Ontology-Based Querying of Linked XML Documents

Lule Ahmedi

Georg Lausen

Institut fur Informatik, Universitat Freiburg
Georges-Kohler Allee, Geh. 51
79110 Freiburg, Germany

{ahmedi,lausen }@informatik.uni-freiburg.de

ABSTRACT

We investigate the Lightweight Directory Access Protocol
(LDAP) that provides a powerful means to link distributed
data collections into an entity searchable as a single collec-
tion. Besides the linking mechanism, LDAP offers a rich
collection of modeling primitives required to express ontolo-
gies as a common searchable interface. Encouraged in addi-
tion by the fact that XML has become the de facto standard
for information interchange on the Internet, LG ACCESS, our
global querying system, combines ontologies and XML into
a unified LDAP-based framework to improve the power for
accessing related XML data in the network. We describe a
global query evaluation strategy based on expressive links
among entities that are spread across different local or re-
mote servers. Also, the way ontologies are annotated to
hold such network-aware links along with semantic anno-
tations is shown. Built on grounds of the standard and
well-established LDAP technology instead of the technolo-
gies that are still in the process of adoption by the commu-
nity, our system is an ideal candidate for applications that
need to interact with semistructured databases at a global
extent.

1. INTRODUCTION

In recent years the proliferation of XML-based systems
has dramatically increased to the point of requiring the re-
design of existing software and even the creation of new
paradigms to handle semistructured data. At the same
time, since the conception of the LDAP protocol version
3 in 1997 [35], the use of lightweight directories to store
a variety of information has been steadily gaining momen-
tum. Today, many universities and research centers use
LDAP servers as a means to manage information about
their members, organizations, networks, etc., and compa-
nies like Netscape or Microsoft offer LDAP support even in
their Internet browsers. Among a large number of direc-

*The work of this author is supported by the Deutsche
Forschungsgemeinschaft, Aktenzeichen La 598/4-1.

Permissionto male digital or hard copiesof all or part of this work for

personalor classroonuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto

republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

Semantic Web Workshop 2002Hawaii, USA

Copyright by theauthors.

tory servers [21], an implementation that supports running
LDAP against relational databases is now available [15].

Recently, Tim Berners-Lee’s vision of a ”Semantic Web”
[6] in which a new form of Web content, that is mean-
ingful to computers and linked up to be easily processable
by machines on a global scale, is attracting a great atten-
tion in the community. From the point of view of data-
bases, the Semantic Web can be seen as a globally linked
multidatabase, where links pointing from one database ob-
ject to the other can readily carry out sophisticated tasks
for users/applications when querying. To bring a meaning
to the content of data, ontologies can be used to hold a
kind of semantic annotations along with the outgoing links
that serve to relate data. As regards the aspect of han-
dling queries for the case of the aforementioned circum-
stances (interlinked documents), the Semantic Web tech-
nology presents yet an evolving infrastructure.

On the other side, the similarities between LDAP and
the XML “native” model, i.e. DOM [16], makes the former
an ideal candidate for querying XML-based sources without
the need to incur in cumbersome transformations. Also, the
development of XML technology, as well as the adoption of
the still evolving standards, like XLink [12] or XPointer [11],
is not as well established as LDAP.

Therefore, instead of using the technologies that are still
in their infancies, we have opted to base our querying system
on LDAP technology, and expect to leverage its strengths
for the purpose of querying semistructured data networks
at a global extent. Decisive thereby is its tight connection
to network and distribution channels, that, by design, of-
fers distribution capabilities far superior from those found
in traditional multidatabase systems [35]. Links that relate
remote data can make particular use of such capabilities,
enabling efficient query processing of those data regardless
of the breadth of their distribution.

Our main objective of combining ontologies and XML into
a unified LDAP-based framework for global querying is to
improve the power for accessing XML data, relieving the
information searcher from considering the distributed allo-
cation of data and their semantical and structural hetero-
geneity in distinct sources. This is not the case when using
any of the query languages so far proposed (XQuery [7],
XML-QL [13], etc.) for accessing XML documents. We il-
lustrate the distinctions by an example, both in XQuery and
in our approach, and outline the improvements we offer.

Example 1 Assume that we are interested in integrating
data about provinces from two geographic databases, the

TERRA and GlobalStatistics databases which are available
in XML form from [28]. Fragments of each of these XML

sources and their DTDs are shown in Fig.1.

<gs>

<province name="Nordrhein Westfalen'>
<population>17816079</population>
<area>34077</area></province>
<province name="Bayern'>
<population>11921944</population>
<area>70546</area></province>

</gs>

<terra>

<province name="Tirol"
abbrev="TIR" pop="586700"/>
<province name="England"
abbrev="ENG" pop="47100000"/>

<province name='"Bayern"
abbrev="BAY" pop="10973700"/>

</terra>

Figure 1: Excerpt of XML data

In XQuery syntaz, the query would be the following:

FOR $prov_gs
IN document("gs-europe.xml")//province,
$prov_terra
IN document("terra-europe.xml")//province
WHERE $prov_terra/@name = $prov_gs/@name AND
$prov_terra/@pop > 10000000
RETURN <province abbrev=$prov_terra/Qabbrev>
<name>{$prov_terra/@name}</name>,
<population>{$prov_terra/@pop}
</population>,
<area>{$prov_gs/area}</area>
</province>

and returns the province elements as above, with their name,
population, abbrev taken from TERRA, and area taken from
GS.

In our system, we achieve the same result if we submit
a query to the ontology where we have to specify only the
entities we want to have at the output, and not where they
have to come from and how they should be combined, as in
the following (using XPath):

/ /StateGeopolitical[population > 10000000]

given that provinces are named as StateGeopolitical in the
ontology.

In this paper, we present the global query evaluation strat-
egy behind this idea targeted to the ontologies model, putting
the emphasis on the network features of the approach that
works particularly well in the case of a highly distributed
data topology. The rest of the paper is organized as follows:
Section 2 gives a brief overview of the capabilities offered
by LDAP servers. Section 3 provides an explanation of the
overall architecture of our system, whereas Section 4 goes
in short through the modeling issues used, leaving the dis-
cussion about links as the key constructs of this model for
Section 5. A global query evaluation strategy based on links

is elaborated in Section 6, and then continued with the em-
phasis on its efficiency in Section 7. Finally, Section 8 com-
pares our approach with other systems, and concludes the
paper.

2. LDAP OVERVIEW

An LDAP [35, 20] server can be viewed as a semistruc-
tured database system, specialized for the operations per-
formed on the Internet, that is, simple and fast remote read
operations that occur much more frequently than writes
(that are in general local), and support for the classical
client/server architecture.

The LDAP data model consists of two components: The
directory schema defines a finite set of classes, their organi-
zation in the schema hierarchy, together with their content,
attributes and datatypes. The directory instance contains a
finite set of entries organized in a forest, where each entry
(1) has a non-empty set of (possibly) multi-valued attribute-
value pairs e(a,v) that conform to the schema definition;
and (2) belongs to at least one class which is given by the
(mandatory) attribute objectClass.

The naming model defines how to arrange entries into
an instance hierarchy based on their names and how to re-
fer to any particular entry. Giving a unique name to any
entry in the instance hierarchy allows to refer to any en-
try unambiguously. The unique name of an LDAP entry
is its distinguished name (dn). It is formed by enumer-
ating all the individual names of the parent entries back
to the root of the hierarchy. Reading the entry’s dn, e.g.,
(cn=capital,cn=Country,o=0ntology), one can trace from the
entry capital itself through the Country back to the root
o=Ontology of the tree. In this work we are mainly inter-
ested on how to refer to individual entries in the hierarchy
and how to handle referred entries when searching.

The functional model determines the operations that can
be performed on the directory server. The search operation
acts in a similar way a database query does. It is invoked
by a search request defined as a combination of the follow-
ing four components: The base denotes the distinguished
name of the entry in the directory instance where the search
will start. The scope can be base, if the search is to be re-
stricted to just the first node, onelevel, if only the first level
of nodes is to be searched, or subtree, if all nodes under the
base should be considered by the filter expression. The filter
expression is a boolean combination of atomic filters of the
form (a op v), where a is an attribute name, op is a compar-
ison operator, and v is an attribute value. The projection
defines the set of attributes to be returned by the query.

Referral Mechanisms. There are two kinds of referral mech-
anisms in LDAP we make use of in our framework, i.e.,
aliases and smart referrals.

An alias is an entry that contains the dn of another entry
in the same server. If the search result contains an alias, that
entry is replaced by the entry the alias points to through its
dn, i.e., by its aliased entry.

Example 2 Consider the following alias entry that describes
capitals at the meta-data level of the geographic data intro-
duced in Example 1

|
|
l
|
query) xpath2ldap
: LDAP reformulation v
| integration ooy
! engine |query | _________ __
& 2 answering :
=]
Y links] internal [external
B o/ @ e ontology |~ | ontology Query
| |
| v |
DTDs , ol %
| c |
input _ . _ . . @
data | Tsi sz SsNe € § | final answer
| < ~ |
| N P~
o || E
: S ans(Q1 ans(Q2 ans(Q g = :
| I~ |
g oan query ! |
LR LDAP | reformulation !
‘ ' integration !
! .engine | quewy \
XML ' LDAP answenng | XML

Figure 2: The system architecture

dn: cn=has_capital,cn=Country,o=Body,
ou=0Ontology,0=LGAccess,dc=top

name: has_capital

objectClass: alias

aliasedObjectName: r=capital,c=country,c=terra,
ou=srcSchema,o=LGAccess,dc=top

It states among others that if the entry appears in the answer
set, it is to be replaced by its aliased entry, i.e., the entry
whose dn is r=capital,c=country,c=terra,...,dc=top.

For example, the following query that looks for a concept
describing capitals in a given ontology:

Q = (cn=has_capital,cn=Country,o=Body,ou=0Ontology,
o=LGAccess,dc=top ? subtree ?)

would instead of the has_capital alias defined above result in
its aliased entry

dn: r=capital,c=country,c=terra,ou=srcSchema,
o=LGAccess,dc=top
name: capital

that is a capital concept as described at the source schema
level.

A smart referral is, in a way, a generalization of an alias.
It is an entry in the directory instance that refers to one
or more entries in the same or in another LDAP server.
References (ref attributes) are in the form of LDAP uniform
resource locators (URLs). An LDAP URL [18] is of the
form Idap://host/searchExpr, where searchExpr is the search
request of the form base?projection?scope?filter to be sent
to the contacted server. Smart referrals are handled in the
same way as the aliases. E.g., the following reference points
to the entries that satisfy a filter (indep_date > 1990) in a
tree rooted at cn=Country,0=Ontology and located at the
ServerA.LGAccess.org host:

Idap://ServerA.LGAccess.org/cn=Country,o=Ontology??
sub?(indep_date > 1990).

In XML terms, aliases are local, similar to the XML
ID/IDREF mechanism, whereas smart referrals are global

and resemble to the XLink/XPointer linking mechanism.
The use of aliases and smart referrals for the global querying
purposes is investigated in Section 5.

3. THE OVERALL ARCHITECTURE

In order to be capable of processing XML data, any com-

mon global querying framework based on the ontologies model
is required to support the definition and management of
schema information (e.g., the Document Type Definition
(DTD) that describes the structure of an XML document),
and the actual integrated contents (i.e., the XML docu-
ments).
Our framework provides, via an ontology definition, the re-
quired features to seamlessly process both types of data,
as detailed in Section 6. Figure 2 shows the architecture
of LGAccEss, our LDAP-based global querying system.
LGAccEss stands for Lightweight Global ACCESss system,
a non-intrusive extension of the traditional LDAP server
modified to meet the needs of global querying in the Web.
It proceeds as described in the following.

An (external) ontology of the domain of interest avail-
able in the Web is incorporated in our system such that
it is taken in its original representation, namely XML, and
transformed into the corresponding LDAP-modeled ontol-
ogy by the amli2ldap-onto component. Then, for each avail-
able XML source and its DTD, a corresponding represen-
tation in LDAP is generated by the amli2ldap and dtd2ldap
components, respectively (for details see [27], [1]). Further,
as part of the application design, the correspondences be-
tween the entries in the ontology and those in the source
schemata are established by means of the LDAP referral
mechanisms. Global queries are evaluated by the LDAP
Integration Engine, composed of the Query Reformulation
Module and the Query Answering Module. The user for-
mulates a query (in XPath) over the external ontology and
poses it to the system. The zpath2ldap component trans-
forms the query from XPath to LDAP. The Query Refor-
mulation Module rewrites it into the terms of the source
level queries by using the knowledge derived from the re-
ferrals and the semantical definitions found in the internal

<ontology><header> . </header>

<body-definition>

</body-definition>

</ontology>

<role-def><role name="name"/><range>STRING</range>
<cardinality>1</cardinality></>
<role-def><role name="has_capital"/>
<subrole-of><role name="has_city"/></subrole-of>
<range><concept name="City"/></range>
<inverse>is_capital_of</inverse></>
<concept-def><concept name="GeopoliticalEntity"/>
<role-constraint><role name='"name"/><key>YES</key></role-constraint>
<role-constraint><role name="population"/></role-constraint>
<role-constraint><role name="area"/></role-constraint></>
<concept-def><concept name="Country"/>
<subconcept-of><concept name="GeopoliticalEntity"/></subconcept-of>
<role-constraint><role name="has_capital"/></role-constraint></>
<concept-def><concept name="StateGeopolitical"/>
<subconcept-of><concept name="GeopoliticalEntity"/></subconcept-of>
<role-constraint><role name="abbrev"/></role-constraint></>

<instances> <!-- here comes the derived XML view --> </instances>

Figure 3: Geography ontology in XML

ontology. These queries are evaluated separately for each
source by the LDAP server. Then, the results are com-
bined by the Query Answering Module taking into account
the rewriting previously formulated by the Query Reformu-
lation Module. Finally, ldap2zml transforms the result from
LDAP into XML.

This paper focuses on the LDAP Integration Engine. These
components use some modeling bases that are briefly de-
scribed in the next section. Section 5 then concentrates
on modeling constructs that particulary contribute to these
component facilities, i.e. links.

4. MODELING BASICS

Ontologies. Ontologies play a crucial role in our frame-
work representing a common conceptual model for all users
of a domain (concepts, roles, concept taxonomy, etc.). Built
upon LDAP, they offer support for global querying (data
integration) characteristics we are interested about in this
paper along with the support for the standard ontology de-
sign requirements. The modeling and technical grounds of
LDAP, their tight connection to network and distribution
channels offer capabilities not present in prevailing data in-
tegration approaches, as will be detailed in the next section.
We partition the ontology component into an internal ontol-
ogy to be represented in the LDAP middleware in LGAC-
CESS, and an external ontology which resides as an XML
source at a given, accessible location on the Web. Also,
the zml2ldap-onto component is introduced in the system
to provide a mapping between the conceptual entities of the
internal LDAP ontology and those marked up externally in
XML.

A detailed description how to model ontologies, both in
LDAP and in XML, as well as a mapping between them
is given in [1]. An example XML geographic ontology is
sketched out in Figure 3.

Data Modeling. In our system, an arbitrary XML docu-
ment is represented in LDAP according to the definitions
made in [27] for data representation. In this representation,
elements and attributes are modeled by LDAP classes. The
meaning of each of the attributes in these classes (Figure
10), the oc, oid, name, order, and value attributes, is also
explained there.

Example 3 For our running example, we assume that the
system already contains:

o the Geography ontology whose StateGeopolitical concept
definition with name, abbrev, population, and area roles
is depicted within a solid line framed box in Figure 4,
and

o the TERRA and GlobalStatistics data sources and their
DTDs whose Province element definitions are depicted
within dashed framed boxes in the same figure.

5. REFERRALSASINTEGRATIONMEANS

When the modeling of the existing domain ontology, the
schemata of the sources that are subject of integration and
their data is done, the substantial task of the modeling pro-
cess, that of establishing the relationships between those
models follows.

The LDAP referral mechanisms introduced in Section 2
offer a good basis for expressing links. Aliases are well-suited
for specifying local links. But, in a real-world integration
scenario, data sources and their schemata may be available
locally or distributed across several directory services in the
network. In addition, an entry in an ontology may relate
to more than one entries in available data source schemata.
Smart referrals are appropriate to define potentially multiple
links in a distributed directory topology.

We annotate ontologies in the middleware (internal on-
tologies) of our system to hold such links. Network-enabled
ontologies present the gist of the discussion concerning the

link=dn:(c=Province,
c=GS,...,
dc=top

are

name

! Geography

StateGeopolitical

\7p(7)pul¢’;ti5r{l
|

link=dn:(c=Province| |
C=TERRA||..
dc=top),

|
t
|
|
|
|
|
|
]
T

|

link=dn:(r=name,c=Province,c=GS,ou=srcSchema,...,dc=top)

Figure 4: The GS and TERRA source schemata embedded in the Geography ontology

Body.Ontology.LGAccess..top

cn=Country
gs.srcSchema.LGAccess..top
c=country
...~ en=has_capital
Server mirkwood ’ terra.srcSchema.LGAccess..top
e U r=capital_city
i name: has_capital _ i -
* objectClass: alias c=country Server‘ shanghai A
| objectClass: referral
| aliasedObjectName: r=capital,c=terra,
| ou=srcSchema,o=LGAccess,dc=top
i ref: Idap://shanghai/r=capital_city,c=gs, » r=capital
ou=srcSchema,o=LGAccess,dc=top - r=cap

Figure 5: An example of specifying local and remote links in LDAP

modeling framework. Thanks to them, separate partitions
of the whole model (source schemata and their data) in the
network can be easily hooked together into a single concep-
tual view through the use of links.

As regards the interpretation of links when a query is is-
sued to the system, LDAP’s approach of handling aliases
and smart referrals is quite basic. During the query evalu-
ation in our system, the assigned links allow to relate any
global queries performed over the ontology with their corre-
sponding source level queries in a relatively easy fashion.

Figure 4 provides a graphical representation of the way
our example ontology and the corresponding source schemata
are related by means of the link attributes. The exact speci-
fication of these attributes in the LDAP instance of another
fragment of our geographic example (Example 3) to be used
later in the paper is given in Figure 5.

6. QUERY PROCESSING

XPath [9] is a W3C recommendation for addressing node
sets of an XML document. Most XML querying languages
are built on top of XPath as a core language. The LGAc-
CESS system supports querying in XPath by deploying a
slightly modified version of the zpath2ldap translator devel-
oped as a part of the HLCACHES project [27].

Furthermore, the meta-information of LDAP ontologies
regarding a global semantical and structural definition over

several distinct XML documents - their schemata - can be
used by the system for evaluating XPath queries to extract
relevant data from the related XML documents.

6.1 XPathinto LDAP Query Translation

There are two groups that can make use of ontology def-
initions in the LGACCESS system. One are information
searchers who do not substantially care about the seman-
tic descriptions of entities as described by the ontology and
would rather be satisfied with a kind of a view contain-
ing only structural elements of the domain and keeping the
internal layout of the view across several different sources
and/or ontologies transparent to them. The other group
includes users/applications who are interested in the meta-
data definitions in the ontology. It would be nice to query
related XML documents and the global meta-information
about them in one format, but this looks difficult unless a
standard XML ontology model and a proper language for
accessing it is conceived by the Semantic Web community.
See [22, 33, 31, 34] for the ongoing work on consolidating a
proper query language for meta-data.

XPath as a path-oriented language isn’t the proper way
to query an ontology description. The XML ontology tree
cannot directly be used to derive an XPath query against
an XML instance. Instead, we propose to use an XML view
of the ontology which represents a higher level abstraction

of the domain of interest released from accurate semantic
descriptions [1]. Hence, the ontology model does not ex-
plicitly include instance data from XML documents being
integrated. It provides a pattern for picking up those data,
i.e. XML view, which is enclosed within <instances> tags
in the ontology specification (c.f. Figure 3). In this way, for
accessing the data in LGACCESS, the information searcher
formulates a query by using the view as a pattern. For an
example (reduced) XML view, see Figure 6.

<Geography><GeopoliticalEntity>
<Country> ...
<car_code/><has_capital/><indep_date/></>
<StateGeopolitical>
<name/><population/><area/><abbrev/></>
</GeopoliticalEntity></Geography>

Figure 6: Geography view in XML

On the other side, for accessing the meta-data in LGAC-
CESS using XPath, a straightforward way is to query the
underlying model (LDAP), regardless of the surface syntax.

An XPath query that derives both, the underlying model
of the related instance data and their meta-data in LDAP
ontologies requires a slightly different algorithm when trans-
lated into LDAP from the one used in [27] that is at best
illustrated through an example.

Example 4 If we apply the algorithm to the following XPath
query (see Ezample 1 for the abbreviated syntaz)

Qxpath = [descendant :: StateGeopolitical
[child :: population > 10000000]

our xpath2ldap convertor produces the translated LDAP query

Q = (M, R) where M is the main query, R is the refinement
query [27], and:

M = (dn(root)?subtree?
(name = ” StateGeopolitical”)),
(dn(StateGeopolitical)?onelevel?
(&(name = ” population”)(value > 10000000))).

R

6.2 Query Reformulation

Armed with the modeling formalisms and with the XPath
into LDAP query translator, we are now ready to tackle
the problem of handling global queries. In general terms,
a query performed on the ontology must be reformulated
into source-level queries. See [25, 26, 32] for other data
frameworks that also support query reformulation.

In our framework, the query reformulation task involves
rewriting the original query formulated over the ontology
into single-source queries by taking into account the onto-
logical constructs:

e the link attributes in both concepts and roles,

e the semantic descriptions (subconceptOf, inverseOf,
...), and

e the inter-ontology relationships (synonymOf, hyperny-
mOf, hyponymOf)

The link attributes carry the information that relates the
data residing in multiple XML documents and are hence the
constructs that are investigated for query reformulation in
the sequel. For example, the query @xpqin in Example 4
is formulated relative to the XML view shown in Figure 6.
It is translated into LDAP yielding the query Q. In order
to process such a query in our system, the Reformulate algo-
rithm depicted in Figure 7 is used. The details of each step
of the algorithm are given below.

Relevant Source Discovery. Since the cost of accessing an
information source over the network is significant, the main
optimization offered is the minimization of the number of
external information sources that need to be accessed in
order to answer the query.

The link property of pointing to the namespace contained
on the same or a different server is a suitable means to del-
egate the query context expressed by base to the new con-
text nodes basescn; - one per each local/external relevant
source. This category of links is referred to as baselLinks.
Thus, baseLink;(base;, basescn;) is used to denote the exis-
tence of a connection between entities baseLink; from the
ontology and basescp; from a source level schema (DTD).
Step 1 does the identification of the relevant sources from
a given data repository. It involves examining the baselinks
associated with the base entity appearing in @ and extract-
ing the corresponding host information baseLink;.host; for
each of them (s =1, M).

For our example query and the geographic model depicted
in Figure 4, the resulting set of baseLinks is as follows:

Lysse = {baseLink(StateGeopolitical, Province),
baseLink(StateGeopolitical, Admin_Div)},

giving {terra, gs} as the set of relevant sources.

Query Decomposition. The query decomposition involves
finding the set of source level search requests

Qsre = {Qi : Q; = (basei, scope;, filter;),i =1, M}

such that each of the components, base, scope, and filter
in the original query @ is substituted by its correspond-
ing associate, base;, scope;, and filter; in the source level
schemata respectivelly. The process of substituting original
base and scope is trivial thanks to the assigned semantics to
the baselLink attributes being suitable for this kind of map-
ping and the easy of managing and processing those links in
LDAP.

The major part of the algorithm deals with finding the fil-
ter component of its dedicated query @, i.e., filter;. Step 2
reduces the filter of the original query to filteron: by omit-
ting all predicates dealing with non-ontological attributes,
i.e., value checking predicates. Then it evaluates this query
over the ontology, ignoring for a while the existence of the
underlying sources and their schemata. The result is a set
absTargets of so-called absolute target entries. The link
attributes assigned on these entries, called targetLinks are
parsed and their aliased and/or referred entries are extracted
in Step 3 of the algorithm. We call such entries potential tar-
gets since they do still not represent the final targets we were
looking for originally. They are entries found in the gen-
eral context, i.e. without (yet) taking into consideration the
context as restricted by the base specification in the original
query; they belong to the source schemata, not to the source

Algorithm (Reformulate(Q, Ont, S;chy Ssre))
Let Q = (base, scope, filter) be a global query posed over the ontology Ont., and
Ssch, Ssrc be the set of source schemata, source data respectively.

/* STEP 1. Discovering relevant sources */
for base, find the set of links Lpgse, such that:
Lygse = {baseLink;(base,basesch;) : base € {Q N Ont},basesch; € Ssch;,t =1,m}

/* STEP 2. Finding the set of absolute targets */
/* reduce the filter by discarding any value constraints, e.g. (value > 1000000) */
filteront = Reduce(filter)
Qont = (base, scope, filteront)
absTargets = FindTargets(Qont, Ont) = {absTargety, ...,absTarget;, ...,absTargetm}.

/* STEP 3. Finding the set of potential targets */
/* assume that for each absTarget, there exists at most one potTarget per rel. source */
for each absTarget; € absTargets, find the set of links Ligrget, such that:
Liarget = {targetLinki(absTarget;, potTargetscn;;) : absTarget; € Ont,
potTargetsch;; € Ssch;,potTargetsch,; (apt;>Upt;)}-

/* STEP 4. Building the source level search requests */
Qsre = {}
for each baseLink; € Lygse {

/* group baseLinks & targetLinks by the host they belong to */
potTargetscn;, = {}

for each potTargetsch;; € Liarget {

if (potTargetschij.hostpt == basesch; -hosty) {
potTargetsch, = potTargetsch; UpotTargetschij}}

/* generate a new source level search request and add it to Qurc */
Qi = BuildSourceQuery(Q,baseLink;, potTargetych;) }
QSrc = erc U Qz

return Qere = {Q1,Q2, ..., Qn}

Figure 7: Reformulation algorithm

Algorithm (BuildSourceQuery(Q, baseLink;, potTargetscn;))
Let Q; = (basei, scopei, filter;) be the source level query to be found.
base; = basesch;
scope; = scope // simply overwrite it
filter; = {}
potTargetsch, = {potTargetschij :j=1,n}
for each (af op vy) € filter of @ {
/* replace vy with the corresponding one from the potTargets */
j=1
do {
find (aptj,'vptj) € potTargetsch,;; where ap¢; = af
if (a5 op vpet;) & filters) {
filter; = filter; U (af op vpt) }
++
} while (potTargetscn,;) }

return (base;, scope;, filter;)

Figure 8: Reformulation algorithm (BuildSourceQuery procedure)

relevanﬂA
sources

name:country,capital)

s, (& A ital))
0=l amecproe ey

remote

has_capital

/I has_capital

D - base entries
has_capital

qu

o name:Capital)) Q - target entries

02 S g ey

ontolcygy

b,

local

ROBO

has_capital has_capital | | capital capital

terra
has_capital

/- has_capital

has_capital

absolute targets potential targets

final targets targets

Figure 9: The proceeding of an reformulation scenario

data. Step 4 is the gist of the algorithm and the one that
builds the source level search requests. After the baseLinks
and the targetLinks are grouped by the baselinks according
to the host they belong to, they are sent as the arguments
to the BuildSourceQuery function (c.f. Figure 8) which in
turn generates a reformulated query definition in terms of
its entries for each baseLink. Interesting is the way this func-
tion reformulates the filter component: For each filter pred-
icate (af op vs) in @, it generates a corresponding predicate
(as op vpt). If the set potTargetscn; of potential targets con-
tains more than one potTargetsch; ; entries, then for each
potTargetsch;; € potTargetscn; a corresponding predicate
(ay op vpt;;) is generated if it differs from the ones generated
from the previous potTargetsch;,, - - - ,potTargetschi(]._1 po-
tential targets. At the end, the resulting predicates for a
given potTargetsch; are related with the boolean ”&” oper-
ator.
In our case, applying Steps 2, 3, and 4 of the algorithm for
the TERRA and the GS sources which are identified as rel-
evant in Step 1 results in decomposing the original (global)
query @ into the following source level queries respectively:
QTerra = (dn(terra.root)?subtree?(name = Province)),

(dn(Province)?onelevel?

(&(name = pop)(value > 10000000))

Qas = (dn(gs.root)?subtree?(name = Admin_Div)),

(dn(Province)?onelevel?
(& (name = population)(value > 10000000)))
Remind (Section 5) that links refer to the entries contained
in the source schemata, not to the data source entries. There-
fore, the task of redirecting the generated source-level queries
from the source schemata to the respective data sources is
also part of the reformulation process.

Example 5 Consider the query
Quist = (cn = Country, o = Body,ou = Ontology,
0 = LG Access,dc = top
? subtree ? (name = has_capital))

given that the has_capital fragment of our model is as in
Figure 5.

The (de-)composition trace of this query wrt. different target
trees and relevant sources is tllustrated in Figure 9, giving
an insight into the reformulation algorithm in general at the
same time.

6.3 Query Answering

A set of nodes obtained from evaluating an XPath ex-
pression in our system is an unordered collection of nodes
with duplicates. Remind that the XPath Recommendation
specification defined by the W3C expects an unoredered col-
lection of nodes without duplicates at the result set. As re-
gards the ordering, the LGAcCCESS system goes beyond the
original XPath specification, and can be asked to return a
sorted collection of nodes at the output based on some at-
tribute value [19]. Duplicate nodes arise when more than
one sources contain the requested data. To eliminate them,
the result nodes are exposed to the following modifications:

Renaming: The attributes that also appear in the query
use targetLinks to map back from the source level
namespace into the ontology vocabulary. In the case of
Example 5, result nodes stemming from the TERRA
source replace their actual name attribute values, coun-
try_capital and province_capital, with has_capital, those
stemming from the GS source replace capital with
has_capital as well.

Detection/Rejection: Duplicates, i.e., entries with the
same value(s) for the value attribute are identified.
Among them, those that come from the source believed
to be more reliable (up-to-date) are chosen. The rest
is discarded, avoiding redundant result data.

A flat answer set (list) of nodes does not fit the idea of hi-
erarchically organized collections of XML data in the World
Wide Web. Due to its hierarchical namespace, LDAP is
ideally suitable for managing the tree-granular answer sets.
Given the aforementioned arguments, we address next the
problem of obtaining trees of depth 1 at the output of the
system that mirror to a certain degree the concept-role re-
lationships of ontologies. That means, if the user asks for a
concept, its children (roles) are also attached to the result,
as well as the other way round. This format of returning

results contributes considerably to enriching the answer set
with multisource information, preserving at the same time
the intended simplicity (lightweight) of our approach, en-
sured among others by the easy of “reading” results from
the end-users. These pretensions become perceivable in the
example below.

Again, for the case of the StateGeopolitical example, ac-
cording to Figure 4, the set of links L found in Terra and GS
sources determines that the answer set of Q7errq and that
of Qas are to be merged on the name node (see the line
in Figure 3 that defines name as key). As a result of such
a merge operation, the StateGeopolitical one-depth trees are
composed as depicted in Figure 10. Comparing the individ-
ual Province answer set of QTerrq together with that of Qas
with the combined StateGeopolitical answer set, it is obvious
that the latter is richer for the attributes abbrev and/or area,
for at least some of the trees in the result set.

6.4 Discourse

Given the current state of the system, we assumed that
each link, be it baseLink or targetLink, can be specified in the
Idap://host/dn form, allowing the entries to be referenced
by their distinguished names. Using links in the extended
Idap://host/dn?projection?scope?filter form would allow for a
much richer way of referencing entries and remains as future
work. These can then be used as a means for resolving the
structural discrepancies across sources.

Important to note is the time complexity of our reformu-
lation algorithm. The overhead of the algorithm is mainly
dictated by the task of reformulating the filter. Due to the
assumption that for each absTarget entry, say M of them,
there exists at most one corresponding potTarget per rele-
vant source, say N of them, it is obvious that the algorithm
is linear in M x N. Note that composed filters in a query do
not cause an increase in complexity because they are solely
a matter of no other but the LDAP query engine itself.

Besides decomposition, further reformulation procedures
not considered here are generalization, specialization, inver-
sion, etc. based on the ontological primitives like subcon-
ceptOf, inverseOf, synonymOf, etc. See [1] for a detailed
description of specifying these contructs in LGACCEsS.

7. EXPERIMENTAL RESULTS

A preliminary version of the system is already available
and providing very promising results.

Consider again the Example 5. We used an excerpt of the
freely available CYC Geography ontology on the Web at
[24] that contains among others information about geopo-
litical entities, i.e., countries, states, cities, etc. For the
instance data, we used the TERRA and the GlobalStatistics
data sources. We located the Geography ontology as well as
the TERRA data source at the local mirkwood server, and the
GlobalStatistics data source at the remote shanghai server.
We first submitted one query per source separately as if we
knew the naming contexts of each of the sources and their
relationship to our final global intension. Then, we posed a
global query against interlinked sources such that a result set
equal to the union of the previous result sets is obtained by
following the local and remote links as depicted in Figure 5.
Surprisingly, the time needed to evaluate the global query
nearly equals the sum of the times needed to evaluate each
of the single source queries separately, one after the other in
series without taking advantages of possible parallelism (see
Figure 11). Notice that, when performing the former, the

user’s expertise on a given domain and his familiarity with
the available data repository is no longer required.

Another interesting measure is the time spent when search-
ing within the network in cases where not all servers contain
information relevant to answer a given query. A gain in ef-
ficiency is achieved when querying the entire network with-
out broadcasting the query to every repository, i.e., without
spending time to contact irrelevant servers.

These results, combined with the fact that the system is
able to implicitly glue nodes belonging to different answer
trees without incurring in any additional work from the user
side, makes our system an ideal candidate for the usage in
practice for global querying scenario of XML data in the
Web.

| Host Server(s) | Result Entries | Evaluation Time |

mirkwood (local) 183 8.926s
shanghai (Intranet) 510 10.984s
mirkwood & shanghai 693 20.879s

Figure 11: The run-time requirement analyses

8. RELATED WORK AND CONCLUSION

For those familiar with XML, the question of using
XLink/XPointer for specifying the links and adapt an exist-
ing XML query language to handle them in a proper way
for any given distributed topology of XML documents comes
natural. Actually, there is not yet an official definition about
the interpretation of those links when queries occur, nor a
system implementation that supports link specifications for
querying in any way. [29] proposes a model where XML links
are thought to serve to delegate a subtree at the point the
link is defined in a document, but the approach aims not on
freeing the user from the usually tremendous query defini-
tion task in case of a multisource environment (see Section
1). These facts, as well as the efficiency of the LDAP-based
system to store and process XML data [27] and internet-
wide pointing links (Section 7) argues for the deployment
of LDAP instead of the emerging XML technologies in a
middleware in our system.

Although extensive work has been done in the area of
modeling ontologies for data integration, most researchers
use logic-based languages like description logics [6], or F-
Logic [23] to describe them and benefit from the reasoning
abilities of logic systems. Our approach, on the other hand,
uses a relatively simple model with a clear syntax that allows
us to provide a unified formal framework to be used for
both, ontology definition and information integration using
the standard and well-established LDAP technology in the
middleware.

Furthermore, due to the hierarchical and flexible structure
of LDAP, we can very easily integrate not only structured
data, but also semistructured data, as opposed to systems
like S1Ms [2] or OBSERVER [30] that are limited to the expres-
sive power of their ontology description languages and are
only able to deal with relational and flat file databases. Not
even systems like FLORID [17], ONTOBROKER [10], or MOMIS
[4], which combine the reasoning capabilities of logic systems
with the expressive power of an object-oriented model are
able to describe XML data, as naturally as we do in our
system. The lack of a tree-like modeling structure forces
them to map XML into an artificial structure not particu-
larly well-suited for such graphs, whereas our model is based

value=Bayern

.7 . .
‘_ population J v

value=10973700

abbrev \)
value=BAY

name

‘: population\)
value=17816079

value=34077

name <

value=70546

value=Nordrhein Westfalen

oc=XMLAttribute
oid=cn=5,cn=4,...,cn=Terra,...,dc=top
“ name=name
. i value=Bayern

! oc=XMLElement
oid=cn=8,cn=4,...,cn=Terra,...,dc=top

name=area
value=70546
.| order=3
StateGeopol - >nam(; N
vaiuéEEﬁélénd
C population\) " abbrev :>
value=47100000 value=ENG

Figure 10: The result data

on a tree structure that resembles that of XML. TSIMMIS
[14] addresses the above deficiencies by taking a similar ap-
proach to ours, namely using the OEM model to describe
mediated views and sources, as opposed to our LDAP-based
data model, which offers, by design, additional benefits de-
rived by the nature of the LDAP directory services.

Some other approaches, like [3, 8] use XML as their com-
mon model for data exchange and integration, but donot
consider the use of ontologies as an integral part of the sys-
tem. Our LDAP-based model, on the other hand, provides
seamless integration with ontologies and DTDs, which al-
lows us to scale our system both, at the source level and at
the user level.

Conclusion. In this paper, we have presented an approach
for combining XML and ontologies into a unified LDAP-
based framework that provides a common querying interface
to XML data by means of powerful network-aware links that
annotate ontologies and point to the instance data to be re-
trieved. A query evaluation strategy that supports this idea
is explained in detail. Given the ubiquity of XML on the
Web, our system will be useful for applications that need
to interact with semistructured databases in a global sense.
It can be applied to accommodate the namespace changes
and mergers that are inevitable as organizations evolve, and
to allow application designers to set up ”search paths” for
collecting results from multiple servers. It provides obvi-
ous advantages with respect to more classical integration
approaches because of the simplicity, coherence, and unifor-
mity of the LDAP model.

9. REFERENCES

[1] L. Ahmedi. Directory-Based Ontologies for Integrating
XML Data. Intl. Workshop on Foundations of Models
and Languages for Data and Objects (FMLDQO’01),
Viterbo, Italy, Sept. 2001.
Y. Arens and C. Knoblock. SIMS: retrieving and
integrating information from multiple sources.
SIGMOD Record, 22(2):562-563, June 1993.
C. Baru, A. Gupta, B. Ludéscher, R. Marciano,
Y. Papakonstantinou, P. Velikhov, and V. Chu.
XML-based information mediation with MIX.
SIGMOD Record, 28(2):597-599, 1999.

[2]

[4] S. Bergamaschi, S. Castano, and M. Vincini. Semantic
integration of semistructured and structured data
sources. SIGMOD Record, 28(1):54-59, 1999.

T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 284(5):34-43,
May 2001.

A. Borgida. Description logics in data management.
IEEE Transactions on Knowledge and Data
Engineering, 7(5):671-682, 1995.

D. Chamberlin, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu (Eds). XQuery 1.0: An XML Query
Language. W3C Working Draft, June 2001.
http://www.w3.org/XML/Query/.

V. Christophides, S. Cluet, and J. Simeon. On
wrapping query languages and efficient XML
integration. SIGMOD Record (ACM Special Interest
Group on Management of Data), 29(2):141-152, 2000.
J. Clark and S. DeRose. XML path language (XPath)
version 1.0. http://wuw.w3c.org/tr/xpath, 1999.

S. Decker, M. Erdmann, D. Fensel, and R. Studer.
Ontobroker: Ontology based access to distributed and
semi-structured information. In DS-8: Semantic Issues
in Multimedia Systems. Kluwer Acad. Publisher, 1999.
S. DeRose, E. Maler, and R. D. J. (Eds). XML
Pointer Language (XPointer) Version 1.0.
http://www.w3.org/TR/xptr/, Sept. 2001.

S. DeRose, E. Maler, and D. Orchard. XML Linking
Language (XLink) Version 1.0.
http://www.w3.org/TR/x1link/, June 2001.

A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy,
and D. Suciu. XML-QL: A Query Language for XML.
In WWW The Query Language Workshop (QL),
Cambridge, MA, Dec. 1998. http:
//wwu.w3.org/TR/1998/NOTE-xml1-ql-19980819/.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass,

A. Rajaraman, Y. Sagiv, J. D. Ullman, V. Vassalos,
and J. Widom. The TSIMMIS approach to mediation:
Data models and languages. Journal of Intelligent
Information Systems, 8(2):117-132, 1997.

O. Group. Openldap server. LDAP implementation
available from http://www.openldap.org/.

[16] W. D. W. Group. Document object model

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

18]

[19]

(20]

[21]

(22]

23]

[24]

25]

[26]

27]

28]

[29]

(30]

31]

32]

[33]

[34]

[35]

specification. http://www.w3.org/DOM/, Dec. 1997.
R. Himmerdder, P. Kandzia, B. Ludascher, W. May,
and G. Lausen. Search, analysis, and integration of
Web documents: A case study with FLORID. In Proc.
Intl. Workshop on Deductive Databases and Logic
Programming (DDLP), pages 47-57, UK, 1998.

T. Howes and M. Smith. RFC 2255: The LDAP URL
format. Available from
ftp://ftp.isi.edu/in-notes/rfc2255.txt, Dec.
1997. Status: Proposed Standard.

T. Howes, M. Wahl, and A. Anantha. RFC 2891:
LDAP control extension for server side sorting of
search results.

T. A. Howes, M. C. Smith, and G. S. Good.
Understanding and Deploying LDAP Directory
Services. Macmillan Technical Publishing, 1999.
Innosoft. LDAP world implementation survey.
Available from http:
//wuw.innosoft.com/ldap_survey/lisurvey.html.
G. Karvounarakis, S. Alexaki, V. Christophides,

D. Plexousakis, and M. Scholl. RQL: A Declarative
Query Language for RDF. In The 11th Intl. World
Wide Web Conference (WW W2002), Honolulu,
Hawaii, USA, May 7-11 2002.

M. Kifer, G. Lausen, and J. Wu. Logical foundations
of object-oriented and frame-based languages. Journal
of the ACM, 42(4):741-843, 1995.

D. B. Lenat and R. V. Guha. Building Large
Knowledge-Based Systems: Representation and
Inference in the CYC Project. Addison-Wesley, 1990.
A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering Queries Using Views. In PODS, 1995.

A. Levy, A. Rajaraman, and J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. In VLDB, pages 251-262, 1996.

P. J. Marrén and G. Lausen. On processing XML in
LDAP. In VLDB, 2001.

W. May. Mondial database. http:
//wuw.informatik.uni-freiburg.de/ may/Mondial,
2000.

W. May. Querying linked XML document networks in
the Web. In The 11th Intl. World Wide Web
Conference (WWW2002), Honolulu, Hawaii, USA,
May 7-11 2002.

E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi.
OBSERVER: An approach for query processing in
global information systems based on interoperation
across pre-existing ontologies. Distributed and Parallel
Databases, 8(2):223-271, 2000.

L. Miller. RDF query using SquishQL. Available at
http://swordfish.rdfweb.org/rdfquery/, 2001.

T. Millstein, A. Levy, and M. Friedman. Query
containment for data integration systems. In PODS,
2000.

A. Seaborne. RDQL: A data oriented query language
for RDF models. Available at
http://www.hpl.hp.com/semweb/rdql.html, 2001.
M. Sintek and S. Decker. RDF query and
transformation language. Available at
http://www.dfki.uni-kl.de/frodo/triple/, 2001.
M. Wahl, T. Howes, and S. Kille. Lightweight
directory access protocol (v3). RFC 2251, Dec. 1997.

