving more than one paradigm. Accordingly, next to
the Java and Prolog nature in a multi-paradigm project, we need to provide an
additional nature to carry out tasks belonging to the special hybrid quality of
the project. In the case of tuProlog projects, one such task is to make the Java
libraries under development immediately available on the Prolog programming
side, without forcing the user to explicitly deal with classpath settings. Multi-
paradigm support is further pursued by wizards and templates for creating new
Java/Prolog libraries and new predicates, functors, directives, operators within
the library. Moreover, an outline view of a hybrid library should show its contents
as a list of logic programming elements rather than Java fields and methods.

The abstract design of the integrated development environment is presented
in Fig. 1. The software shall be delivered in two different but integrated sets of
plug-ins: the Prolog development tools form an environment for Prolog program-
ming on their own, and should be made available both as an Eclipse plug-in and
as a Rich Client Platform application, in order to deploy only the minimal set



of Eclipse features to users interested only in Prolog applications; the tuProlog
plug-in, comprising the Prolog tools and the multi-paradigm Java/Prolog func-
tionalities based on tuProlog, has to be deployed only as a platform extension,
so as to exploit the JDT already bundled with the standard Eclipse download.

3 The tuProlog Plug-In for Eclipse

The current prototype of the tuProlog plug-in for Eclipse is composed of a single
feature comprising three different components:

– alice.tuprolog makes tuProlog available as a software library within the
platform, as suggested by Eclipse plug-in development best practices [10]

– alice.tuprologx.eclipse contains everything related to the interaction
between tuProlog and Eclipse, including the user interface

– alice.tuprologx.eclipse.doc integrates documentation, in the form of a
getting started guide for the plug-in and relevant parts of the tuProlog guide,
with the Eclipse help system

The alice.tuprologx.eclipse component realises platform integration by the
typical elements taken from the Eclipse framework: it provides a perspective, two
wizards to help creating projects and logic theories that can be also invoked from
buttons in a toolbar, a nature and a builder associated to Prolog projects, an ed-
itor with syntax highlighting and a basic form of syntax checking for the Prolog
language, launch configurations to execute queries, property pages to change ed-
itor options and manage the possibly many tuProlog engines associated with a
single project. The component also provides four views to display information
related to Prolog development and the execution of Prolog programs:

– the Clause view accesses the AST of the Prolog program in the selected
editor buffer to show its outline in terms of clauses identified by their head;

– the Theory view displays at a glance the content of all the tuProlog engines
associated with the current project in terms of logic theories;

– the Query view provides the history of the logic queries asked within the
context of the current project;

– the tuProlog Console view allows to select one of the possibly many tuProlog
engines that have been asked a query and see the solution, output text, and
tracing information derived by standard predicates such as spy/0.

3.1 Interaction with tuProlog Engines

The structure of Eclipse development environments and the typical approach
to Prolog programming suggest a well-defined workflow to follow within the
tuProlog plug-in. First, developers are expected to open the tuProlog perspec-
tive, so that tools such as views and buttons are displayed in the most suitable
arrangement. Then, by using the available wizards, developers can create one or
more Prolog projects, and any number of logic theories that will be immediately



Fig. 2. The Prolog project wizard available in the tuProlog Eclipse plug-in.

opened in the provided Prolog editor. The Prolog project wizard, depicted in
Fig. 2, is also the first place where the configuration of tuProlog engines occurs.

Any Prolog project comes with an associated tuProlog engine; thus, the
project wizard offers an interface to configure the engine in terms of libraries and
theories. Libraries group related predicates, operators, functors, and directives
into stable sets of functionalities that can be dynamically loaded or unloaded
at any time during the life of an engine. tuProlog comes already equipped with
four libraries, providing the basic characteristics needed for Prolog programs ex-
ecution, input/output operations, as well as features dictated by the ISO stan-
dard [11], and support for multi-paradigm Java/Prolog programming. Any of
these pre-loaded libraries can be unloaded so as to configure a lighter engine;
conversely, any new library can be loaded into it, provided it has been made
available on the classpath. With respect to logic theories, the only configuration
option at project creation time is to decide whether all the theories contained in
the project need to be fed to the engine as an effect of the builder activities.

After creating a Prolog project and logic theories, developers may add ad-
ditional tuProlog engines to the project and act on their configuration settings.
These operations are performed through the proper page in the Prolog project
properties, shown in Fig. 3. It is possible to create a new engine by providing
a unique name to identify it; unlike the first tuProlog engine in a project, sub-
sequently added engines do not come with the four libraries available in the
distribution pre-loaded by default. Then, as for any other engine in a Prolog
project, it is possible to manipulate the libraries configuration by loading and



Fig. 3. The Prolog project property page where engine configuration takes place.

unloading, and to set the default scope in terms of logic theories contained in the
project—that is, to select those theories that need to be automatically loaded
into the engine at project building time. Any tuProlog engine in a project can be
renamed or removed, provided that the new name does not clash with existing
engines, and that at any time at least one engine is active within the project.

The last step in the development workflow is to issue queries to the whole set
(or to a subset) of the tuProlog engines defined in the project. Queries are entered
through the launch configuration dialog supplied by Eclipse, that the tuProlog
plug-in extends to introduce its own launch configuration type (Fig. 4). First, the
project where the query execution will take place needs to be selected. Then, the
scope of the query, in terms of engines and theories against which it will be asked,
has to be delimited: by default, each tuProlog engine uses the set of theories
chosen in the project properties; however, an alternative, temporary scope can
be defined by selecting again the theories to be used as the knowledge base only
for this particular query, (Fig. 5). Finally, the Prolog query can be entered by
means of a small dialog window (Fig. 6) that can detect Prolog syntax errors
and avoid submission if the query is not written correctly. By extending launch
configurations to execute Prolog queries, Eclipse facilities can be exploited such
as the Run button and dropdown menu to re-run the last query or run a query
from the history of recently launched elements.

4 Discussion

tuProlog itself comes distributed with two user interfaces: a command-line con-
sole and a simple GUI based on the Swing graphical toolkit. The GUI works
on a single tuProlog instance and, despite offering an uncommon table-oriented



Fig. 4. The Launch Configuration to set up to execute a query within a Prolog project.

Fig. 5. Through the Scope Manager dialog a temporary query scope can be set for a
Prolog engine, different from the default provided at the time of engine creation.

Fig. 6. The Query editor is able to automatically check for Prolog syntax errors and
avoid submission if the query is not written correctly.



Fig. 7. The command-line interface for engine interaction within Eclipse delivered by
the Amzi! Prolog integrated development environment.

display of query solutions, it is oriented to developers that wish to immediately
experiment Prolog programming after downloading the interpreter. The GUI is
designed to edit a bunch of Prolog files in the same window, but it has no notion
of projects, thus being unsuitable for medium- to large-size applications. Besides
these two interfaces, it must be noted that a plug-in based on the NetBeans
platform [12] has been under development for a couple of internal milestones;
however, due to the lack of extended documentation, sufficiently structured lit-
erature, and a large and thriving community, so far the development of the
NetBeans plug-in has been harder and its appeal less than expected.

Among other major Prolog implementations [2], the most widely spreaded
user interface is a command-line prompt in a text-based console. Some systems
just provide that kind of interface to Prolog developers: Ciao Prolog, GNU Pro-
log, YAP Prolog on the open source side, and SICStus Prolog on the commercial
side, do not offer any other means of interacting with their Prolog engine, nor do
they provide any facility for editing Prolog code. Other implementations supply
graphical interfaces for Prolog programming, and even some innovative and use-
ful tools for inspection, profiling, and debugging. For example, the open source
SWI-Prolog provides a graphical tracer with embedded stack view, an execu-
tion profiler, a cross-reference dependencies analyser, and a navigator to outline
(directories of) Prolog programs; Strawberry Prolog, a commercial implementa-
tion with a light version downloadable for free, offers debugging features and the
display of the proof tree at runtime. However, all such tools suffer from the disad-
vantages of in-house applications: they hardly have a uniform, standard interface
to present to the user; they are often not sufficiently integrated with each other;
and they are not cross-platform, being instead programmed with niche graphi-
cal toolkits (SWI-Prolog tools are based on XPCE) or available only for specific
operating systems (Strawberry Prolog just runs under Windows and Linux).

The only Prolog implementation to build its graphical environment upon an
established platform such as Eclipse is Amzi! Prolog, a commercial distribution
developed by Amzi! Incorporated.4 The Amzi! Prolog IDE provides wizards for

4 http://www.amzi.com



the creation and import of projects and files, an editor with syntax highlight-
ing and syntax error markers, a full-fledged integrated debugger, outline and
cross-reference views, and facilities for compilation of libraries and applications.
Despite the supply of many more tools with higher quality than our initial proto-
type, the interaction with the Prolog engine always occurs through a text-based
console that represents a strict porting of the command-line interface distributed
with any other Prolog implementation (see Fig. 7). Moreover, launch configu-
rations are not really exploited, and developers are always limited to have only
one Prolog engine active at a time within the same project.

5 Conclusions and Future Work

We are currently testing the prototype environment in some Prolog develop-
ment scenarios derived from teaching and research settings. In the immediate
future, both a deeper integration of some of the existing tuProlog plug-in tools
(e.g. better mechanisms for configuring engines and browsing their knowledge
base, platform-wide access to the Prolog AST) and extension towards the multi-
paradigm side of the project will be pursued.

References

1. McAffer, J., Lemieux, J.M.: Eclipse Rich Client Platform: Designing, Coding, and
Packaging Java Applications. Addison-Wesley (2005)

2. Wikipedia: Prolog. Available online at http://en.wikipedia.org/wiki/Prolog.
Retrieved on August 2nd, 2008

3. Denti, E., Omicini, A., Ricci, A.: tuProlog: A light-weight Prolog for Internet
applications and infrastructures. In Ramakrishnan, I., ed.: Practical Aspects of
Declarative Languages. Volume 1990 of LNCS. Springer (2001) 184–198

4. Denti, E., Omicini, A., Ricci, A.: Multi-paradigm Java-Prolog integration in
tuProlog. Science of Computer Programming 57(2) (August 2005) 217–250

5. Doets, K.: From Logic to Logic Programming. The MIT Press (1994)
6. Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1997)
7. Müller, M., Müller, T., Van Roy, P.: Multiparadigm programming in Oz. In Smith,

D., Ridoux, O., Van Roy, P., eds.: Visions for the Future of Logic Programming:
Laying the Foundations for a Modern successor of Prolog. (December 1995) Work-
shop in association with International Logic Programming Symposium (ILPS’95).

8. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley (1999)

9. Schrijvers, T., Serebrenik, A.: Improving Prolog programs: Refactoring for Prolog.
In Demoen, B., Lifschitz, V., eds.: Logic Programming, 20th International Confer-
ence, ICLP 2004, Proceedings. Volume 3132 of LNCS., Springer (2004) 58–72

10. Gamma, E., Beck, K.: Contributing to Eclipse: Principles, Patterns, and Plug-Ins.
Addison-Wesley (2004)

11. ISO/IEC: Information technology — Programming languages — Prolog — Part 1:
General core. International Standard ISO/IEC 13211-1 (June 1995) Joint Technical
Committee ISO/IEC JTC1 SC22.

12. Boudreau, T., Tulach, J., Wielenga, G.: Rich Client Programming: Plugging into
the NetBeans Platform. Prentice Hall (2007)


