
A Finite Representation of all Substitutable
Services and its Applications

Jarungjit Parnjai1,?, Christian Stahl12,??, and Karsten Wolf3,? ? ?

1 Humboldt-Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany
{parnjai, stahl}@informatik.hu-berlin.de

2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
3 Universität Rostock, Institut für Informatik

18051 Rostock, Germany
karsten.wolf@uni-rostock.de

Abstract. We present a finite representation of all substitutable services
P ′ of a given service P . We show that our approach can be used for at
least two applications: (1) given a finite set of services P = {P1, ..., Pn},
we provide a representation of all services P ′ that can substitute every
Pi ∈ P, and (2) given a service P ′′ that cannot substitute a service P ,
we find the most similar service P ∗ to P ′′ that can substitute P .

1 Introduction

The paradigm of Service-Oriented Computing (SOC)[1] uses a service as a build-
ing block for designing flexible business processes by means of service compo-
sition. The behavior of a service is subject to changes. Driven by the cost and
time to meet the deadline, a new version of a service is hardly reconstructed
from scratch. Instead, a service will be substituted by a new version, which can
be derived by updating its current functionality or adding in a new functionality.

We consider a service P to be substitutable by a service P ′ if P ′ cooperates
deadlock-freely with every partner that P cooperates deadlock-freely with. That
is, substituting P by P ′ preserves every deadlock-free cooperating partner of P .

In this paper, we present an operating guideline approach to represent the
set of all substitutable services. This representation is helpful for at least two
applications. Given a finite set of services P = {P1, ..., Pn}, we show that a
finite representation of all services P ′ that can substitute every Pi ∈ P can be
computed with the help of operating guidelines [2, 3] of services. Furthermore, we
show that errors in a non-substitutable service can be corrected automatically
using a simulation-based graph edit distance as introduced in [4].

? Funded by the DFG-Graduiertenkolleg 1324 “METRIK”.
?? Funded by the DFG project “Substitutability of Services” (RE 834/16-1).

? ? ? Supported by the DFG project “Operating Guidelines for Services” (WO 1466/8-1).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



The remainder of this paper is organized as followed. Section 2 recalls some
formalisms and substitutability notion. Section 3 presents a finite representation
of all services P ′ that can substitute a given service P . Section 4 outlines a
method to compute a finite representation of all services P ′ that can substitute
all services Pi ∈ {P1, ..., Pn} that are given. Section 5 shows how to correct errors
in a non-substitutable service P ′′ with respect to a given service P . Finally,
Section 6 concludes the paper.

2 Background

We model the behavior of a service P with a service automaton. A service au-
tomaton is a finite state automaton with a set Q of states, a set F ⊆ Q of final
states, an initial state q0 ∈ Q, a set I of input interfaces, a set O of output
interfaces (I and O are pairwise disjoint), and a non-deterministic transition
relation δ ⊆ Q×{I ∪O ∪ {τ}}×Q. The edges are labeled with output message
x ∈ O sent to (labeled “!x”) the environment, or input message x ∈ I received
from (labeled “?x”) the environment, or internal move (label “τ”). A non-final
state with no outgoing transition is called a deadlock.

Given two service automata P and R, their composition P ⊕ R is a service
automaton in which its set of states is the cartesian product of QP , QR, and
the set of all multisets of pending messages between P and R. We assume that
two composable service automata have compatible interfaces (IP = OR and
IR = OP ), but all other constituents are pairwise disjoint. The composition
P ⊕ R is deadlock-free if P ⊕ R does not contain a deadlock. R is a strategy of
P iff P ⊕ R is deadlock-free. The strategy relation is symmetric, that is, R is a
strategy of P implies P is also a strategy of R. We write Strat(P ) to denote the
set of all strategies of P . See [2] for further details.

Throughout this paper, we assume a deadlock-free composition, i.e., there
always exists at least one strategy for a given service.

An operating guideline OG(P ) of P is a deterministic service automaton Sφ

where each state q of S is annotated with a Boolean formula φ(q). A matching
relation between states of a service automaton and Sφ are used to characterize
a set of service automata. We write Match(Sφ) to denote the set of all service
automata S′ that satisfies a matching relation with Sφ. OG(P ) characterizes the
(possibly infinite) set of all strategies of P , i.e., Match(OG(P )) = Strat(P ) [2].

Figure 1(a) depicts a service automaton P1 and Fig. 1(b) depicts an operating
guideline of P1.

We define our substitutability notion called accordance. A service P ′ substi-
tutes a service P under accordance (P ′ accords with P ) iff every strategy of P
is also a strategy of P ′, i.e., Strat(P ) ⊆ Strat(P ′). We assume that P and P ′ are
interface equivalent (IP = IP ′ and OP = OP ′) and write Accord(P ) to denote
the (possibly infinite) set of all services P ′ that substitute P under accordance.

[3] presents an algorithm to decide whether P ′ substitutes P under accor-
dance using their operating guidelines.



?E

?D

?C

!A !B

(a) P1

?A ?B

!D
!E!C

p1: ?A ∧ ?B

p4: final

p3: !D ∨ !Ep2: !C

(b) OG(P1)

?A

!C

!E !E!D!D

?B

τ

ττ

τ

τ

τ

(c) MS(P1)

?D?C

!A !B

?E

q3: ?D ∧ ?E

q1: !A ∨ !B

q2: ?C

q4: final

(d) OG(MS(P1))

Fig. 1. (a) service automaton P1, (b) an operating guideline of P1, (c) MS of P1, and
(d) an operating guideline of MS of P1.

3 Representing All Substitutable Services

Given a service P we show how to calculate an operating guideline that represents
the set Accord(P ) of all services P ′ that can substitute P under accordance.

Definition 1 (Maximal Strategy, MS). Let P be a service automaton and
OG(P ) = Sφ be its operating guideline. A maximal strategy of P , denoted
MS (P ), is obtained from S by replacing every node q by a non-deterministic
internal choice between all the valid combinations of outgoing edges from q w.r.t.
satisfying assignment in φ(q).

Figure 1(c) depicts a maximal strategy MS (P1) of P1 (in Fig. 1(a)) and
Fig. 1(d) depicts its operating guideline OG(MS (P1)).

MS (P1) is obtained from the underlying service automaton of OG(P1) ac-
cording to Definition 1. For example, the node p3 of the underlying service au-
tomaton of OG(P1) is replaced by the non-deterministic τ choice between three
valid combinations of outgoing transitions that satisfy assignment in φ(p3) =
!D∨!E in OG(P1). These three combinations are (1) a transition labeled !D,
(2) a transition labeled !E, and (3) two transitions labeled !D and !E. Clearly,
MS (P1) is a strategy of a service P1. That is, MS (P1) ∈ Match(OG(P1)).

Mooij and Voorhoeve [5] have proven that for a strategy R of P , each strategy
of MS(P ) is also a strategy of R.

Proposition 1 ([5]). Let P be a service automaton such that Match(OG(P )) 6=
∅. Then for all R ∈ Match(OG(P )) holds: Strat(MS (P )) ⊆ Strat(R).

By the help of Proposition 1 we prove that OG(MS (P )) represents the set
Accord(P ) of all service automata P ′ that can substitute a service automaton P
under accordance.

Theorem 1 (Characterizing all substitutable services). Let P and P ′

be two service automata. Let OG(P ) be an operating guideline of P . Then, P ′

substitutes P under accordance iff P ′ ∈ Match(OG(MS (P ))).



Proof. We will show that Accord(P ) = Match(OG(MS (P ))).
Consider Accord(P ) = {P ′ | Strat(P ) ⊆ Strat(P ′)}. Since the strategy re-

lation is a symmetric relation, we conclude that Accord(P ) = {P ′ | ∀R ∈
Strat(P ) : P ′ ∈ Strat(R)} =

⋂
R∈Strat(P )) Strat(R). Since Match(OG(P )) =

Strat(P ), Accord(P ) =
⋂

R∈Match(OG(P )) Strat(R) follows.
Next, we will show that

⋂
R∈Match(OG(P )) Strat(R) = Strat(MS (P )). We

know MS (P ) ∈ Strat(P ) and Strat(P ) = Match(OG(P )). Therefore, we can
conclude that

⋂
R∈Match(OG(P )) Strat(R) ⊆ Strat(MS (P )). Proposition 1 asserts

that for all R ∈ Match(OG(P )) holds: Strat(MS (P )) ⊆ Strat(R). Therefore, we
can conclude that

⋂
R∈Match(OG(P )) Strat(R) ⊇ Strat(MS (P )). Consequently,⋂

R∈Match(OG(P )) Strat(R) = Strat(MS (P )) immediately follows.
We know Strat(MS (P )) = Match(OG(MS (P ))). Thus, we can conclude that⋂

R∈Match(OG(P )) Strat(R) = Match(OG(MS (P ))).
Consequently, Accord(P ) = Match(OG(MS (P ))). ut

Theorem 1 shows that the operating guideline OG(MS (P )) is a finite repre-
sentation of all P ′ that can substitute P under accordance.

Our result enables a service designer to effectively derive P ′ from OG(MS (P )).
Clearly, P ′ can substitute P under accordance, as it matches with OG(MS (P )).
The designer can also use P ′ as a template to tailor a new version P ′′ by filling
P ′ with some internal actions. This way, it can be decided if P ′′ substitutes P
under accordance by checking if P ′′ ∈ Match(OG(MS (P ))).

With our approach, we can also decide accordance (as presented in [3]) of
two services P ′′ and P by checking if P ′′ ∈ Match(OG(MS (P ))).

4 Conjoining Substitutable Services

Suppose a service designer would like to design a new service which can support
all potential customers of both a hotel booking service and a flight booking ser-
vice. The representation of all services that can substitute both booking services
is helpful for the designer. With this representation, the designer can decide
whether such a new service does exist, and in case it does, a well-suited upgrade
of a new service can be derived immediately from such a representation.

For a finite set P = {P1, .., Pn} of service automata, we show that the inter-
section

⋂
Pi∈P Accord(Pi) of sets of all services that accord with every Pi can

be represented by the product of all operating guidelines of maximal strategy
MS (Pi) of Pi, where Pi ∈ P.

The product of two operating guidelines [3] is defined as an operating guide-
line that characterizes the intersection of all service automata that match with
these two operating guidelines. The product of two operating guidelines assumes
that both operating guidelines are interface equivalent.

Proposition 2 ([3]). Let OG⊗ = OG(S1)⊗OG(S2) be the product of operat-
ing guidelines OG(S1) and OG(S2), Then, Match(OG⊗) = Match(OG(S1)) ∩
Match(OG(S2)).



Corollary 1 (Characterizing intersection of substitutable services). Let
P1 and P2 be two service automata. Let OG(P1) be an operating guideline of P1

and OG(P2) be an operating guideline of P2. Then,

Match(OG(MS (P1))⊗OG(MS (P2))) = Accord(P1) ∩Accord(P2).

Proof. Follows from Proposition 2 and Theorem 1. ut

Corollary 1 shows that we can use the product of operating guidelines to
compute the finite representation of all services that accords with both P1 and
P2. In case the returned product describes an empty set, there is no service
automaton P ′ that can substitute both P1 and P2 under accordance.

Since the product ⊗ of operating guidelines is commutative and associative,
the result from Corollary 1 can be easily generalized to the product of any finite
number n of operating guidelines of MS (Pi), where Pi ∈ {P1, .., Pn}.

?C

?D

!A !B

?E

(a) P2

!B

?E?C
?D

!A

r4: final

r1: !A ∨ !B

r3: ?Er2: ?C ∧ ?D

(b) OG(MS(P2))

!B!A

?E?C
?D?D

q1r1: !A ∨ !B

q4r4: final

q3r3: ?D ∧ ?Eq2r2: ?C ∧ ?D

(c) OG⊗

Fig. 2. (a) service automaton P2, (b) an operating guideline of MS of P2, and (c) the
product OG⊗ of OG(MS(P1)) and OG(MS(P2)).

Figure 2(c) depicts OG⊗ as a finite representation of all services that can
substitute both P1 (Fig. 1(a)) and P2 (Fig. 2(a)) under accordance. OG⊗ is
the synchronous product of OG(MS (P1)) and OG(MS (P2)), where each node is
annotated with the conjunction of the two Boolean formulas of the corresponding
states of OG(MS (P1)) and OG(MS (P2)). For example, the node q2r2 in OG⊗
is annotated with φ(q2r2) =?C∧?D, which is the conjunction of φ(q2) =?C in
OG(MS (P1)) and φ(r2) =?C∧?D in OG(MS (P2)).

5 Correcting Non-Substitutable Services

Suppose a service designer has designed an ill-suited upgrade of a travel agency
service that does not accord with the travel agency service. Synthesizing a new
well-suited upgrade of the service using an approach proposed in Section 3 may
not be sufficient, as the well-suited upgrade might be very different and totally
ignore the structure of its ill-suited upgrade version. The designer might prefer to
reuse an ill-suited upgrade of the service instead of synthesizing a new well-suited
upgrade of the service.



To reuse an ill-suited upgrade of the service, the errors found in the ill-suited
upgrade can be fixed manually. Nevertheless, the manual correction is a tedious
and error-prone procedure. This scenario motivates a method to synthesize a
well-suited upgrade of the service automatically from its ill-suited upgrade.

Given two service automata P and P ′′ where P ′′ does not accord with P , we
propose a procedure to correct P ′′ with respect to P . The errors in P ′′ can be de-
tected and corrected automatically using a simulation-based graph edit distance,
as introduced in [4] to fix a faulty service to cooperate deadlock-freely in a chore-
ography. The approach takes P ′′ and OG(MS (P )) as its input, computes the
most similar service automaton P ∗ to P ′′ such that P ∗ ∈ Match(OG(MS (P ))),
and returns the edit actions that are necessary to transform P ′′ into P ∗. Clearly,
P ∗ can substitute P under accordance, as it matches with OG(MS (P )). That
is, P ∗ cooperates deadlock-freely with every strategy of P . This way, P ′′ can be
reused, as P ∗ is most similar to P ′′, yet accords with P .

So far the simulation-based graph edit distance approach is applicable only
for acyclic and deterministic services [4].

6 Conclusion

We have proposed an approach to characterize the set Accord(P ) of all services
P ′ that can substitute a service P under accordance. We have shown that a finite
representation of Accord(P ) can be computed using the concept of a maximal
strategy [5] and its operating guideline [2]. With this representation, we can
decide accordance of two services and derive from it a new service that accords
with a given service.

We have shown two applications of our approach. Given a finite set of services
P = {P1, ..., Pn}, we provide a representation of the intersection of Accord(Pi)
for all Pi ∈ P with the help of the product of operating guidelines [3]. For a
service P ′′ that cannot substitute a service P , we provide an automatic correction
procedure to transform P ′′ into the most similar P ∗ such that P ∗ accords with
P with the help of the simulation-based graph edit distance [4].

References

1. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice
Hall, Essex (2007)

2. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In Kleijn, J., Yakovlev, A., eds.: ICATPN 2007. Volume 4546 of LNCS., Springer-
Verlag (2007) 321–341

3. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with
operating guidelines. LNCS ToPNoC II(5460) (2008) 172–191

4. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In Dumas, M., Reichert, M., eds.: BPM 2008. Volume
5240 of LNCS., Springer-Verlag (2008) 132–147

5. Mooij, A.J., Voorhoeve, M.: Proof techniques for adapter generation. In Bruni, R.,
Wolf, K., eds.: WS-FM 2008 Milan, Italy, Proc. LNCS, Springer-Verlag (2008)


