
Quality of Service in Event-based Systems

Stefan Appel
TU Darmstadt, Germany

appel@dvs.tu-
darmstadt.de

Kai Sachs
TU Darmstadt, Germany

sachs@dvs.tu-
darmstadt.de

Alejandro Buchmann
TU Darmstadt, Germany
buchmann@dvs.tu-

darmstadt.de

ABSTRACT
Future software systems must be responsive to events and
must be able to adapt the software to enhance business pro-
cesses. Examples are production and logistics processes that
must be rescheduled based on relevant traffic information.
It is therefore essential that relevant events are detected and
transported to the software components responsible for dy-
namic changes. The trust in such reactive systems depends
to a large extent on the Quality of Service (QoS) provided
by the underlying event system. This paper introduces QoS
aspects in event-based systems and discusses ways of identi-
fying and evaluating QoS needs. This is done by identifying
the different system layers, and the quality requirements at
each layer based on the layer’s functionality.

1. INTRODUCTION
Quality of Service (QoS) in event-based systems (EBSs) is
important when developing solutions to dynamically sup-
port and monitor business processes. A user requires reli-
ability guarantees in order to trust the output of a system
supporting business critical operations. The QoS aspects
discussed in this paper are driven by the research project
ADiWa1. The goal of ADiWa is letting events from the In-
ternet of Things (IoT) dynamically influence and enhance
business processes. Industrial partners provide different use
cases from the areas of logistics, business services, retail and
production; for these scenarios, event-based system proto-
types are developed that enhance the underlying business
processes automatically.

In event-based systems event producers and event consumers
are decoupled and communicate via asynchronous communi-
cation patterns. Event consumers may subscribe to events of
interest. Whenever those events are detected, the subscriber
is notified. Since the invocation of business critical processes
is now triggered by events, the QoS of the event mechanism

1
Allianz Digitaler Warenfluss (ADiWa). Funded by the German Fed-

eral Ministry of Education and Research under grant 01IA08006

GvD Workshop 2010, 25.-28.05.2010, Bad Helmstedt, Germany.
Copyright is held by the author/owner(s).

becomes a key aspect. Defining QoS and developing the nec-
essary monitoring mechanisms is a major challenge. First,
the system boundaries must clearly be defined: is only event
transport of interest, or have event production, composition
and consumption taken into consideration as well. Once the
scope of the event system is defined, overall quality criteria
and criteria for each component must be defined, monitored
and enforced. Quality of Service in EBSs is strongly influ-
enced both by functional properties, such as ordered delivery
of events, and non-functional properties, such as throughput
an availability.

In this paper a general overview of QoS in event-based sys-
tems is given and an architecture that supports the different
types of QoS in an EBS is presented. The main focus is on
QoS of the notification service (Message-Oriented Middle-
ware, MOM, sometimes referred to as Event Bus) as well
as the QoS in terms of Complex Event Processing (CEP).
The paper is organized as follows: first, related work is pre-
sented pointing out current directions of research. Based on
those, a generic approach is chosen to identify QoS factors
in event-based systems. The paper continues with a sys-
tem architecture describing the different qualities occurring
within the scope of an EBS. Finally performance evalua-
tion and monitoring of event-based systems is addressed as
a controlling instrument for ensuring QoS.

2. RELATED WORK
Research in event-based systems can be categorized into
three broad areas: event production, event transportation
and event consumption. Typical event producers are wire-
less sensor nodes and RFID readers but also complex event
processors (CEPs) producing, e.g., composite events. Event
consumers are, for example, complex event processing en-
gines or business applications in general. To connect pro-
ducers and consumers a middleware is necessary and also
responsible for transporting the event notifications. Events
are represented by event objects which are packaged into
notifications [7, 12]. A schematic view of an EBS is shown
in Figure 1.

For the communication between producers and consumers
the paradigm of choice is publish/subscribe, allowing a de-
coupled many-to-many communication. The pub/sub mid-
dleware must provide a certain QoS [8]. At present, one of
the most widely used technologies providing pub/sub capa-
bilities is the Java Message Service (JMS) [23]. A variety of
different implementations exist; popular ones are ActiveMQ



Notification Service Notification Service

Communication Layer

Producer

Consumer

Consumer

Consumer

Event-Based Interaction

Event

Observation

Envelope

Event Notification 
Event observed
….:……. Time 
…….Location…

Event Notification
Time….
…….

Figure 1: Structure of Event-based Systems

[24], HornetQ [20], IBM Websphere, TIBCO Enterprise Mes-
sage Service or Oracle WebLogic Server. All these products
follow the JMS specification and provide the corresponding
QoS functionalities. For JMS these are support for transac-
tions, persistence and durability.

Besides JMS, the Data Distribution Service (DDS) [17] and
the Advanced Message Queuing Protocol (AMQP) [1] are
other standards for MOM. AMQP is a not yet finally speci-
fied network wire-level protocol which enables interoperabil-
ity among different MOM implementations and program-
ming languages; it is comparable to JMS in terms of reli-
ability and messaging capabilities. The focus of DDS are
real-time distributed systems whereas JMS was originally
designed for business applications. In terms of QoS, DDS
does support more options than JMS does; [17] gives an
overview over the supported QoS policies, e.g., DDS allows
the specification of transport priorities for notifications. De-
pending on the area of application JMS, AMQP, or DDS
might be the messaging standard of choice.

Although JMS, AMQP, and DDS support a variety of QoS
features, important QoS needs, e.g., ordering events from
multiple producers or the occurrence of false positives and
false negatives, are not addressed and still topics of research
and of interest for future systems. JMS and DDS are used
in QoS research: [13] presents concepts for the management
of QoS in DDS, [22] uses the SPECjms2007 benchmark to
evaluate compliance and performance of JMS middleware.

In addition to JMS, AMQP, and DDS, which are used in
real-world applications, many research prototypes of mid-
dleware systems exist to evaluate new concepts and features.
While JMS follows a centralized, topic-based approach, cur-
rent research systems are highly distributed and support, for
example, content or concept based pub/sub [2]. The use of
these distributed event-based systems (DEBSs) is necessary
to cope with high volume of events expected to occur in fu-
ture applications. With the spread of mobile smart devices,
events are produced and received anywhere making some
sort of intelligent middleware indispensable. Research pro-
totypes of DEBSs are for example PADRES [11], SIENA [6],
HERMES [19] or REBECA [2]. Prominent research topics
include routing [10] and filtering [9] in DEBSs. Further, the
support of transactions [16] is an important property in or-
der to build systems supporting business-critical processes.
A system overview of DEBS addressing, amongst others,

routing, filtering and transactions is given in [5] and [18].

Generally, QoS has not been addressed extensively in re-
search; a basis is provided in [4] where basic QoS metrics
(e.g., latency, bandwidth, delivery guarantees) are discussed.
In the ADiWa project we tried to apply these metrics di-
rectly and found out that they are very technical on one
hand, and incomplete on the other, since they do not ad-
dress many of the critical functional aspects that have an
impact on QoS. Therefore, we used a list of EBS features
as a starting point to determine the functionality needs of
EBSs. From them we derived the QoS requirements.

3. QOS IN EVENT-BASED SYSTEMS
3.1 Features in EBSs
ADiWa started with the identification of business processes
which can be dynamically supported by an event-based sys-
tem. From the technical perspective this is a high-level view
and many common QoS criteria, like performance of the
EBS, are not applicable at this early stage. To address this
issue we categorized features of EBSs to enable a QoS-aware
specification and development process. The used features
are based upon an analysis of real-world event-based sys-
tems [12]. Examples are: support for mobility, support for
transactions, early filtering, real time capabilities, or sup-
port for interval events. As first step those more than 40
single features were grouped into five main categories: event
types (e.g., support for interval events), general require-
ments (e.g., handling of out of order events), (legal) lim-
itations and specifications (e.g., privacy protection), tech-
nical properties (e.g., support of prioritization), and run-
time requirements & performance (e.g., latency). These fea-
tures determine which type of EBS is needed with respect
to the relevant business cases. Thus, rather than building
a Swiss army knife EBS supporting all imaginable features
and QoS needs, the requirements are matched during the
requirements engineering and development process.

- Development Process -

Event Types

General Requirements

(Legal) Limitations and Specifications

Technical Properties

Runtime Requirements & Performance

Comprehensive Understanding 
of Quality Needs

Figure 2: Features of Event-based Systems

Figure 2 shows the above mentioned categories with respect
to the time line of a development process. As it can be seen,
general requirements as well as event types should be iden-
tifiable rather early, during the first steps of requirements
engineering. Later on, legal limitations and further system
specifications can be determined before technical properties
can be addressed. As last step, runtime requirements and
performance needs can be identified. A comprehensive un-
derstanding of QoS is only possible after all required fea-
tures have been identified. A detailed specification of QoS
requirements can now be produced.



3.2 Characterizing the EBS
Based on the relevance of the various features in a given
application scenario a specific EBS can be configured that
conforms to the required QoS. Figure 3 shows the concep-
tual approach of defining QoS for certain features. For each
feature one or more metrics are necessary to measure and
monitor this feature. For some features the metric to mea-
sure QoS might be as simple as Is supported [yes/no], for
other features multiple metrics might be necessary. An ex-
ample is the support of the feature early filtering with filter
merging and the tradeoff between reduced number of filters
and increased number of false positives.

By merging filters we reduce the number of filters that must
be maintained and evaluated but increase the number of
false positives and the number of forwarded messages be-
cause the filter is now less precise. As shown in Figure 2,
early filtering results in multiple QoS attributes such as
accuracy and efficiency. Efficiency is ultimately measured
through resource utilization of the broker node.

Event-based System

Features

Early Filtering

Metrics Quality of Service

Accuracy

Efficiency

…

Low Response Time Response Time

Interval Event Support Yes / No

… … …

Figure 3: Defining QoS

A major problem that must be considered when addressing
QoS in EBSs is the fact that features and derived QoS re-
quirements are not orthogonal, i.e. they may influence each
other. However, the more concrete the requirements for an
EBS are specified and as more design decisions are made
during the design process, the easier it becomes defining
and monitoring QoS.

4. A QOS AWARE INFRASTRUCTURE
So far we limited the scope to event transport (MOM) and
complex event processing (CEP). As shown in Figure 4, the
complete system includes also the event production layer
and the dynamic business process layer.

At the lowest level the events enter into system; at this
point there is an associated production quality. This quality
is determined by the event producers, for example wireless
sensor nodes. These nodes can monitor the environment
and have, for example, a limited accuracy (Temperature
+/- 1 degree) which might influence later event processing.
The highest levels of the system are the business processes
driven by events where the goal is to dynamically adapt
these processes according to occurring events. The adaption
of processes is associated with QoS again: controlling qual-
ity. Associated QoS metrics describe how well processes are
adapted and whether changes lead to improvements. This
can be measured with Key Performance Indicators (KPI)
assigned to processes. The two remaining levels of QoS con-

Production Quality
(e.g. accuracy of sensors)

Event Producer

RFID Reader Wireless Sensor Networks Mobile Data Entry

…

Message-oriented Middleware (MOM) / Event Bus

Processing 
Quality

(e.g. Throughput, 
Accuracy)

Notification Quality
(e.g. Latency, Reliability)

Complex Event 
Processing

Dynamic Business ProcessesControlling Quality

Publish Publish Publish Publish

Subscribe Publish

Subscribe Publish

Other Producers

SYSTEM COMPONENTSQUALITY CATEGORY

Figure 4: QoS Architecture

cern the inner parts of the system: the event transporting
layer as well as the event processing layer.

Since QoS affects all layers of a system a system-wide ap-
proach for managing quality information is needed. Every
single event has its related production quality and is then
transported and processed with a certain quality. During
all these steps quality information for each event has to be
maintained either directly at the event level or at higher
granularity like event streams. The complexity of the QoS
information suggests that in addition to attaching quality
data to events a central registry for QoS data is helpful (Fig-
ure 5).

Producer

Quality Data Repository

CEP Consumer

Event
Complex

Event

Quality 
Data

Event Transporting Middleware

Transport Quality Data

Quality 
Data

Figure 5: Types of Quality Data

QoS data can be archived. This QoS history is then accessi-
ble and the middleware might draw conclusions during the
event transport: events originating from a sensor reporting
critical situations might require a highly reliable real-time
handling within the middleware. To support features along
these lines an appropriate event format and a system-wide
understanding of the existence of QoS is necessary.

A special challenge in terms of QoS is the support of transac-
tions since transactional processing does involve producers,
middleware, and consumers and thus affects all QoS lay-
ers. Transactions are, for instance, needed in case event
producers require acknowledgments from a consumer before
publishing another event (e.g., shipment event before billing
event). To support this functionality in a flexible and reli-
able way, transaction management has to be supported by
the middleware [16]. Without middleware mediated trans-
actions it would not be possible to inform the event producer



whether a message was just lost or whether there is no ap-
propriate subscriber. Depending on this information further
steps can differ: resending the message vs. reacting to not
available subscriber.

5. EVALUATING & MONITORING MOM
To ensure the compliance of a system with the QoS re-
quirements techniques based on modeling, benchmarking
and monitoring are used.

5.1 Modeling
Various techniques exist for the modeling of event-based sys-
tems. A promising approach is the use of Queuing Petri Nets
(QPNs) [3, 15], which combine the advantages of Queuing
Networks and Petri Nets. The basic building blocks of a
QPN are places, transitions and tokens. Tokens flow through
the net via transitions; at each place the ”processing”of a to-
ken takes a certain amount of time, the so called service time.
In the context of event-based systems, an event is repre-
sented by a token. After building the model and calibrating
the service times, simulation tools (e.g., SimQPN [14]) allow
predicting the throughput and latency of the whole system
in a reasonable time. In addition, resource utilization (e.g.,
CPU utilization) of single components, like brokers, can be
estimated.

5.2 Benchmarking
Another approach is the use of benchmarks to evaluate the
performance and QoS of systems. At first, a benchmark can
test whether the promised QoS is provided by the underly-
ing EBS, e.g., in terms of latency. Second, a well designed
benchmark has a scalable workload allowing determining the
limits of systems and comparing implementations of differ-
ent vendors in an independent way. One of the challenges
when developing a benchmark is choosing an appropriate
workload. Since building separate workloads for various ap-
plication scenarios is usually not possible, a benchmark uses
a workload with properties which are characteristic for many
applications. Further, it can be designed to support soft-
ware developers and architects during the development pro-
cess. When choosing a current middleware which supports
pub/sub, e.g., following the JMS standard, the developers
still have the choice whether to use a single topic for all
messages or various topics. In terms of ADiWa the decision
would be whether to use an event bus where all events flow
through the same stream (destination), or whether to struc-
ture events and use various streams (destinations) forming
the overall event bus. To evaluate, amongst others, these
different alternatives jms2009-PS was developed [21]; it uses
the SPECjms2007 workload as a basis and emphasizes on
pub/sub messaging. SPECjms2007 is the current industry-
standard benchmark for MOM servers based on the JMS and
models a supermarket supply chain where RFID technology
is used to track the flow of goods.

jms2009-PS provides more than 80 configuration parame-
ters allowing the user to customize the workload in terms of
the number of destinations (topics), the number of subscrip-
tions, the number and type of selectors, and the message de-
livery modes (QoS). With these parameters alternative ways
to implement pub/sub communication can be evaluated in
terms of their overhead, performance and scalability.

5.3 Monitoring
Besides modeling and benchmarking the monitoring of a pro-
ductive event-based system is important to ensure QoS. Col-
lected data can be incorporated with models, validated by
simulations, and utilized to develop a characteristic bench-
mark workload. Further, monitoring allows the early detec-
tion of potential bottlenecks and gives developers the pos-
sibility to adapt and extend the system in advance. Moni-
toring is done by collecting runtime information. This can
be accomplished in a pub/sub manner: each event producer
or consumer does not only publish events but also statistical
information. In addition, the event transporting middleware
itself can publish data accounting for QoS. Parties interested
in statistical data can then simply subscribe to messages
and perform further analysis. The middleware can act as a
consumer, too. By this a self-adapting middleware can be
realized which dynamically reconfigures to constantly assure
the required QoS.

To allow the reporting of statistical data middleware imple-
mentations need to be adapted. Unfortunately monitoring a
system introduces an overhead. The overhead increases with
the granularity of monitoring, thus a tradeoff between mon-
itoring granularity and potential monitoring benefits has to
be found in productive systems. It is also possible to build
a system with adjustable monitoring capabilities. If such
a monitoring framework exists, it becomes possible to in-
crease the monitoring granularity either on a regular basis
or whenever an in-depth problem analysis is needed.

6. CONCLUSION
Dynamically enhancing business processes using events orig-
inating from a variety of producers requires a middleware for
transporting the data. Within the ADiWa project require-
ments for those middleware systems are a topic of research.
In this paper an approach for identifying, defining and en-
suring QoS needs is presented. At first, relevant features
of an EBS are identified; this can be accomplished stepwise
as the requirements engineering process proceeds. Based
upon the determined functionalities, QoS metrics can be de-
veloped and evaluated using, e.g., benchmarking, modeling,
and monitoring mechanisms. This QoS-aware software de-
velopment process assures that quality needs are taken into
consideration early in the design process. In addition to the
identification of QoS needs the management of QoS relevant
data is a challenge. QoS data does occur at various places in
systems and thus collecting relevant parts of it in a central
repository is necessary. Based upon archived QoS data the
system can be evaluated and tuned.

7. REFERENCES
[1] AMQP Working Group. Advanced Message Queuing

Protocol, 2010. http://www.amqp.org.

[2] J. Antollini, M. Antollini, P. Guerrero, and M. Cilia.
Extending rebeca to support concept-based
addressing. In Proceedings of ASIS, 2004.

[3] F. Bause. Queueing Petri Nets - A formalism for the
combined qualitative andquantitative analysis of
systems. In Proceedings of Petri Nets and
Performance Models, 1993.

[4] S. Behnel, L. Fiege, and G. Muehl. On
quality-of-service and publish-subscribe. In



Proceedings of ICDCSW, 2006.

[5] A. Buchmann, C. Bornhoevd, M. Cilia, L. Fiege,
F. Gaertner, C. Liebig, M. Meixner, and G. Muehl.
Dream: Distributed reliable event-based application
management. In M. Levene and A. Poulovassilis,
editors, Web Dynamics: Adapting to Change in
Content, Size, Topology and Use. Springer, 2004.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Achieving scalability and expressiveness in an
internet-scale event notification service. In Proceedings
of PODC, 2000.

[7] K. Chandy and W. Schulte. Event Processing:
Designing IT Systems for Agile Companies.
McGraw-Hill, Inc., 2010.

[8] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 35(2), 2003.

[9] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira,
K. A. Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe
systems. In Proceedings of SIGMOD, 2001.

[10] C. Fengyun and J. P. Singh. Efficient event routing in
content-based publish-subscribe service networks. In
Proceedings of INFOCOM, 2004.

[11] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski.
The PADRES distributed publish/subscribe system.
Feature Interactions in Telecommunications and
Software Systems, VIII, 2005.

[12] A. Hinze, K. Sachs, and A. Buchmann. Event-based
applications and enabling technologies. In Proceedings
of DEBS, 2009.

[13] J. Hoffert, D. Schmidt, and A. Gokhale. A QoS policy
configuration modeling language for publish/subscribe
middleware platforms. In Proceedings of DEBS, 2007.

[14] S. Kounev and A. Buchmann. SimQPN - a tool and
methodology for analyzing queueing Petri net models
by means of simulation. Performance Evaluation,
63(4–5), 2006.

[15] S. Kounev, K. Sachs, J. Bacon, and A. P. Buchmann.
A methodology for performance modeling of
distributed Event-Based systems. In Proceedings of
ISORC, 2008.

[16] C. Liebig and S. Tai. Middleware mediated
transactions. In G. Blair, D. Schmidt, and
M. Takizawa, editors, Proceedings of DOA, 2001.

[17] Object Management Group (OMG). OMG Data
Distribution Service (DDS) Specifications. 2007.
http://www.omg.org/spec/DDS/.

[18] P. Pietzuch, D. Eyers, S. Kounev, and B. Shand.
Towards a Common API for Publish/Subscribe. In
Proceedings of DEBS, 2007.

[19] P. R. Pietzuch and J. Bacon. Hermes: A distributed
event-based middleware architecture. In Proceedings of
ICDCSW, 2002.

[20] Red Hat, Inc. JBoss HornetQ,
http://www.jboss.org/hornetq, 2009.

[21] K. Sachs, S. Appel, S. Kounev, and A. Buchmann.
Benchmarking publish/subscribe-based messaging
systems. In Proceedings of BenchmarX, 2010.

[22] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann.
Performance evaluation of message-oriented

middleware using the SPECjms2007 benchmark.
Performance Evaluation, 66(8), 2009.

[23] Sun Microsystems. Inc. Java Message Service
Specification Final Release 1.1, 2002.

[24] The Apache Software Foundation. Apache ActiveMQ,
http://activemq.apache.org/, 2009.


