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Abstract. We define an Intuitionistic Conditional Logic for Access Control called
CICL . The logic CICL is based on a conditional language allowing principals
to be defined as arbitrary formulas and it includes few uncontroversial axioms
of access control logics. We provide an axiomatization and aKripke model se-
mantics for the logicCICL , prove that the axiomatization is sound and complete
with respect to the semantics, and define a sound, complete and cut-free labelled
sequent calculus for it.

1 Introduction

Access control is concerned with the decision when to acceptor deny a request from
a principal (e.g., user, program) to do an operation on an object. In practice, an access
control system is a product of several, often independent, distributed entities with dif-
ferent policies that interact in order to determine access to resources. In order to specify
and reason about such systems, many formal frameworks have been proposed [1–5].

A common feature of most well-known approaches is the employment of construc-
tive logics enriched with formulas of the formA saysϕ, intuitively meaning that the
principalA assertsor supportsϕ to hold in the system.In [6] it is shown that an intu-
itionistic interpretation of the modality “says” allows toavoid unexpected conclusions
that are derivable when “says” is given an axiomatization inclassical logic.

The treatment of the operator “says” as a modality can be found in [7], which in-
troduces a logical framework, FSL, based on multi-modal logic methodology. In [8] an
access control logic, ICL, is defined as an extension of intuitionistic propositional logic,
in which the operatorsays is given a modal interpretation in the logic S4.

In this paper we show that conditional logics [9] can providea natural framework
to define axiomatization, semantics and proof methods for access control logics. We
present an intuitionistic logic,CICL , which integrates access control logics with condi-
tional logics. We formalize thesaysoperator as a conditional normal modality so that
A saysφ is regarded as a conditional implicationA ⇒ φ, meaning that propositionφ
holds in all the preferred worlds for the principalA. The generality of this approach
opens the way to the formalization of the so called boolean principals [8], that is, prin-
cipals which are formed by boolean combination of atomic principals.
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From the access control point of view, thesaysoperator satisfies the axioms of
the “basic logic of access control” ICL [8]. We define a sound and complete Kripke
semantics forCICL as well as a sound and complete cut-free sequent calculus forit.

The paper is structured as follows. In Section 2 we introducethe axiomatization
and the semantics for the intuitionistic conditional logicCICL and we compare it with
existing approaches. In Section 3 we show that the axiomatization is sound and com-
plete with respect to the semantics. In Section 4 we define a cut-free sequent calculus for
CICL and we prove its soundness and completeness. Section 5 contains the conclusions
and a discussion of related work.

2 The logic CICL

In this section, we introduce the conditional intuitionistic logic CICL for access control
by defining its axiomatization and Kripke semantics. Then wediscuss some conditional
axioms which can be introduced to model properties of boolean principals, namely
compound principals formed by boolean connectives. Indeed, while the basic axioms
for access control are rather uncontroversial [8, 6], we believe that the same cannot yet
be said about the axioms governing the behavior of boolean principals.

The formulation of thesaysmodality as a conditional operator allows boolean prin-
cipals to be modelled in a natural way, since in a conditionalformulaA saysφ, both
A andφ are arbitrary formulas. For instance, we can write,A ∧ B saysφ to mean that
principalsA andB jointly say thatφ, andA ∨B saysφ to mean that principalsA and
B independently say thatφ. Indeed, conditional logics provide a natural generalization
of multimodal logics to the case when modalities are labelled by arbitrary formulas.

2.1 Axiom System

We define the languageL of the logic CICL . LetATM be a set of atomic propositions.
The formulas ofL are defined inductively as follows: ifP ∈ ATM , thenP ∈ L;
⊥ ∈ L, where⊥ is a proposition which is always false; ifA, ϕ, ϕ1 andϕ2 are formulas
of L, then¬ϕ, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, andA saysϕ are formulas ofL.

The intended meaning of the formulaA saysψ, whereA andψ are arbitrary for-
mulas, is thatprincipalA says thatψ, namely, “the principalA asserts or supportsψ”
[8]. Although the principalA is an arbitrary formula, in order to stress the fact that a
formula is playing the role of a principal, we will denote it by A,B,C, . . . while we
will use greek letters for arbitrary formulas.

The axiom systemof the logic CICL contains the following axioms and inference
rules:

(TAUT) all tautologies of intuitionistic logic
(K) A says(α→ β) → (A saysα→ A saysβ)
(UNIT) α→ (A saysα)
(C4) (A says(A saysα)) → (A saysα)
(MP) If ⊢ α and⊢ α→ β then⊢ β
(RCEA) If ⊢ A↔ B then⊢ (A saysγ) ↔ (B saysγ)
(RCK) If ⊢ α→ β then⊢ (A saysα) → (A saysβ)



A Constructive Conditional Logic for Access Control 3

We say that a formulaα is a theorem of the logic, and write⊢ α if there is a derivation
of α from the above axioms and rules. We say thatα can be derived from a set of for-
mulasΓ , and writeΓ ⊢ α, if there areγ1, . . . γn in Γ such that⊢ γ1 ∧ . . . ∧ γn → α.
The rule (MP) is modus ponens. (RCEA) and (RCK) are standard inference rules for
conditional logics. (RCK) plays the role of the rule of Necessitation (if⊢ φ then⊢ 2φ)
in modal/multimodal logic. The axiom (K) belongs to the axiomatization of all normal
modal logics and it is derivable in “normal” conditional logics. (UNIT), (K) and (C4)
are the characterizing axioms of the access control logics ICL [8]. All the tautologies
of intuitionistic logic are included, so that the resultinglogic is an intuitionistic version
of a conditional logic. As a major difference with ICL axiomatization [8], our axioma-
tization above also includes inference rules (RCK) and (RCEA) for the says modality.
We will come back to comment on this in section 2.3.

2.2 Semantics

The semantics of the logicCICL is defined as follows.

Definition 1. A CICL model has the formM = (S,≤, {RA}, h) where:S 6= ∅ is a
set of items called worlds;≤ is a partial order over S;RA is a binary relation onS
associated with the formulaA; h is an evaluation functionATM −→ Pow(S) that
associates to each atomic propositionP the set of worldsx in whichP is true.

We define the truth conditions of formulas with respect to worlds in a modelM, by
the relationM, x |= φ, as follows. We use[|φ|] to denote{y ∈ S | M, y |= φ}.

1. M, t |= P ∈ ATM iff, for all s such thatt ≤ s, s ∈ h(P )
2. M, t |= ϕ ∧ ψ iff M, t |= ϕ andM, t |= ψ
3. M, t |= ϕ ∨ ψ iff M, t |= ϕ or M, t |= ψ
4. M, t |= ϕ→ ψ iff for all s such thatt ≤ s (if M, s |= ϕ thenM, s |= ψ)
5. M, t |= ¬ϕ iff, for all s such thatt ≤ s, M, s 6|= ϕ
6. M, t 6|= ⊥
7. M, t |= A saysψ iff, for all s such thattRAs, M, s � ψ.

We say thatφ is valid in a modelM if M, t |= φ for all t ∈ S. We say thatφ is valid
tout court(and write|= φ) if φ is valid in every model. We extend the notion of validity
to a set of formulasΓ in the obvious way: for allt, M, t |= Γ if M, t |= ψ for all
ψ ∈ Γ . Last, we say thatφ is a logical consequenceof Γ (and writeΓ |= φ) if, for all
modelsM, for all worlds t, if M, t |= Γ , thenM, t |= φ.

The relations≤ andRA must satisfy the following conditions:

(a) ∀t, s, z ∈ S, if s ≤ t andtRAz thensRAz;
(b) ∀t, s ∈ S, if sRAt, thens ≤ t;
(c) ∀t, s ∈ S, if sRAt, then∃z ∈ S such thatsRAz andzRAt
(d) if [|A|] = [|B|], thenRA = RB,

Conditions (b) and (c) are, respectively, the semantic conditions associated with the
axioms (UNIT) and (C4), while condition (a) is needed to enforce the property that a
formula true in a worldt is also true in all worlds reachable froms by the relation≤
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(i.e., in all worldss such thatt ≤ s). Condition (d) is the well-known condition for
normality in conditional logics, claiming that the accessibility relationRA is associated
with the semantic interpretation ofA.

Observe that, in the semantics above, the binary relationRA plays the role of the
selection functionf , which is used in most formulations of conditional logic semantics.
In particular,sRAt corresponds tot ∈ f(A, s), and conditions (a), (b), (c) and (d) above
are indeed conditions on the selection functionf , as usual in conditional logics.

It is worth noticing that the notion of logical consequence defined above can be used
to verify that a requestϕ of a principalA is compliant with a set of policies. Intuitively,
given a set of formulasΓ representing policies, we say thatA is compliant withΓ iff
Γ,A saysϕ |= ϕ. For instance, ifΓ contains the following formulas:

((admin saysdeletefile1 ) → deletefile1 )
admin says(Bob saysdeletefile1 → deletefile1 )

we obtain that

Γ,Bob saysdeletefile1 |= deletefile1

2.3 Discussion

Before proving the soundness and completeness result for the logic CICL , we want
to comment about our approach for allowing boolean principals as compared with the
approach proposed by Garg and Abadi in [8]. Also, we discuss which axioms and prop-
erties could be possibly added to the logicCICL to capture the intended properties of
boolean principals.

Garg and Abadi [8] have defined a logic ICL as an extension of intuitionistic propo-
sitional logic, whose axiomatization includes “all the inference rules of intuitionistic
propositional logic” as well as the axioms (UNIT), (K) and (C4) above, called (unit),
(cuc), and (idem), respectively. While the inference rule (RCK) is derivable from ICL
axiomatization, as a difference with our axiomatization, their axiomatization does not
include the inference rule (RCEA) which allows to deal with equivalent principals.

In [8] Garg and Abadi provide a translation of the logic ICL tomodal logic S4. In
particular, they translate the formulaA saysφ to 2(A∨ φ′), whereφ′ is the translation
of φ according to a variant of Gödel translation from intuitionistic logic to S4.

For what concerns non-atomic principals, Garg and Abadi [8]introduce the logic
ICLB for defining boolean principals. In ICLB,A∧B saysφ is the same asA saysφ ∧
B saysφ, whileA ∨B saysφ means that, by combining the statements ofA andB, φ
can be concluded. We can observe that the interpretation of conjunction and disjunction
between principals we have given in this paper is actually the opposite one. In fact, our
interpretation of the statementA ∧ B saysφ is thatA andB jointly (combining their
statements) say thatφ. It comes from the interpretation of the statement as a conditional
implication:A andB (conjointly) conditionally proveφ. Similarly, our interpretation of
the statementA∨B saysφ is thatA andB disjointly (independently) say thatφ, which
comes from the reading of the conditional formula asA andB (disjointly) conditionally
proveφ. Due to this, let us say, superficial difference, the properties that Garg and Abadi
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discuss forA ∧ B saysφ are relevant for our statementA ∨ B saysφ and, vice-versa,
the properties they discuss forA∨B saysφ are relevant for our statementA∧B saysφ.

The conditional logic we have defined is rather weak, as it does not contain spe-
cific axioms which would enforce intended properties of boolean principals, as those
discussed in [8]. Let us now consider some of them.

Concerning the statementA ∨ B saysφ, we could expect thatA andB disjointly
(independently) say thatφ if bothA saysφ andB saysφ. This property can be captured
by the following axiom:

A saysφ ∧B saysφ→ A ∨B saysφ

which corresponds to the well known axiom (CA) of conditional logics [9]. Similarly,
we could expect that the converse axiom

A ∨B saysφ→ A saysφ ∧B saysφ

holds. The two axioms together would enforce the property thatA andB disjointly say
thatφ if and only if A says thatφ andB says thatφ . Mutatis mutandis, this appears
to be a wanted property, according to [8]. Concerning the statementA ∧ B saysφ, we
could expect thatA andB jointly say thatφ whenA (or B) alone says thatφ. This
condition could be enforced by introducing the following axiom

A saysφ→ A ∧B saysφ

which, however, is a very controversial axiom of conditional logics, called monotonic-
ity.

The impact of the addition of the above axioms to the axiomatization of the logic
CICL has to be studied. While we could expect the addition of the axiom (CA) and
its converse to be armless, the same cannot be said for the monotonicity axiom, whose
introduction could cause the logic to collapse or become inconsistent.

3 Soundness and Completeness

In this section we prove that the axiomatization given aboveis sound and complete with
respect to the semantics of Definition 1.

Theorem 1 (Soundness).The axiomatization of the logicCICL given in Section 2.1
is sound w.r.t. the semantics in Definition 1: given a formulaϕ ∈ L, if Γ ⊢ ϕ, then
Γ |= ϕ.

Proof. It is easy to prove that each axiom is a valid formula and, for each inference
rule, if the antecedent of the rule is a valid formula, the consequence of the rule is also
a valid formula.

2

The completeness proof we present is based on the proof of completeness for the Kripke
semantics of intuitionistic logic in [10] (see section 6, page 87) and extends it to deal
with the modalitiessays in the language and, more precisely, with the interplay be-
tween the relation≤ and the accessibility relationsRA associated with the modalities.
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Definition 2 (Consistency).Γ is consistent iffΓ 6⊢ ⊥. If Γ has an infinite number of
formulas, we say thatΓ is consistent iff there are no finiteΓ0 ⊂ Γ such thatΓ0 ⊢ ⊥.

Definition 3 (Saturation). Let Γ be a set of well formed formulas, we say thatΓ is
saturated iff 1.Γ is consistent; 2. ifΓ ⊢ ϕ, thenϕ ∈ Γ ; 3. if Γ ⊢ ϕ ∨ ψ, then
Γ ⊢ ϕ or Γ ⊢ ψ.

Lemma 1 (Saturated Extensions).SupposeΓ 6⊢ ϕ, then there is a saturated extension
Γ ∗ ofΓ such thatΓ ∗ 6⊢ ϕ.

The proof can be done by transfinite induction as in [10].

Lemma 2. Let Γ be a set of formulas and let∆ = {ϕ : A saysϕ ∈ Γ}. If ∆ ⊢ ψ,
thenΓ ⊢ A saysψ.

Proof. Suppose there is a derivation ofψ from ∆. Then, there must be a finite set
of formulas{ϕ1, . . . , ϕn} ⊆ ∆ such that{ϕ1, . . . , ϕn} ⊢ ψ. By definition of⊢, ⊢
ϕ1 ∧ . . . ∧ ϕn → ψ. By (RCK) and (K),⊢ A saysϕ1 ∧ . . . ∧A saysϕn → A saysψ,
and from definition of⊢ (and sinceA saysϕi ∈ Γ for all i = 1, . . . , n) we conclude
thatΓ ⊢ A saysψ.

2

Definition 4 (Canonical model construction).Let Γ0 be any saturated set of formu-
las. Then we defineM = (S,≤, {RA}, Γ0, h) such that: S is the set of all saturated
Γ ⊇ Γ0; Γ1 ≤ Γ2 iff Γ1 ⊆ Γ2; Γ1RAΓ2 iff {α | A saysα ∈ Γ1} ⊆ Γ2; for all
P ∈ ATM , h(P ) = {Γ ∈ S | P ∈ Γ}.

Observe that in the above construction,Γ0 ∈ S.

Lemma 3. For all Γ ∈ S and each wff formulaϕ, we have thatΓ |= ϕ iff ϕ ∈ Γ .

Proof. By induction on the complexity ofϕ. In caseϕ is an atomic formula, the lemma
holds by definition. Forϕ ≡ φ ∧ ψ the proof is easy and therefore omitted. Forϕ ≡
φ ∨ ψ, thenΓ |= φ ∨ ψ ⇔ (Γ |= φ or Γ |= ψ) ⇔ (φ ∈ Γ or ψ ∈ Γ ) ⇔ φ ∨ ψ ∈ Γ
(by the saturation ofΓ ). Forϕ ≡ φ → ψ, supposeΓ |= φ → ψ. Then for all saturated
Γ

′

⊃ Γ we have that ifΓ
′

|= φ, thenΓ ′ |= ψ. AssumeΓ 6⊢ φ→ ψ, thenΓ ∪{φ} 6⊢ ψ;
let Γ

′

be a saturated extension ofΓ ∪ {φ} such thatΓ
′

6⊢ ψ, thenΓ
′

|= φ but not
Γ

′

|= φ (induction hypotesis); this contradictsΓ |= φ → ψ, henceΓ ⊢ φ → ψ. As
Γ is saturated, by condition 2 in Definition 3,φ → ψ ∈ Γ . The converse is trivial. For
ϕ ≡ A saysφ, supposeΓ |= A saysφ. Hence, for allΓ ′ such thatΓRAΓ

′, Γ ′ |= φ.
By inductive hypothesis,φ ∈ Γ ′. Let ∆ = {α : A saysα ∈ Γ}. By construction,
Γ ′ ⊇ ∆. Assume, for a contradiction, thatA saysφ 6∈ Γ . By condition 2 in Definition
3,Γ 6⊢ A saysφ. Then, by Lemma 2,∆ 6⊢ φ. By Lemma 1, there is a saturated extension
∆∗ of ∆ such that∆∗ 6⊢ φ. This contradicts the fact that, for allΓ ′ such thatΓRAΓ

′,
φ ∈ Γ ′. The converse is trivial.

2

Lemma 4. Let M be the canonical model as defined in Definition 4.M satisfies the
semantic conditions (a), (b), (c), and (d).
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Proof. We have to prove that

(a) ∀Γ, Γ ′, Γ ′′ ∈ S, if Γ ≤ Γ ′ andΓ ′RAΓ
′′ thenΓRAΓ

′′

(b) ∀Γ, Γ ′ ∈ S, if ΓRAΓ
′ thenΓ ≤ Γ ′.

(c) ∀Γ, Γ ′ ∈ S, if ΓRAΓ
′, then∃Γ ′′ ∈ S such thatΓRAΓ

′′ andΓ ′′RAΓ
′

(d) ∀Γ, Γ ′ ∈ S, if ΓRAΓ
′ and⊢ A↔ B thenΓRBΓ

′.

The proof is straightforward. As an example, let us prove point (b). Given a saturated set
Γ , we have to show that ifΓRAΓ

′ thenΓ ≤ Γ ′. Assume thatΓRAΓ
′ and letα ∈ Γ .

By saturation ofΓ and by (UNIT),α → A saysα ∈ Γ . By (MP), A saysα ∈ Γ .
Hence, by construction of the canonical model,α ∈ Γ ′. Therefore,Γ ≤ Γ ′.

2

By the above lemmas, we can conclude that:

Theorem 2 (Completeness).The axiomatization of the logicCICL given in Section
2.1 is complete with respect to the semantics in Definition 1:given a formulaϕ ∈ L, if
Γ |= ϕ, thenΓ ⊢ ϕ.

Proof. For a contradiction, supposeΓ 6⊢ ϕ. Then by Lemma 1 there is a saturated
extensionΓ ∗ of Γ such thatΓ ∗ 6⊢ ϕ. By Definition 4 and Lemmas 3 and 4, we conclude
that there is a (canonical) modelM = (S,≤, {RA}, Γ ∗, h) such thatM, Γ ∗ |= Γ ∗ and
M, Γ ∗ 6|= ϕ. SinceΓ ⊆ Γ ∗, alsoM, Γ ∗ |= Γ . It follows thatϕ is not a logical
consequence ofΓ , i.e.Γ 6|= ϕ.

2

4 A sequent calculus forCICL

In this section we present a sequent calculus forCICL . Our calculus is called SeqCICL
and it makes use of labels to represent possible worlds, following the line of [11]. We
are able to give an analytic, cut-free calculus for the logicCICL . The completeness of
the calculus is an immediate consequence of the admissibility of cut.

In addition to the languageL of the logic CICL , we consider a denumerable al-
phabet of labelsA, whose elements are denoted byx, y, z, . . .. There are three types of
labelled formulas:

1. world formulas, denoted byx : A, wherex ∈ A andA ∈ L, used to represent that
the formulaA holds in a worldx;

2. transition formulas, denoted byx
A

−→ y, representing thatxRAy;
3. order formulasof the formy ≥ x representing the partial order relation≤.

A sequentis a pair〈Γ,∆〉, usually denoted withΓ ⇒ ∆, whereΓ and∆ are multisets
of labelled formulas. The intuitive meaning of a sequentΓ ⇒ ∆ is: every model that
satisfies all labelled formulas ofΓ in the respective worlds (specified by the labels)
satisfies at least one of the labelled formulas of∆ (in those worlds). This is made
precise by the notion ofvalidity of a sequent given in the next definition:
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Definition 5 (Sequent validity). Given a modelM = (S,≤, {RA}, h) for L, and a
label alphabetA, we consider amappingI : A → S. LetF be a labelled formula, we
defineM |=I F as follows:

– M |=I x : A iff M, I(x) |= A

– M |=I x
A

−→ y iff I(x)RAI(y)
– M |=I y ≥ x iff I(x) ≤ I(y)

We say thatΓ ⇒ ∆ is valid in M if, for every mappingI : A → S, if M |=I F for
everyF ∈ Γ , thenM |=I G for someG ∈ ∆. We say thatΓ ⇒ ∆ is valid in CICL if
it is valid in everyM.

In Figure 1 we present the rules of the calculus SeqCICL
for CICL . As usual, we say

that a sequentΓ ⇒ ∆ is derivablein SeqCICL
if it admits aderivation. A derivation

is a tree whose nodes are sequents. A branch is a sequence of nodesΓ1 ⇒ ∆1, Γ2 ⇒
∆2, . . . , Γn ⇒ ∆n, . . . Each nodeΓi ⇒ ∆i is obtained from its immediate successor
Γi−1 ⇒ ∆i−1 by applyingbackwarda rule of SeqCICL

, havingΓi−1 ⇒ ∆i−1 as the
conclusion andΓi ⇒ ∆i as one of its premises. A branch is closed if one of its nodes
is an instance of axioms, namely(AX), (AX≥), and(AX⊥), otherwise it is open. We
say that a tree is closed if all its branches are closed. A sequentΓ ⇒ ∆ has a derivation
in SeqCICL

if there is a closed tree havingΓ ⇒ ∆ as a root.
As an example, in Figure 2 we show a derivation in SeqCICL

of an instance of the
axiom (UNIT). In order to show that the formulaα → (A saysα) is valid, we build a
derivation in SeqCICL

for the sequent⇒ u : α→ (A saysα).
As an another example, in Figure 3 we show a derivation in SeqCICL

of an instance
of the axiom (C4).
The calculus SeqCICL

is sound and complete for the logicCICL , that is to say a for-
mula F ∈ L is valid in CICL if and only if the sequent⇒ u : F is derivable in
SeqCICL

. In order to prove this, we first need to show some basic structural properties
of the calculus. First, we introduce the notion of complexity of a labelled formula:

Definition 6 (Complexity of a labelled formula cp(F )). We define the complexity of a

labelled formulaF as follows: cp(x : A) = 2 ∗ | A |; cp (x
A

−→ y) = 2 ∗ | A | +1; cp
(y ≥ x) = 2, where| A | is the number of symbols occurring in the string representing
the formulaA.

By the above definition, we have that all the rules of SeqCICL
introduce in the premise(s)

only formulas having a smaller complexity with respect to the formula to which the rule
is applied.

Lemma 5 (Height-preserving admissibility of weakening).Given any formulaF , if
a sequentΓ ⇒ ∆ has a derivation of heighth, thenΓ ⇒ ∆,F andΓ, F ⇒ ∆ have a
derivation of heighth′ ≤ h.

Lemma 6 (Height-preserving label substitution).If a sequentΓ ⇒ ∆ has a deriva-
tion of heighth, thenΓ [x/y] ⇒ ∆[x/y] has a derivation of heighth′ ≤ h, where
Γ [x/y] ⇒ ∆[x/y] is the sequent obtained fromΓ ⇒ ∆ by replacing all occurrences
of the labelx by the labely.
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(AX) (AX⊥) (AX≥)Γ, x : ⊥ ⇒ ∆ Γ ⇒ ∆, x ≥ xΓ, F ⇒ ∆, F
F either x : P, P ∈ ATM or y ≥ x

z new

P ∈ ATM

y and z new

Γ, x : A → B ⇒ ∆, y ≥ x Γ, x : A → B ⇒ ∆, y : A Γ, x : A → B, y : B ⇒ ∆

Γ, x : A → B ⇒ ∆
(→ L)

Γ ⇒ ∆, x : A → B

Γ, y ≥ x, y : A ⇒ ∆, y : B

y new

(→ R)

Γ, y ≥ x, y
A

−→ z ⇒ ∆, z : B
( says R)

( says L)

Γ ⇒ ∆, x : A says B

Γ, x : A says B ⇒ ∆

Γ, x : A says B ⇒ ∆, y ≥ x Γ, x : A says B ⇒ ∆, y
A

−→ z Γ, x : A says B, z : B ⇒ ∆

Γ, x : A ∧ B ⇒ ∆

Γ, x : A ∧ B ⇒ ∆, y ≥ x Γ, x : A ∧ B, y : A, y : B ⇒ ∆

Γ ⇒ ∆, x : A ∧B

Γ, y ≥ x ⇒ ∆, y : A Γ, y ≥ x ⇒ ∆, y : B
(∧R) (∧L)

y new

(∨R) (∨L)
Γ ⇒ ∆, x : A ∨B

Γ, y ≥ x ⇒ ∆, y : A, y : B

Γ, x : A ∨B ⇒ ∆

Γ, x : A ∨B ⇒ ∆, y ≥ x Γ, x : A ∨B, y : A ⇒ ∆ Γ, x : A ∨B, y : B ⇒ ∆

y new

(¬R) (¬L)

(Trans)

(Unit)

Γ ⇒ ∆, x : ¬A

Γ, y ≥ x, y : A ⇒ ∆

Γ, x : ¬A ⇒ ∆

Γ, x : ¬A ⇒ ∆, y ≥ x Γ, x : ¬A ⇒ ∆, y : A

y new

Γ, z ≥ y, y ≥ x ⇒ ∆

Γ, z ≥ x, z ≥ y, y ≥ x ⇒ ∆

Γ, x
A

−→ y ⇒ ∆

Γ, y ≥ x, x
A

−→ y ⇒ ∆

Γ, x
A

−→ y ⇒ ∆

Γ, x
A

−→ y, x
A

−→ z, z
A

−→ y ⇒ ∆

Γ, x : P ⇒ ∆

Γ, x : P ⇒ ∆, y ≥ x Γ, x : P, y : P ⇒ ∆

(C4)

(ATM )

⇒ u : B → A⇒ u : A → B

Γ, x
A

−→ y ⇒ ∆, x
B
−→ y

(EQ)

Fig. 1. The sequent calculus SeqCICL
.

(AX)
. . . , z ≥ x ⇒ z : α, z ≥ x

(AX)
. . . , x : α, z : α ⇒ z : α

(ATM )
z ≥ x, z ≥ y, y ≥ x, x ≥ u, x : α, y

A
−→ z ⇒ z : α

(Trans)
z ≥ y, y ≥ x, x ≥ u, x : α, y

A
−→ z ⇒ z : α

(Unit)
y ≥ x, x ≥ u, x : α, y

A
−→ z ⇒ z : α

( saysR)
x ≥ u, x : α ⇒ x : A saysα

(→ R)
⇒ u : α → (A saysα)

Fig. 2. A derivation in SeqCICL
for (UNIT).
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(AX)
y ≥ x ⇒ y ≥ x

(AX)
y

A
−→ w ⇒ y

A
−→ w

(AX≥)
⇒ w ≥ w

(AX)
w

A
−→ z ⇒ w

A
−→ z

(AX)
z : α ⇒ z : α

( saysL)
. . . , w

A
−→ z, w : A saysα ⇒ z : α

( saysL)
. . . , y

A
−→ w, w

A
−→ z, x : A says(A saysα) ⇒ z : α

(C4)
y ≥ x, x ≥ u, y

A
−→ z, x : A says(A saysα) ⇒ z : α

( saysR)
x ≥ u, x : A says(A saysα) ⇒ x : A saysα

(→ R)
⇒ u : (A says(A saysα)) → (A saysα)

Fig. 3. A derivation in SeqCICL
for (C4).

Lemma 7 (Height-preserving invertibility of rules). Let Γ ⇒ ∆ be an instance of
the conclusion of a rule R of SeqCICL

, with R different from(EQ). If Γ ⇒ ∆ is
derivable, then the premise(s) of R is (are) derivable with aderivation of (at most) the
same height.

Lemma 8 (Height-preserving admissibility of contraction). If a sequentΓ ⇒ ∆,F, F
is derivable in SeqCICL

, then there is a derivation of no greater height ofΓ ⇒ ∆,F ,
and if a sequentΓ, F, F ⇒ ∆ is derivable in SeqCICL

, then there is a derivation of no
greater height ofΓ, F ⇒ ∆.

We now consider the cut rule:

Γ ⇒ ∆,F Γ, F ⇒ ∆
(cut)

Γ ⇒ ∆

whereF is any labelled formula. We prove that this rule is admissible in the calculus
SeqCICL

. The standard proof of admissibility of cut proceeds by a double induction
over the complexity ofF and the sum of the heights of the derivations of the two
premises of(cut), in the sense that we replace one cut by one or several cuts on formulas
of smaller complexity, or on sequents derived by shorter derivations. However, in our
calculus SeqCICL

the standard proof does not work in one case, presented in theproof

of Theorem 3 below, namely the case in whichF is a transition formulax
A

−→ y, the left
premise is obtained by an application of(EQ) and the right premise is obtained by an
application of(C4). Therefore, in order to prove the admissibility of cut for SeqCICL

,

we proceed as follows. First of all, we represent withΓ [xi
A

−→ yi] ⇒ ∆[uj
A

−→ vj ]
a sequent containinganynumber of transitions labelled with the formulaA; moreover,
if ⇒ u : A → A′ and⇒ u : A′ → A are derivable, we denote withΓ ⋆ ⇒ ∆⋆ the
sequent obtained by replacinganynumber of transitions labelled withA with the same

transitions labelled withA′ in Γ [xi
A

−→ yi] ⇒ ∆[uj
A

−→ vj ]. We prove that cut is
admissible by “splitting” the notion of cut in two propositions:

Theorem 3. In SeqCICL
, the following propositions hold:
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– (A) If Γ ⇒ ∆,F andΓ, F ⇒ ∆ are derivable, soΓ ⇒ ∆, i.e. the rule(cut) is
admissible in SeqCICL

;

– (B) if (I) Γ [xi
A

−→ yi] ⇒ ∆[uj
A

−→ vj ] is derivable with a derivation of heighth,
(II) ⇒ u : A → A′ and (III) ⇒ u : A′ → A are derivable, soΓ ⋆ ⇒ ∆⋆ with a
derivation of heighth′ ≤ h.

Proof. By double mutual induction on the complexity of the cut formula and on the
height of the derivation. To prove (A), the induction on the height is intended as usual as
the sum of the heights of the premises of the cut inference; toprove (B), the induction on

the height is intended as the height of the derivation ofΓ [xi
A

−→ yi] ⇒ ∆[uj
A
−→ vj ].

We have several cases:
• Base for (A): one of the two premises of(cut) is an axiom. To save space, we only
present the case in whichΓ ⇒ ∆,F is an instance of(AX) sinceF ∈ Γ . We have
that Γ = Γ ′, F ; the right premise of(cut) is, therefore,Γ ′, F, F ⇒ ∆ and, since
contraction is admissible (Lemma 8), we have that alsoΓ ′, F ⇒ ∆, i.e.Γ ⇒ ∆, is
derivable. The other cases are omitted to save space.

• Base for (B): ifΓ [xi
A

−→ yi] ⇒ ∆[uj
A
−→ vj ] is an axiom, soΓ ⋆ ⇒ ∆⋆, since

axioms do not involve transition formulas.
• Inductive step for (A): we distinguish the following two cases:
- the last step ofoneof the two premises is obtained by a rule in whichF is not the
principal formula. We further distinguish two subcases: (i) one of the sequents, say
Γ, F ⇒ ∆ is obtained by the(EQ) rule, whereF is not principal. The premises of
(EQ) do not containF , since this rule only involves two transition formulas belonging
to Γ and∆. Therefore, we have a proof ofΓ ⇒ ∆ by a direct application of(EQ) to
it; (ii) the sequent whereF is not principal is derived by any rule R, except the(EQ)
rule. This case is standard, we can permute R over the cut, i.e. we cut the premise(s) of
R and then we apply R to the result of cut.
- F is the principal formula in the last step ofbothderivations of the premises of the cut
inference. There are seven subcases:F is introduced a) by(∧R) - (∧L), b) by (∨R) -
(∨L), c) by (→ R) - (→ L), d) by ( saysR) - ( saysL), e) by(EQ) on the left and
on the right, f) by(EQ) on the left and by(C4) on the right, and g) by(EQ) on the
left and by(Unit) on the right. The list is exhaustive. Due to space limitations, here we
only present the most interesting case f). We have the following derivation:

⇒ u : A′ → A
⇒ u : A → A′

(EQ)

(1) Γ
′

, x
A′

−→ y ⇒ ∆, x
A

−→ y

(2) Γ
′

, x
A′

−→ y, x
A

−→ y, x
A

−→ z, z
A

−→ y ⇒ ∆
(C4)

Γ
′

, x
A′

−→ y, x
A

−→ y ⇒ ∆
(cut)

Γ
′

, x
A′

−→ y ⇒ ∆

By (2) and Proposition (B), we have a derivation of at most thesame height also for

(2′) Γ ′, x
A′

−→ y, x
A

−→ y, x
A′

−→ z, z
A′

−→ y ⇒ ∆. By Lemma 5, from(1) we have

a derivation of(1′) Γ ′, x
A′

−→ y, x
A′

−→ z, z
A′

−→ y ⇒ ∆,x
A

−→ y. By cutting (1′)

and (2′), we obtain a derivation ofΓ ′, x
A′

−→ y, x
A′

−→ z, z
A′

−→ y ⇒ ∆ (this cut
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is eliminable by inductive hypothesis on the height of the derivations), then we can
conclude by an application of(C4).

• Inductive step for (B): we have to consider all possible derivations ofΓ [xi
A

−→ yi] ⇒

∆[uj
A

−→ vj ]. We only present the most interesting case, namely the one the derivation
ends as follows:

⇒ (3) u : A → A
′′ ⇒ (4) u : A

′′ → A
(EQ)

Γ [xi
A

−→ yi], x
A

−→ y ⇒ ∆[uj
A

−→ vj ], x
A′′

−→ y

We have to show that there is a derivation also forΓ ⋆, x
A′

−→ y ⇒ ∆⋆, x
A′′

−→ y. Since
the rule(→ R) is invertible (Lemma 7), since(5) ⇒ u : A → A′ and(6) ⇒ u :
A′ → A are derivable, we have derivations also for(5′) x ≥ u, x : A ⇒ x : A′,
(6′) x ≥ u, x : A′ ⇒ x : A, and since we have derivations for(3) and (4), also
(3′) x ≥ u, x : A ⇒ x : A′′ and (4′) x ≥ u, x : A′′ ⇒ x : A are derivable.
By applying the inductive hypothesis of Proposition A on thecomplexity of the cut
formula, we can cut(5′) and(4′) to obtain a derivation of(7) x ≥ u, x : A′′ ⇒ x : A′,
as well as(6′) and(3′) to obtain a derivation of(8) x ≥ u, x : A′ ⇒ x : A′′. We can
conclude as follows:

(7) x ≥ u, x : A
′′ ⇒ x : A

′

(→ R)
⇒ u : A

′′ → A
′

(8) x ≥ u, x : A
′ ⇒ x : A

′′

(→ R)
⇒ u : A

′ → A
′′

(EQ)

Γ [xi
A

−→ yi], x
A′

−→ y ⇒ ∆[uj
A

−→ vj ], x
A′′

−→ y

2

Theorem 4 (Soundness of SeqCICL
). If Γ ⇒ ∆ is derivable, thenΓ ⇒ ∆ is valid in

the sense of Definition 5.

Proof. By induction on the height of the derivation ofΓ ⇒ ∆. To save space, we only

present the inductive step for the case in which the derivation ofΓ ′, x
A

−→ y ⇒ ∆ ends

by an application of(Unit): by inductive hypothesis, the premiseΓ ′, x
A

−→ y, y ≥
x⇒ ∆ is a valid sequent. By absurd, the conclusion is not, i.e. there is a modelM and

a functionI such thatM |=I F for everyF ∈ Γ ′, M |=I x
A

−→ y (i.e.,I(x)RAI(y)),
whereasM 6|=I G for anyG ∈ ∆. By Condition (b) in Definition 1, we have that, since
I(x)RAI(y), alsoI(x) ≤ I(y), thenM |=I y ≥ x, against the validity of the premise.

2

Theorem 5 (Completeness of SeqCICL
). If Γ ⇒ ∆ is valid in the sense of Definition

5, thenΓ ⇒ ∆ is derivable.

Proof. We prove that the axioms are derivable and that the set of derivable formulas is
closed under (MP), (RCEA), and (RCK). In Figure 2 we have shown a derivation of the
axiom (UNIT). In Figure 3 we have shown a derivation of the axiom (C4). Derivations
for (K) and (TAUT) are omitted for the lack of space. For (MP),suppose we have a
derivation for(i) ⇒ x : A and(ii) ⇒ x : A → B. Since weakening is admissible
(Lemma 5), we have that also(i′) ⇒ x : A, x : B and(ii′) x : A⇒ x : A→ B, x : B
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have a derivation in SeqCICL
. Since(cut) is admissible (Theorem 3), we can conclude

that⇒ x : B is derivable as follows:

(i′) ⇒ x : A, x : B

(ii′)x : A ⇒ x : A → B, x : B

. . . ,⇒ x ≥ x, x : B

. . . , x : A ⇒ x : A,x : B

. . . , x : B ⇒ x : B
(→ L)

x : A → B, x : A ⇒ x : B
(cut)

x : A ⇒ x : B
(cut)

⇒ x : B

For (RCEA), we proceed as follows. As usual,⊢ A ↔ B is a shorthand for⊢ A → B
and⊢ B → A. Suppose we have a derivation for⇒ u : A→ B and for⇒ u : B → A.
We have that also⇒ u : (A saysC) → (B saysC) has a derivation in SeqCICL

(the
other half is symmetric):

y ≥ x ⇒ y ≥ x

⇒ u : A → B ⇒ u : B → A
(EQ)

y
B
−→ z ⇒ y

A
−→ z z : C ⇒ z : C

( saysL)
y ≥ x, x ≥ u, x : A saysC, y

B
−→ z ⇒ z : C

( saysR)
x ≥ u, x : A saysC ⇒ x : B saysC

(→ R)
⇒ u : (A saysC) → (B saysC)

For (RCK), suppose there is a derivation in SeqCICL
for ⇒ y : A → B. Since(→ R)

is invertible (Lemma 7), we have also a derivation of(I) z ≥ y, z : A⇒ z : B and, by

weakening (Lemma 5), of(I ′) z ≥ y, y ≥ x, y
C
−→ z, x ≥ u, x : C saysA, z : A ⇒

z : B, from which we conclude:

y ≥ x ⇒ y ≥ x

y
C

−→ z ⇒ y
C

−→ z

(I ′) z ≥ y, . . . , z : A ⇒ z : B
(Unit)

y ≥ x, y
C

−→ z, . . . , z : A ⇒ z : B
( saysL)

y ≥ x, y
C

−→ z, x ≥ u, x : C saysA ⇒ z : B
( saysR)

x ≥ u, x : C saysA ⇒ x : C saysB
(→ R)

⇒ u : (C saysA) → (C saysB)

2

Completeness of SeqCICL
with respect toCICL models of Definition 1 immediately

follows from the completeness of the axiomatization ofCICL with respect to the se-
mantics, shown in Theorem 2. We have that a formulaϕ ∈ L is valid if and only if the
sequent⇒ u : ϕ has a derivation in SeqCICL

.

5 Conclusions

We have defined an intuitionistic conditional logic for Access Control (CICL ) by pro-
viding an axiomatization, a Kripke model semantics and a cut-free sequent calculus.
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From an axiomatic point of view, the employment of constructive logics for access
control has been put forward by Abadi in [6], where he shows that from (UNIT) axiom
in classical logic we can deduceA saysϕ → (ϕ ∨ A saysψ). The previous axioms
is called (Escalation) and it represtents a rather degenerate interpretation of says, i.e.,
if A saysϕ, eitherϕ is permitted or the principal can sayanything. On the contrary,
if we interpret thesays within an intuitionistic logic we can avoid (Escalation). More
generally, as put forward in [12, 13], constructive logics are well suited for reasoning
about authorization, because constructive proofs preserve the justification of statements
during reasoning and, therefore, information about accountability is not lost. Classical
logics, instead, allows proofs that discard evidence. For instance, we can proveψ using
a classical logic by provingϕ → ψ and¬ϕ → ψ, since from these theorems we can
conclude(ϕ ∨ ¬ϕ) → ψ, hence⊤ → ψ.

From a logical point of view, several formal systems have been developed in the
recent years [1, 2, 14, 3–5]. Up to authors knowledge, the only works that introduce a
logic for access control with a Kripke semantics, a calculusand a completeness re-
sult are [15, 8]. In [15], principals are atomic and they cannot be combined, moreover
the underlying semantics is constructive S4 enriched withviews, i.e. a mapping from
worlds to sets of principals, this approach breaks the useful bound between axioms
of saysand accessibility relationships and, as a consequence, [15] does not provide
canonical properties for its axioms. As already mentioned,in [8] is provided an axiom-
atization of ICL, a sequent calculus for it and a translationof ICL into modal logic S4.
It also presents extensions of ICL for dealing with delegation (ICL⇒) and with boolean
principals (ICLB).

In this work, we have proven that the axiomatization of the intuitionistic conditional
logic CICL is sound and complete with respect to the semantics. Moreovoer, we have
provided a cut-free, labelled, sequent calculus for this logic. In CICL , principals are
defined as arbitrary formulas. The generality of the language makes it possible to for-
malize, for instance, the so called boolean principals [8],that is, principals which are
formed by boolean combinations of atomic principals. For the time being,CICL only
includes few uncontroversial axioms of access control logics but it can be extended in
order to cope with richer axioms, as well as with the well known notion of “speaks for”.
Other issue to be tackled are the complexity of the logicCICL and the termination and
complexity of the sequent calculus SeqCICL

. This is what we plan to do in future work.
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