
Semantic Annotation, Publication, and Discovery of
Java Software Components: An Integrated Approach

Zinon Zygkostiotis1, Dimitris Dranidis1, 2, Dimitrios Kourtesis2

1 Computer Science Department, CITY College,
Affiliated Institution of the University of Sheffield,
Tsimiski 13, 54624 Thessaloniki, Greece
zzygkostiotis@city.academic.gr, dranidis@city.academic.gr

2 South East European Research Centre (SEERC),
Research Centre of the University of Sheffield and CITY College
Mitropoleos 17, 54624, Thessaloniki, Greece
dkourtesis@seerc.org

Abstract: Component-based software development has matured into standard practice in
software engineering. Among the advantages of reusing software modules are lower costs,
faster development, more manageable code, increased productivity, and improved software
quality. As the number of available software components has grown, so has the need for ef-
fective component search and retrieval. Traditional search approaches, such as keyword
matching, have proved ineffective when applied to software components. Applying a se-
mantically-enhanced approach to component classification, publication, and discovery can
greatly increase the efficiency of searching and retrieving software components. This has
been already applied in the context of Web technologies, and Web services in particular, in
the frame of Semantic Web Services research. This paper examines the similarities between
software components and Web services and adapts an existing Semantic Web Service pub-
lication and discovery solution into a software component annotation and discovery tool
which is implemented as an Eclipse plug-in.

1. Introduction

The advent of rapid application development has led to an ever increasing empha-
sis on software reuse. Component-Based Software Development (CBSD) empha-
sises the reuse of existing code from either in-house repositories or 3rd party ven-
dors, and has been shown to result in lower development costs, faster time-to-
market, more effective maintenance and application upgrade, increased program-
mer productivity, and improved overall software quality [4, 18].

With software components being stored in code repositories, private or public
ones, these repositories can potentially become extremely large. As they grow in

AIAI-2009 Workshops Proceedings [168]

number and in size, so does the need to be able to search them effectively and re-
trieve component information and specifications. To enable this, there needs to be
a standard way of representing this component-related information, thus facilitat-
ing Computer-Aided Software Engineering (CASE) tools in the discovery and re-
trieval of relevant results.

A number of search solutions have been proposed, developed and implemented
for this purpose to date [20, 19], ranging from basic keyword searches to more ad-
vanced methods such as signature and behaviour matching using formal logic-
based techniques. Traditional search approaches, such as keyword matching, are
effective when searching Web pages and text documents. However, they have
proven to be very inefficient when applied to software components. One of the
reasons for this is that it is extremely difficult to convey sufficiently expressive
domain-related information through a component’s name or description.

The use of Semantic Web technologies in the annotation of software compo-
nent information has enormous potential in achieving better targeted searches and
more meaningful and accurate search results [20, 19, 14, 2]. Adding machine-
processable semantic information to components and publishing this information
in a standard way would make the classification, search and retrieval of compo-
nents more effective, and would thus enable greater utilisation and easier integra-
tion of the vast number of software components currently available.

This paper presents an integrated approach for the annotation, publication and
discovery of reusable Java software components through the use of Semantic Web
technologies. We propose a method for annotating Java source code using domain
ontologies that have been encoded in OWL-DL [10], and a means to publish and
subsequently discover the resulting semantic descriptions using a semantic regis-
try which employs Description Logic (DL) reasoning to perform matchmaking
among software component advertisements and requests. Our approach has been
validated through the development of a fully functional plug-in for the Eclipse
IDE that supports all three facets of the approach: Java code annotation, publica-
tion of semantic descriptions, and search of software components. Our approach
and implementation builds on earlier research work in the area of semantically-
enhanced publication and discovery of Web Services, and relies on an existing
open source semantic service registry for publication and discovery.

This paper is organised as follows. In Section 2 we look at various approaches
for description and discovery of software components, explore similarities be-
tween software components and Web services, and report on a recently developed
approach for publication and discovery of Web services with a semantically-
enhanced service registry. Section 3 describes how this system can be adapted for
use with software components and details an Eclipse plug-in developed for this
purpose. We also provide an overview of the semantic matchmaking process when
searching for software components, and outline the benefits this approach can
bring over the use of traditional keyword-based and signature-based retrieval
methods. Section 4 concludes the paper with a summary of the main points in this
work.

AIAI-2009 Workshops Proceedings [169]

2. Background of the Approach and Related Work

The basis of Component-Based Software Engineering (CBSE), also referred to as
Component-Based Software Development (CBSD), is that certain functions and
parts of large software systems appear numerous times within the system; there-
fore they should only be written once and not repeatedly throughout the applica-
tion. Encompassing the required functionality into pluggable components and de-
fining interfaces independent of any domain details allows components to be
reused.

2.1 Software Component Retrieval Approaches

When the idea of software componentisation was first proposed by McIlroy in
1968 [11], it was recognized that a key requirement would be the indexing and re-
trieval of components. Currently, there is no universal agreement as to what in-
formation is required to describe software components such that they can be effec-
tively retrieved. Existing code repository implementations tend to use proprietary
or non-standard syntax and semantics for component descriptions and indexing,
often employing quite elaborate classification schemes [3, 9, 8]. This inevitably
makes searching in different code repositories even more difficult.

Mili et al. [12] group the types of search used for software component retrieval
into four basic categories: simple keyword-based text searches, faceted classifica-
tion and retrieval, signature matching and behaviour matching. Other research has
classified all or some of these types into similar categories, such as Ostertag et al.
[15], who also describe methods for free-text keyword searching and faceted index
searching.

Keyword-based searching is the simplest approach to implement and is the one
that the majority of search engines use. The successful retrieval of relevant com-
ponents using this method is highly dependent on the original names given to the
components and cannot take into account such information as relationships be-
tween components, their execution context and synonymous keywords. A soft-
ware component retrieval scheme based on this approach is described in [13].

Faceted classification and retrieval involves extracting keywords from compo-
nent descriptions and documentation and arranging this information into a prede-
fined classification scheme or taxonomy. Although such an approach has been
shown to be quite effective in the retrieval of relevant search results [15], it is only
effective if the components fit into the classification scheme being used. Hence, a
significant effort is required to maintain such classification schemes.

The signature matching approach, such as that described in [9], is rather de-
tached from the application domain in that it attempts to describe components
based on input and output parameters, creating a signature based on a mathemati-
cal algorithm. However, components having matching signatures are not guaran-

AIAI-2009 Workshops Proceedings [170]

teed to be related. Behavioural matching extends signature matching somewhat in
that it attempts to also describe the particular behaviour of a component. Accord-
ing to Suguraman et al. [19], both these approaches are cumbersome and ineffi-
cient.

2.2 Software Components vs. Services, and Semantic Retrieval

The similarities and differences of software components and Web services is regu-
larly discussed throughout much of the literature in the field of CBSE. In [1],
Breivold and Larsson provide a comparison framework for component-based and
service-oriented software engineering and discuss the research efforts that have
been done in combining the strengths of the two.

Yao et al. [20] suggest that there is little difference between software compo-
nents and Web services, going as far as saying that a reusable component is in fact
a service, and on this basis, the description and matching technologies employed
for Semantic Web Services are just as applicable to software component descrip-
tion, classification and retrieval. Korthaus et al. [6] also investigate the use of Se-
mantic Web technologies in the field of CBSE, and argue that CBSE can greatly
benefit from the use of existing Semantic Web technologies for component classi-
fication, publication and discovery.

Paar [16] describes a Microsoft Visual Studio add-in developed for annotating
C# source code with semantic information using ontologies encoded in DAML
(the precursor of the OWL Web Ontology Language which is now a W3C stan-
dard) and WSDL (Web Service Description Language). The system annotates C#
source code with references to ontology concepts and then extracts this informa-
tion, converting it into a specially-adapted and semantically-extended form of
WSDL. This WSDL file can then be used to advertise the component in much the
same way as one would do for Web services.

Similarly, Yao et al. [20] describe a semantics-based approach to component
classification and retrieval where software components are annotated with DAML
ontologies. The component annotations and user queries are described in a WSDL
format and then translated into “conceptual graphs”, which are then used in their
semantic matchmaking process. They also employ a software component reposi-
tory based on the UDDI standard. However, one of the limitations they discuss
was the lack of semantic support in both WSDL and UDDI.

2.3 The FUSION Semantic Registry

The use of Semantic Web technologies to represent Web service properties and
the introduction of semantic matchmaking functionality in service registries (pri-
marily UDDI) has been the focus of several works in recent years, generally
within the field of Semantic Web Services (SWS) research. Kourtesis et al. [7]

AIAI-2009 Workshops Proceedings [171]

present an approach that is focused at automating the evaluation of Web service
integrability on the basis of the input and output messages that are defined in the
service’s interface. The approach has been applied during the development of the
FUSION Semantic Registry, a semantically-enhanced service registry utilised in
research project FUSION and released as open source software.

The aim in integrability-oriented service matchmaking within the FUSION
Semantic Registry is to detect if interoperability at the level of data can be guaran-
teed among an advertised service and its prospective consumer, such that proper
data flow and communication can take place. In plain terms, we seek to ensure
that the data that the consumer is able to provide upon invocation are sufficient
with regard to the input data that the advertised service expects to receive, and
conversely, the output data that the advertised service produces are sufficient with
regard to the data that the consumer expects to receive. This relates directly to the
notions of covariance and contravariance applied in the context of function sub-
typing and safe substitution, which have been studied in detail within type-theory
and object-oriented programming research [17].

In order to represent the functional and non-functional service properties that
are of interest for matchmaking one needs to create a Functional Profile and de-
fine its key attributes in terms of references to an ontology encoded in OWL-DL.
A Functional Profile is expressed as an OWL class with three types of object
properties: hasCategory (representing the service’s functional categorisation), has-
Input (representing the service’s set of input data parameters) and hasOutput (rep-
resenting the service’s set of output data parameters). There must always be one
category declared, and zero or more inputs and outputs.

The purpose of describing services as OWL-based functional profiles is to en-
able semantic matchmaking among service advertisements and requests. When a
service provider publishes a service advertisement, the service’s profile is stored
in the registry as an Advertisement Functional Profile (AFP). During the discovery
process the requestor constructs a profile describing the desired service, i.e. a Re-
quest Functional Profile (RFP). Matchmaking among the two is performed
through subsumption checking with a Description Logics reasoner (Pellet). Details
on the publication and discovery algorithms are provided in [7].

3. Semantic Annotation, Publication and Discovery

In this paper we propose to build on the FUSION Semantic Registry infrastructure
for classification, publication and retrieval of reusable software components. The
following subsections detail how this can be realised in the form of an Eclipse
plug-in for Java source code. Section 3.1 describes how components are described
through ontology-based annotations. Section 3.2 provides an overview of the
Eclipse plug-in and the functionality it offers. Finally, section 3.3 looks at the way
in semantic matchmaking process is carried out within the Semantic Registry.

AIAI-2009 Workshops Proceedings [172]

3.1 Semantic Annotations for Java (SA-Java)

In order to adapt the publication and discovery mechanisms of the FUSION Se-
mantic Registry to cater for software components, we need a method of describing
components similar to the one used for describing services, i.e. we need software
component functional profiles. A Software component profile contains all infor-
mation required to semantically describe, publish and search for reusable Java
code in our approach. The information it holds is outlined in Table 1.

Table 1. Attributes of Advertisement Software Component Profiles

Attribute Description

Identifier
A name given to the component for readability. It plays no part in semantic publication

or discovery process but allows the component to be found via keyword-based search.

Description
A free-text description of the component. As with the identifier, it plays no part in the

semantic publication or discovery process.

Category
The URI of an OWL concept describing the category to which the user has chosen to

classify the component.

Inputs
The URIs of one or more OWL concepts describing the inputs the component expects.

If this field is empty, the component does not require inputs.

Outputs
The URIs of one or more OWL concepts describing the outputs the component returns.

If this field is empty, the component does not return any values.

RepositoryURI
The location where the component or component source code can be found. This can be

a local or network file system location, Web URL or CVS/SVN repository location.

Advertisement Software Component Profiles are constructed automatically by

the registry at the time of publication. Part of the information that is required for
constructing them (Identifier, Description, and RepositoryURI) is obtained from
the user, while the rest (Category, Inputs, and Outputs) is obtained by parsing the
source code and retrieving semantic annotations placed there by the developer.

The method that we employ for source code annotation makes use of the stan-
dard annotation facility that was introduced by Sun with the release of Java 5.0
[5]. This allows adding metadata to code elements such as package declarations,
type declarations, constructors, methods, fields, parameters, and variable declara-
tions. The Java 5.0 platform comes with some predefined annotation types, but
also allows developers to define their own types.

For the needs of our approach we have defined three types of annotations. The
Category annotation is used to classify a Java class or method with regard to an
ontological concept describing its purpose or application domain. For example, if
a class contained methods and functions related to cash transactions from ATM
machines, then the category annotation would provide a reference to an OWL
concept describing this. Similarly, the Input and Output annotations are used to
classify the inputs and outputs in terms of domain objects. The code snippet below

AIAI-2009 Workshops Proceedings [173]

shows how a Java method annotated in this way could look.

@SAJavaCategory(“http://www.seerc.org/onto.owl#ATM_Services”)
public
@SAJavaOutput(“http://www.seerc.org/onto.owl#Loggon_Confirmation”)
boolean logon (

@SAJavaInput(“http://www.seerc.org/onto.owl#Card_Number”)
String userId,
@SAJavaInput(“http://www.seerc.org/onto.owl#PIN”)
String password)

{
 // method body
}

3.2 SA-Java Eclipse Plug-In

Our approach comes with a tool that interfaces with the FUSION Semantic Regis-
try and supports Java source code annotation, publication of semantic descriptions,
and search and retrieval of software components. The tool was developed as a
plug-in for the popular Eclipse IDE and offers two separate views: annotation of
source code is provided by the Annotator view, while component publication and
discovery is provided by the Semantic Registry view. A screenshot of the SA-Java
plug-in in the Eclipse workbench is shown in Figure 1.

Figure 1. The SA-Java Plug-In and its different views

AIAI-2009 Workshops Proceedings [174]

In order to annotate a Java source file with semantic information, an OWL file
is first loaded into a browser in the Annotator view where the classes described in
the OWL file can be examined. The user then selects the type of annotation re-
quired and, by dragging and dropping the OWL class directly from the browser to
a point in the source code, the respective annotation is added.

Publication involves parsing an already annotated source file and creating can-
didate profiles. The plug-in scans a file for annotations and creates candidate pro-
files based on the annotated information that is found. A wizard is presented to the
user who can examine the generated candidate profiles in turn, and edit or add any
necessary information. On completion of the wizard, all generated candidate pro-
files are imported into the Semantic Registry view. The user can then select which
of the candidate profiles should be actually published.

Component discovery is accomplished by creating Request Software Compo-
nent Profiles. It is the profiles themselves that are used as search parameters rather
than the traditional keyword text based approach most people are familiar with.
The Registry view has a Profile Builder for this purpose where users can create
software profiles which can then be sent to the registry for semantic matching.
Any component profiles found in the registry that match the one sent as the search
parameter are returned.

3.3 Semantic Matchmaking of Components

To illustrate the semantic matching process employed in the FUSION Semantic
Registry, we use the examples of three methods whose profiles are detailed below.

Advertised profile of Class A logon method:
hasCategory: http://www.seerc.org/onto.owl#Catalogue
hasInput: http://www.seerc.org/onto.owl#Name
hasInput: http://www.seerc.org/onto.owl#Password
hasOutput: http://www.seerc.org/onto.owl#Authenticated

Advertised profile of Class B signin method:
hasCategory: http://www.seerc.org/onto.owl#SparesCatalogue
hasInput: http://www.seerc.org/onto.owl#Name
hasInput: http://www.seerc.org/onto.owl#Password
hasOutput: http://www.seerc.org/onto.owl#Authenticated

Advertised profile of Class C logon method:
hasCategory: http://www.seerc.org/onto.owl#ShoppingCart
hasInput: http://www.seerc.org/onto.owl#Name
hasInput: http://www.seerc.org/onto.owl#Password
hasOutput: http://www.seerc.org/onto.owl#Authenticated

Note the usage of OWL concepts for describing the different parts of the pro-

files. For instance, the category of the profile for the logon method of Class A has
the value of Catalogue, which signifies that the profile either models or is related
to a Catalogue object in the domain. The other two profiles have been categorized

AIAI-2009 Workshops Proceedings [175]

as SparesCatalogue and ShoppingCart. For the purpose of this discussion let us
assume that there exists an OWL-encoded taxonomy hierarchy in which the
SparesCatalogue concept is defined as a subclass of Catalogue, whereas the
ShoppingCart concept is a sibling class of Catalogue.

One thing we can observe in the example profiles is that all three require the
same basic information as arguments and return the same result, regardless of the
names they have been given in the method declarations and, perhaps more signifi-
cantly, of the Java data types used for the arguments. Semantic annotation and
profile generation makes no distinction between the Java data types used for ele-
ments, only what they represent.

As described earlier, to carry out a search using this approach, a request profile
must be created that describes the required component. For example, we might be
interested in finding any component that provides a method which accepts a user-
name and a password as arguments and returns a response whether authentication
has been successful, as in the following request profile:

Request Profile 1
hasCategory: http://www.seerc.org/onto.owl#Thing
hasInput: http://www.seerc.org/onto.owl#Name
hasInput: http://www.seerc.org/onto.owl#Password
hasOutput: http://www.seerc.org/onto.owl#Authenticated

Searching using this profile would return all three of the advertised classes.

This is because all three require two arguments that represent usernames and
passwords (regardless of the Java data types used) and return a response indicating
whether authentication has been successful. Also, their categorizations are all sub-
classes of the Thing concept (note that owl:Thing is the top concept in every OWL
ontology and by definition subsumes every other possible concept).

We could modify the above profile to search for components that could be
modelled as Catalogue objects. For this, we would need to replace the hasCate-
gory URI with “http://www.seerc.org/onto.owl#Catalogue”. This time, only
classes A and B would be returned as matching, as they have been categorized as
either of type Catalogue, or SparesCatalogue (which is a subclass of Catalogue).
Class C’s categorization is unrelated and so it would be excluded from the re-
turned results.

The above example is a simple illustration of the semantic matching process
based on the category classification of the profiles. The same procedure is applied
when matching other elements of the profile, that is, the inputs and outputs, with
even more interesting results. For example, the Name concept would also match
any concepts that are a subclass of Name. When developers construct request pro-
files, what they are specifying is the number and types of inputs they can provide
and the number and types of outputs they expect. In other words, they require a
component that is related to a specific category and can return at least the outputs
requested given at most the inputs that can be provided. To illustrate this, let us
examine the following request profile.

AIAI-2009 Workshops Proceedings [176]

Request Profile 2
hasCategory: http://www.seerc.org/onto.owl#SparesCatalogue
hasInput: http://www.seerc.org/onto.owl#Name
hasInput: http://www.seerc.org/onto.owl#Password
hasInput: http://www.seerc.org/onto.owl#EmployeeId
hasOutput: http://www.seerc.org/onto.owl#Authenticated

Searching using this profile would still return Class B even though the request

profile has an extra input. This is because Class B can still provide the required
output with only two of the three inputs the requestor is able to provide. Class B
can therefore be utilized, and the extra input, EmployeeId, could be ignored. The
opposite, however, is not true. Take, for example, the following request profile:

Request Profile 3
hasCategory: http://www.seerc.org/onto.owl#SparesCatalogue
hasInput: http://www.seerc.org/onto.owl#Password
hasOutput: http://www.seerc.org/onto.owl#Authenticated

This would return none of the three advertised classes. This is because they all

require at least two inputs but the requestor here states that only one can be pro-
vided. Therefore, the components would not have enough information with which
to carry out their tasks. The matching procedure with the outputs is similar but re-
versed. In this case, there is a match if the advertised profile can provide at least
the outputs required by the requestor – any others can be ignored.

Hence we can see that applying a semantics-based approach to component
search and retrieval is far more effective than traditional search approaches. Key-
word-based and signature-based matching approaches cannot distinguish between
components that display the same name/different functionality or different
name/same functionality properties. Applying semantics not only goes a long way
in solving this problem, but can also match components that can fulfil a request
even if they are not a direct match.

4. Conclusions

The work presented has shown how Semantic Web technologies can be applied to
CBSE, in particular, to the annotation, publication and discovery of software com-
ponents. We proposed a method for annotating Java source code using domain on-
tologies encoded in OWL-DL, and a means to publish and subsequently discover
the resulting semantic descriptions using a semantic registry which employs DL
reasoning to perform matchmaking among advertisements and requests. Our ap-
proach is supported by a fully functional plug-in for the Eclipse IDE that supports
annotation, publication and discovery of components, and is shown to offer sig-
nificant benefits for retrieval of software components over the use of traditional
approaches such as keyword- or signature-based matching.

AIAI-2009 Workshops Proceedings [177]

References

1. Breivold H.P., Larsson M. (2007). Component-Based and Service-Oriented Software En-
gineering: Key Concepts and Principles. Proceedings of the 33rd EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, pp.13-20.

2. Dong J.S. (2004). Software Modeling Techniques and the Semantic Web. Proceedings of
the 26th International Conference on Software Engineering, pp. 724-725.

3. Graubmann P., Roshchin M. (2006). Semantic Annotation of Software Components. Pro-
ceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced
Applications, pp. 46-53.

4. Haines G., Carney D., Foreman J. (2007). Component-Based Software Development /
COTS Integration. Carnegie Mellon Software Engineering Institute, Pittsburgh.

5. JDK 5.0 Documentation. (2004). JDK 5.0 Developer's Guide: Annotations. Sun Microsys-
tems Inc. http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html.

6. Korthaus A., Schwind M., Seedorf S. (2007). Leveraging Semantic Web Technologies for
Business Component Specification. Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, vol., no. 2, pp. 130-141.

7. Kourtesis D., Paraskakis I. (2008). Combining SAWSDL, OWL-DL and UDDI for Se-
mantically Enhanced Web Service Discovery. Proceedings of the 5th European Semantic
Web Conference, LNCS 5021, pp. 614-628.

8. Lee J., Kim J., Shin G. (2003). Facilitating Reuse of Software Components using Reposi-
tory Technology. Proceedings of the 10th Asia-Pacific Software Engineering Conference,
pp. 136-142.

9. Luqi, Guo J. (1999). Toward Automated Retrieval for a Software Component Repository.
Proceedings of the 6th Symposium on Engineering of Computer-Based Systems (ECBS
'99), pp. 99-105.

10. McGuinness D.L., van Harmelen F. (2004). OWL Web Ontology Language Overview,
W3C Recommendation

11. McIlroy D. (1968). Mass-Produced Software Components. Proceedings of the 1st Interna-
tional Conference on Software Engineering, Garmisch Pattenkirchen, Germany, pp. 88-98.

12. Mili R., Mili A., Mittermeir R.T. (1998). A Survey of Software Storage and Retrieval, An-
nals of Software Engineering, vol. 5, no. 2, pp. 349-414.

13. Mili A., Mittermeir R. (1994). Storing and Retrieving Software Components: a Refine-
ment Based System. Proceedings of the 16th International Conference on Software Engi-
neering (ICSE-16), pp. 91-100.

14. Oberle D., Eberhart A., Staab S., Volz R. (2004). Developing and Managing Software
Components in an Ontology-Based Application Server. Proceedings of the 5th Interna-
tional Middleware Conference, LNCS 3321, pp. 459-477.

15. Ostertag E., Hendler J., Prieto-Diaz R., Braun C. (1992). Computing Similarity in a Re-
Use Library System - an AI Approach. ACM Transactions on Software Engineering and
Methodology, vol. 1, no. 3, pp. 205-228.

16. Paar A. (2003). Semantic Software Engineering Tools. OOPSLA '03, Companion of the
18th annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, pp. 90-91.

17. Simons A.J.H. (2002). The Theory of Classification, Part 4: Object Types and Subtyping.
Journal of Object Technology, vol. 1, no. 5. pp. 27-35.

18. Szyperski C. (1998). Component Software: Beyond Object-Oriented Programming: Addi-
son-Wesley.

19. Sugumaran V., Storey, V.C. (2003). A Semantic-Based Approach to Component Re-
trieval. SIGMIS Database, vol. 34, no. 3, pp. 8-24.

20. Yao H., Etzkorn L. (2004). Towards a Semantic-based Approach for Software Reusable
Component Classification and Retrieval. Proceedings of the 42nd Annual Southeast Re-
gional Conference, Huntsville, Alabama, pp. 110-115.

AIAI-2009 Workshops Proceedings [178]

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html�

