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Abstract. We define an Intuitionistic Conditional Logic for Access @ahcalled
CicL - The logic CicL is based on a conditional language allowing principals
to be defined as arbitrary formulas and it includes few urrceetsial axioms

of access control logics. We provide an axiomatization akdipke model se-
mantics for the logicC)c| , prove that the axiomatization is sound and complete
with respect to the semantics, and define a sound, compldtewsiree labelled
sequent calculus for it.

1 Introduction

Access control is concerned with the decision when to acgegdeny a request from
aprincipal (e.g., user, program) to do an operation on an object. Irtipegg@n access
control system is a product of several, often independésttjlalited entities with dif-
ferent policies that interact in order to determine acoesegources. In order to specify
and reason about such systems, many formal frameworks leavedroposed [1-5].

A common feature of most well-known approaches is the enmpét of construc-
tive logics enriched with formulas of the forsh saysy, intuitively meaning that the
principal A assertsor supportsy to hold in the systemn [6] it is shown that an intu-
itionistic interpretation of the modality “says” allows &woid unexpected conclusions
that are derivable when “says” is given an axiomatizatiod&ssical logic.

The treatment of the operator “says” as a modality can bedanti7], which in-
troduces a logical framework, FSL, based on multi-modaldogethodology. In [8] an
access control logic, ICL, is defined as an extension oftichistic propositional logic,
in which the operatoisays is given a modal interpretation in the logic S4.

In this paper we show that conditional logics [9] can prowadeatural framework
to define axiomatization, semantics and proof methods foess control logics. We
present an intuitionistic logicCic. , which integrates access control logics with condi-
tional logics. We formalize thesaysoperator as a conditional normal modality so that
A says¢ is regarded as a conditional implicatieh=- ¢, meaning that propositios
holds in all the preferred worlds for the principdl The generality of this approach
opens the way to the formalization of the so called boolearcjpals [8], that is, prin-
cipals which are formed by boolean combination of atomingipals.
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From the access control point of view, theaysoperator satisfies the axioms of
the “basic logic of access control” ICL [8]. We define a soumd @omplete Kripke
semantics forCic. as well as a sound and complete cut-free sequent calculits for

The paper is structured as follows. In Section 2 we introdheeaxiomatization
and the semantics for the intuitionistic conditional lodigc. and we compare it with
existing approaches. In Section 3 we show that the axioatadizis sound and com-
plete with respect to the semantics. In Section 4 we definei@eisequent calculus for
CicL and we prove its soundness and completeness. Section Snsathiaconclusions
and a discussion of related work.

2 Thelogic C\¢,

In this section, we introduce the conditional intuitiorddbgic Cic. for access control
by defining its axiomatization and Kripke semantics. Thertigeuss some conditional
axioms which can be introduced to model properties of baofgéncipals, namely
compound principals formed by boolean connectives. Indedde the basic axioms
for access control are rather uncontroversial [8, 6], weelelthat the same cannot yet
be said about the axioms governing the behavior of boolegaoipals.

The formulation of thesaysmodality as a conditional operator allows boolean prin-
cipals to be modelled in a natural way, since in a conditidoahula A says¢, both
A and¢ are arbitrary formulas. For instance, we can wrife) B says¢ to mean that
principalsA and B jointly say thatp, and A v B says¢ to mean that principald and
B independently say that Indeed, conditional logics provide a natural generalirat
of multimodal logics to the case when modalities are laldi arbitrary formulas.

2.1 Axiom System

We define the languagéof the logic Cic. . Let ATM be a set of atomic propositions.
The formulas ofL are defined inductively as follows: i € ATM, thenP € L;

L € £, wherel is a proposition which is always false;Af, ¢, 1 andy, are formulas
of £, then—p, ©1 A s, 1 V ©2, p1 — @2, andA saysy are formulas of_.

The intended meaning of the formutasaysi, whereA and+ are arbitrary for-
mulas, is thaprincipal A says that), namely, “the principald asserts or supports’
[8]. Although the principald is an arbitrary formula, in order to stress the fact that a
formula is playing the role of a principal, we will denote i bl, B, C, ... while we
will use greek letters for arbitrary formulas.

The axiom systenof the logic Cici. contains the following axioms and inference
rules:

(TAUT) all tautologies of intuitionistic logic

(K) A says(a — ) — (A saysa — A saysf3)
(UNIT) a — (A saysa)

(C4) (A says(A saysa)) — (A saysa)

(MP) If H « and- o« — (B thenk 3

(RCEA) If A — Bthent (A saysy) « (B saysy)

(RCK) If - o — S thent (A saysa) — (A saysp)



A Constructive Conditional Logic for Access Control 3

We say that a formula is a theorem of the logic, and write« if there is a derivation
of a from the above axioms and rules. We say thatan be derived from a set of for-
mulas!’, and writel" + «, if there areyy, ..., iIn I'suchthat vy A ... Ay, — a.
The rule (MP) is modus ponens. (RCEA) and (RCK) are standdetence rules for
conditional logics. (RCK) plays the role of the rule of Nesiéstion (if- ¢ thent O¢)
in modal/multimodal logic. The axiom (K) belongs to the ax@tization of all normal
modal logics and it is derivable in “normal” conditional iag. (UNIT), (K) and (C4)
are the characterizing axioms of the access control logits[8]. All the tautologies
of intuitionistic logic are included, so that the resultiiogic is an intuitionistic version
of a conditional logic. As a major difference with ICL axiotization [8], our axioma-
tization above also includes inference rules (RCK) and (RJ&r the says modality.
We will come back to comment on this in section 2.3.

2.2 Semantics
The semantics of the logi€c. is defined as follows.

Definition 1. A Cic. model has the forrit = (S, <,{Ra}, h) where:S # D is a
set of items called worldss is a partial order over S;R4 is a binary relation onS
associated with the formuld; h is an evaluation functiodTM — Pow(S) that
associates to each atomic propositigrthe set of worlds: in which P is true.

We define the truth conditions of formulas with respect tddgin a modelM, by
the relationM, = |= ¢, as follows. We usfgg|] to denote{y € S | M,y = ¢}.

. Mt P e ATM iff, for all s suchthat < s, s € h(P)

Mt EeAYIf Mt E pand Mt =

Mt EeVYiff MitE por Mt

. M.t |E ¢ — tiffforall s suchthat < s (if M, s = pthenM, s =)
. M.t = —piff, forall s such that < s, M, s £~ ¢

ML

. M, t |E Asaysy iff, for all s suchthatR4s, M, sE .

~NOo s wWN PP

We say that is valid in a modelM if Mt |= ¢ for all t € S. We say that is valid
tout court(and write = ¢) if ¢ is valid in every model. We extend the notion of validity
to a set of formulad™ in the obvious way: for alt, M.t = I' if M,¢ = ¢ for all

¢ € I'. Last, we say thad is alogical consequenagf I" (and writeI" = ¢) if, for all
modelsM, for all worldst, if M,t = I, thenM,t = ¢.

The relations< and R4 must satisfy the following conditions:

(@) Vt,s,z€ S,if s <tandtRazthensRaz;

(b) Vt,s € S, if sRat, thens < t;

(c) vt,s € S, if sRat, thendz € S such thattR 4z andzR 4t
(d) if [|A]] = [|B]], thenR4 = Rp,

Conditions (b) and (c) are, respectively, the semantic itimm$ associated with the
axioms (UNIT) and (C4), while condition (a) is needed to eoéothe property that a
formula true in a world is also true in all worlds reachable frosrby the relation<
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(i.e., in all worldss such thatt < s). Condition (d) is the well-known condition for
normality in conditional logics, claiming that the accéddy relation R 4 is associated
with the semantic interpretation dff.

Observe that, in the semantics above, the binary reldigrplays the role of the
selection functiory, which is used in most formulations of conditional logic setics.

In particular,sR 4t correspondsto € f(A, s), and conditions (a), (b), (c) and (d) above
are indeed conditions on the selection functfors usual in conditional logics.

Itis worth noticing that the notion of logical consequeneéed above can be used
to verify that a requesp of a principalA is compliant with a set of policies. Intuitively,
given a set of formulag’ representing policies, we say thatis compliant with/" iff
I', A saysy = . Forinstance, if” contains the following formulas:

((admin saysdeletefilel ) — deletefilel)
admin says(Bob saysdeletefile] — deletefilel)

we obtain that

I', Bob saysdelete filel = deletefilel

2.3 Discussion

Before proving the soundness and completeness resultdédogic Cic , we want
to comment about our approach for allowing boolean prirlsipa compared with the
approach proposed by Garg and Abadi in [8]. Also, we discugsiwaxioms and prop-
erties could be possibly added to the lodigc. to capture the intended properties of
boolean principals.

Garg and Abadi [8] have defined a logic ICL as an extensiontaitionistic propo-
sitional logic, whose axiomatization includes “all thedrénce rules of intuitionistic
propositional logic” as well as the axioms (UNIT), (K) and4)Cabove, called (unit),
(cuc), and (idem), respectively. While the inference riR€K) is derivable from ICL
axiomatization, as a difference with our axiomatizatidrgit axiomatization does not
include the inference rule (RCEA) which allows to deal witju&valent principals.

In [8] Garg and Abadi provide a translation of the logic ICLnmdal logic S4. In
particular, they translate the formulasays¢ to O(A V ¢'), where¢' is the translation
of ¢ according to a variant of Gddel translation from intuifigic logic to S4.

For what concerns non-atomic principals, Garg and Abadirf8bduce the logic
ICL5 for defining boolean principals. In IC1, A A B says¢ is the same ad says$ A
B says¢, while A v B says¢ means that, by combining the statementsiandB, ¢
can be concluded. We can observe that the interpretatioonjdicction and disjunction
between principals we have given in this paper is actua#yoibposite one. In fact, our
interpretation of the statemedt A B says¢ is thatA and B jointly (combining their
statements) say that It comes from the interpretation of the statement as a tiomail
implication: A andB (conjointly) conditionally provey. Similarly, our interpretation of
the statementl vV B says¢ is thatA and B disjointly (independently) say that which
comes from the reading of the conditional formuladeand B (disjointly) conditionally
provee. Due to this, let us say, superficial difference, the praogethat Garg and Abadi
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discuss ford A B says¢ are relevant for our statemenAtv B says¢ and, vice-versa,
the properties they discuss fdir/ B says¢ are relevant for our statemeAt\ B sayse.

The conditional logic we have defined is rather weak, as isda# contain spe-
cific axioms which would enforce intended properties of leaal principals, as those
discussed in [8]. Let us now consider some of them.

Concerning the statemert\ B says¢, we could expect thatl and B disjointly
(independently) say thatif both A saysy andB says¢. This property can be captured
by the following axiom:

A saysop A B saysp — AV B sayso

which corresponds to the well known axiom (CA) of conditiblogics [9]. Similarly,
we could expect that the converse axiom

AV B says¢ — A says¢ A B sayse¢

holds. The two axioms together would enforce the propedyAhand B disjointly say
that¢ if and only if A says that) and B says thaty . Mutatis mutandis, this appears
to be a wanted property, according to [8]. Concerning theestantA A B says¢, we
could expect thatd and B jointly say that¢y when A (or B) alone says thab. This
condition could be enforced by introducing the followindax

A says¢p — A A B says¢

which, however, is a very controversial axiom of conditidogics, called monotonic-
ity.

The impact of the addition of the above axioms to the axiomasitin of the logic
CicL has to be studied. While we could expect the addition of theraCA) and
its converse to be armless, the same cannot be said for thetamicity axiom, whose
introduction could cause the logic to collapse or becomerisistent.

3 Soundness and Completeness

In this section we prove that the axiomatization given abegeund and complete with
respect to the semantics of Definition 1.

Theorem 1 (Soundness)The axiomatization of the logi©c. given in Section 2.1
is sound w.r.t. the semantics in Definition 1: given a formpla& L, if I" - ¢, then

I E o

Proof. It is easy to prove that each axiom is a valid formula and, arheinference
rule, if the antecedent of the rule is a valid formula, thessaruence of the rule is also

a valid formula. -

The completeness proof we presentis based on the proof giletaness for the Kripke
semantics of intuitionistic logic in [10] (see section 6gpa87) and extends it to deal
with the modalitiessays in the language and, more precisely, with the interplay be-
tween the relatior< and the accessibility relation®, associated with the modalities.
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Definition 2 (Consistency).I" is consistent iff" t/ L. If I" has an infinite number of
formulas, we say thaf' is consistent iff there are no finitg, C I" such that/ - L.

Definition 3 (Saturation). Let I" be a set of well formed formulas, we say tliats
saturated iff 1.1" is consistent; 2. ifl" - ¢, thenp € I'; 3.if I' - ¢ V 9, then
I'por I k.

Lemma 1 (Saturated Extensions)Supposéd’ I/ ¢, then there is a saturated extension
I'* of I such thatl™ t/ ¢.

The proof can be done by transfinite induction as in [10].

Lemma 2. Let I" be a set of formulas and leA = {¢ : Asaysy € I'}. If A 4,
thenl" - A saysy.

Proof. Suppose there is a derivation ¢f from A. Then, there must be a finite set
of formulas{¢1,...,on} C A such that{y,...,p,} F 1. By definition ofl-,
w1 A ... Ny — . By (RCK) and (K),- A saysps A ... A Asaysp, — A saysiy,
and from definition of- (and sinced saysy; € I forall i = 1,...,n) we conclude
that" - A saysi. O

Definition 4 (Canonical model construction).Let Iy be any saturated set of formu-
las. Then we defin®l = (S, <,{Ra}, Iv, k) such that: S is the set of all saturated
I' DIy It < Iy iff I7 C I, INRaly iff {Oé | AsaySOé S Fl} C Iy, for all
Pe ATM,h(P)={"e S| PeTl}.

Observe that in the above constructidp,c S.
Lemma 3. Forall I" € S and each wff formule, we have thal” = ¢ iff ¢ € I".

Proof. By induction on the complexity af. In casep is an atomic formula, the lemma
holds by definition. Forp = ¢ A v the proof is easy and therefore omitted. ko
oV, thenl EoVvy & (ITEgorl'=y)s (pelorypel)s oV el
(by the saturation of"). Forp = ¢ — ), supposd” = ¢ — . Then for all saturated
I'" 5 I'we have that i = ¢, thenI” |= 1. Assumel’ I/ ¢ — 1, then'U{¢} t/ ¢;
let I be a saturated extension 6fU {¢} such thatl” I/ ¢, thenI” = ¢ but not
I'" E ¢ (induction hypotesis); this contradicts = ¢ — 1, hencel’ - ¢ — 1. As
I" is saturated, by condition 2 in Definition 8,— 1 € I". The converse is trivial. For
¢ = A saysg, supposd” = A sayse. Hence, for alll” such thatl'Ro I, I = ¢.
By inductive hypothesisp € I"'. Let A = {a : Asaysa € I'}. By construction,
I'" O A. Assume, for a contradiction, thdtsays¢ ¢ I'. By condition 2 in Definition
3,1t/ Asays¢. Then, by Lemma 2] I ¢. By Lemma 1, there is a saturated extension
A* of A such thatA* t# ¢. This contradicts the fact that, for dll' such that" R 41",

¢ € I'". The converse is trivial. -

Lemma 4. Let M be the canonical model as defined in DefinitiorM.satisfies the
semantic conditions (a), (b), (c), and (d).
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Proof. We have to prove that

@V, ', 1" eSS, ifI'<I”andl"RoI'" then'R I

(b) VI, I" € S,if TRAI" thenl’ < I".

() VI, I" € S,if TRAI", thendI" € S suchthatl" R I andI™ R, I’
(d)y vi, 1" e S,if TRoI"" and- A <+ BthenI"'RgI".

The proof is straightforward. As an example, let us provap(i). Given a saturated set
I', we have to show that ifF R4 1" thenI” < I'V. Assume thal"R,I" and leta € TI'.
By saturation ofl” and by (UNIT),ac — A saysa € I'. By (MP), Asaysa € I

Hence, by construction of the canonical modek 1. Thereforel” < I".
O

By the above lemmas, we can conclude that:

Theorem 2 (Completeness)The axiomatization of the logi€\c. given in Section
2.1 is complete with respect to the semantics in Definitiagiien a formulap € L, if
I' = ¢, thenI' F .

Proof. For a contradiction, supposé I/ ¢. Then by Lemma 1 there is a saturated
extension/* of I" such thatl™ t# ¢. By Definition 4 and Lemmas 3 and 4, we conclude
that there is a (canonical) model = (S, <,{Ra}, ", h) such thaiM, I'* = I"* and
M, I'™ £ . Sincel’ C I'*, alsoM, I'™* = I It follows that ¢ is not a logical

consequence df, i.e. " [~ ¢.
O

4 A sequent calculus for Cic.

In this section we present a sequent calculus@qi . Our calculus is called S
and it makes use of labels to represent possible worldawoilg the line of [11]. We
are able to give an analytic, cut-free calculus for the logie. . The completeness of
the calculus is an immediate consequence of the admisgibilcut.

In addition to the languag€ of the logic Cic. , we consider a denumerable al-
phabet of labelsA, whose elements are denoteddyy, z, . . .. There are three types of
labelled formulas:

1. world formulas denoted by: : A, wherex € AandA € £, used to represent that
the formulaA holds in a worldr;

2. transition formulasdenoted byr A, y, representing thatR 4 y;
3. order formulasof the formy > z representing the partial order relatign

A sequents a pair(I', A), usually denoted witi" = A, wherel" and A are multisets
of labelled formulas. The intuitive meaning of a sequEnt> A is: every model that
satisfies all labelled formulas df in the respective worlds (specified by the labels)
satisfies at least one of the labelled formulas/fin those worlds). This is made
precise by the notion ofalidity of a sequent given in the next definition:
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Definition 5 (Sequent validity). Given a modelM = (S, <,{Ra},h) for £, and a
label alphabetA, we consider anapping/ : A — S. LetF’ be a labelled formula, we
defineM =, F as follows:

- MErz: Aiff M, I(z) E A
—- Mz yiff I(2)Ral(y)
“ My >ziff I(z) < I(y)

We say that” = A is valid in M if, for every mappind : A — S, if M |=; F for
everyF € I, thenM = G for someG € A. We say thal” = Ais valid in Cicp if
it is valid in everyM.

In Figure 1 we present the rules of the calculus <;S|9Lq for CicL . As usual, we say
that a sequent’ = A is derivablein Seq, . ifit admits aderivation A derivation

is a tree whose nodes are sequents. A branch is a sequenadesfiho= A;, IH =

Ao, ..., T, = A,,... Each nodd’; = A; is obtained from its immediate successor
I';—1 = A;_; by applyingbackwarda rule of Seg, ., - havingl;_; = A;_; as the
conclusion and’; = A; as one of its premises. A%ranch is closed if one of its nodes
is an instance of axioms, nameglf X ), (AX>), and(AX ), otherwise it is open. We
say that a tree is closed if all its branches are closed. Aesgdu=- A has a derivation

in Seq, ., ifthereisa closed tree having = A as a root.

As an example, in Figure 2 we show a derivation in §|gg of an instance of the
axiom (UNIT). In order to show that the formula— (A saysc«) is valid, we build a
derivation in Seg ., for the sequent u : @ — (A saysa).

As an another example, in Figure 3 we show a derivation inC%quf an instance

of the axiom (C4).
The calculus S L is sound and complete for the logiCic. , that is to say a for-
mulaF € Lis va(fid in CicL if and only if the sequent>- « : F' is derivable in
SeqjIC . In order to prove this, we first need to show some basic stracproperties
of the calculus. First, we introduce the notion of complexit a labelled formula:

Definition 6 (Complexity of a labelled formula cp(F')). We define the complexity of a
labelled formulaF as follows: cp(z : A) =2 | A |;cp (z A, y)=2x*|A|+1;cp

(y > x) = 2, where| A | is the number of symbols occurring in the string representin
the formulaA.

By the above definition, we have that all the rules of Seq introduce in the premise(s)
only formulas having a smaller complexity with respect te thrmula to which the rule
is applied.

Lemma5 (Height-preserving admissibility of weakening) Given any formular’, if
a sequenf’ = A has a derivation of height, thenI”" = A, FFandl', FF = A have a
derivation of height.’ < h.

Lemma 6 (Height-preserving label substitution).If a sequent” = A has a deriva-
tion of heighth, thenI'[x/y] = Alzx/y] has a derivation of height’ < h, where
I'lz/y] = Alx/y] is the sequent obtained frof = A by replacing all occurrences
of the label: by the labely.
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(AX) T,F = AF

Fcitherz: PP € ATM ory >

(AX,) Tya: L=A

Ty>zy:A=Ay:B Tz:A-B=Ay>z

(—=R)

Te:A—=B=Ay: A

(AXs)T=Az>x

Tz:A—By:B=A

IT'=Az:A—B

 new

Ty>z=A7Ay:A Ty>z=Ay:B

T,2:A—-B=A

T,e:ANB=Ay>ux

{— L)

Ta:AANB,y:Ay:B=A

AR
I'=Az:AANB (A1)

y new

Ty>az=Ay:Ay:B Nz:AVB=Ay>z

:AVBy: A=A

AL
T,z:ANB= A (AL)

T,z:AVB,y: B=A

(VR)

n (VL)
I'sAxz:AVB Tz:AVB=A

¥ new

F,g/ZI,g/:A:>A( ) Tae:mA=Ay>z I‘,x:ﬁAﬂA,y:A( I
T'=Az:-A Tz:-A=A

ynew

A . " . .

Ty>zx 2=A,z:B Taz:P=>Ay>x Ta:Py:P=A
y=2,y — z (says R) - (ATM)
T'= Ax:Asays B pean T,z:P=A

yand = new

Ix:Asays B=Ay>zx F,z:AsaysB@A,yim I‘,z:AsaysB,z:BéA( L)

says
T,z:Asays B= A 4
=u:A—B S>u:B—A T.z>rz>yy>c=A
5 5 (EQ) %(Tmns)
Toe—y=A7ANz—>y Tz>yy>az=A
A A A A
Ty>zao—y=A Fae——>yr——>zz>5y=A
Y=Y 2 it (c4)

F,J:iyéA

Iey=a

= new

Fig. 1. The sequent calculus

S&%L ’

(AX)
LR T =z, 2T

(AX)

LTz a= 2

A
22T, 22Y,Y>T,T>UT QY — Z=> 2

(ATM)

A
ZZy:yzfﬂvxzuy-’Eia,yHZ#z:a

(Trans)

A
Y>T,T>UT QY — 2= 2

(Unat)

yes

x>u,r:a=z: Asaysa

= u:a— (Asaysa)

(saysR)

(— R)

Fig. 2. A derivation in SegICL for (UNIT).
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(AX>) 5 (AX) (AX)
= w > w W z=> W — 2z Zia=>z:Q
(AX) " " (AX) < ('saysL)
y>r=y>x Yy— w =y — w Lo,w — z,w: Asaysa = 2z«

" n ('saysL)
oy — w,w — 2,z Asays(A saysa) = 2«

_ (c4)
y>z,x>uy— z,x: Asays(Asaysa) = z : «
(saysR)
x> u,x: Asays(Asaysa) = x : Asaysa
(= R)

= u : (A says(Asaysa)) — (A saysa)

Fig. 3. A derivation in Se@ICL for (C4).

Lemma 7 (Height-preserving invertibility of rules). Let I" = A be an instance of
the conclusion of a rule R of Sgq , with R different from(EQ). If I' = A'is
derivable, then the premise(s) of R Is (are) derivable witteavation of (at most) the
same height.

Lemma 8 (Height-preserving admissibility of contraction). Ifasequeni” = A, F, F
is derivable in Seg, . , then there is a derivation of no greater heightloft=- A, F,
and if a sequent’, F, F' = A is derivable in Se@‘m , then there is a derivation of no
greater heightof, F' = A.

We now consider the cut rule:
I'=sAF IF=A
I'= A

whereF' is any labelled formula. We prove that this rule is admigsiblthe calculus
Seqjl L The standard proof of admissibility of cut proceeds by ald@induction
over the complexity off" and the sum of the heights of the derivations of the two
premises ofcut), in the sense that we replace one cut by one or several cutsroniais
of smaller complexity, or on sequents derived by shorteivdgons. However, in our
calculus SegICL the standard proof does not work in one case, presented prdloé

(cut)

of Theorem 3 below, namely the case in whicls a transition formula 4, y, the left
premise is obtained by an application(@(Q) and the right premise is obtained by an
application of(C4). Therefore, in order to prove the admissibility of cut forqgl%L ,

we proceed as follows. First of all, we represent witfr; 4, yi] = Alu, 4, 4]
a sequent containingny number of transitions labelled with the formulia moreover,
if =>u:A— A and= u : A’ — A are derivable, we denote with* = A* the
sequent obtained by replaciagynumber of transitions labelled with with the same
transitions labelled withd” in I'[x; A, yil = Aluy; A, vj]. We prove that cut is
admissible by “splitting” the notion of cut in two propositis:

Theorem 3. In Se%m , the following propositions hold:
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—(A)IfI' = A FandI,F = A are derivable, sd” = A, i.e. the rule(cut) is
admissible in SEE

— (B)if (1) I'[z; - ;] = Alu; = v;] is derivable with a derivation of heigl,
(I =u:A— A and (lll) = u : A’ — A are derivable, sd™* = A* with a
derivation of heighty’ < h.

Proof. By double mutual induction on the complexity of the cut fofenand on the
height of the derivation. To prove (A), the induction on tlegdit is intended as usual as
the sum of the heights of the premises of the cut inferengeee (B), the induction on

the height is intended as the height of the derivatiof’pf; 4, yi] = Al 4, vj].
We have several cases:

e Base for (A): one of the two premises @fut) is an axiom. To save space, we only
present the case in whichi = A, F' is an instance ofAX) sinceF € I'. We have
thatI" = I, F; the right premise ofcut) is, therefore[”, F, F = A and, since
contraction is admissible (Lemma 8), we have that di$aF’ = A, i.e.I’ = A, is
derivable. The other cases are omitted to save space.

e Base for (B): ifI'[z; A, yi] = Alu; N v;] is an axiom, sad™ = A*, since
axioms do not involve transition formulas.

¢ Inductive step for (A): we distinguish the following two

- the last step obneof the two premises is obtained by a rule in whikhis not the
principal formula. We further distinguish two subcase}:ofie of the sequents, say
I''F = A is obtained by thé EQ) rule, whereF is not principal. The premises of
(EQ) do not contairF’, since this rule only involves two transition formulas beding
to I" and A. Therefore, we have a proof &f = A by a direct application of EQ) to

it; (i) the sequent wheré’ is not principal is derived by any rule R, except {tfeQ)
rule. This case is standard, we can permute R over the cuté.eut the premise(s) of
R and then we apply R to the result of cut.

- F'is the principal formula in the last steplobthderivations of the premises of the cut
inference. There are seven subcades introduced a) byYAR) - (AL), b) by (VR) -
(VL),c)by(— R) - (— L), d) by (saysR) - (saysL), e) by (EQ) on the left and
on the right, f) by(EQ) on the left and byC4) on the right, and g) by EQ) on the
left and by(Unit) on the right. The list is exhaustive. Due to space limitatidrere we
only present the most interesting case f). We have the fatigwerivation:

su:A - A N \ \ M
=u:A— A QI =yr-yr-zz->y=A
(EQ) (C9)

(1)F/,xA—>y$A,xi>y F/,xLy,xLy:A

(cut)

F’,xLy:>A

By (2) and Proposmon (B), we have a derivation of at mostghme height also for
2) I'x A, Y, T A, y,x N 2,z A, y = A. By Lemma5 from(1) we have
a derivation of(1’) I'', A, Y, T i> 2,z A, y = Az A, y. By cutting (1)
and (2’), we obtain a derivation of”, z A Y, T A Z,z 4, y = A (this cut
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is eliminable by inductive hypothesis on the height of thei@gions), then we can
conclude by an application ¢€4).

e Inductive step for (B): we have to consider all possibledgions ofI"[z; A, yi] =

Alu; 4, v;]. We only present the most interesting case, namely the engetlivation
ends as follows:

= B)u:A— A" = A)u: A" — A

A A" (EQ)
Iz 25 yilz 5y = Aluy 5 0],z 2oy

We have to show that there is a derivation alsofér A, y= A"z A y. Since
the rule(— R) is invertible (Lemma 7), sincé) = v : A — A and(6) = u :
A" — A are derivable, we have derivations also 6f) x > u,z : A = x : A/,
(6")z > u,x : AY = x : A, and since we have derivations f(8) and (4), also
@Yz >ux: A=ax:Aand(4) x > u,xz : A” = x : A are derivable.
By applying the inductive hypothesis of Proposition A on tiwmplexity of the cut
formula, we can cuf5’) and(4’) to obtain a derivation of7) x > u,x : A” = x : A/,
as well ag6’) and(3’) to obtain a derivation of8) z > u,z : A’ = x : A”. We can
conclude as follows:
Mz>uxz: A" =>x: A Sz >uz: A =>x: A"

" / (HR) / 7 (*)R)
su:A"— A su:A — A
(EQ)

Tloe 25yl e 25y = Aluy =5 0], 2 2y

O

Theorem 4 (Soundness of S%qCL ). If I' = Alis derivable, thed” = Ais valid in
the sense of Definition 5.

Proof. By induction on the height of the derivation 6f=- A. To save space, we only
present the inductive step for the case in which the deawaif I, = A, y = Aends

by an application of Unit): by inductive hypothesis, the premigé, « A, Y,y >
x = Ais avalid sequent. By absurd, the conclusion is not, i.eetl®ea modeJM and

a function! such thatM |=; F foreveryF € I', M =1z Ay (i.e., I(x)Ral(y)),
whereasM }£; G foranyG € A. By Condition (b) in Definition 1, we have that, since
I(x)Ral(y), alsol(z) < I(y), thenM =; y > x, against the validity of the premDise.

Theorem 5 (Completeness of S%qCL ). If I' = Ais valid in the sense of Definition
5, thenl” = A is derivable.

Proof. We prove that the axioms are derivable and that the set ofatde formulas is
closed under (MP), (RCEA), and (RCK). In Figure 2 we have shawlerivation of the
axiom (UNIT). In Figure 3 we have shown a derivation of theomxi(C4). Derivations
for (K) and (TAUT) are omitted for the lack of space. For (MB)ppose we have a
derivation for(i) = z : Aand(i/) = = : A — B. Since weakening is admissible
(Lemma5), we have thatal§d) = z: A,z: Band(it')z: A=2:A— B,x: B
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have a derivationin S L Since(cut) is admissible (Theorem 3), we can conclude
that= z : B is derivable as follows:
..,z >z,x: B
oo,z A=z Ax:B
.,x:B=x:B

(#i)x:A=2:A— B,z: B r:A—-B,x:A=2z:B
(cut)

(i) =z:Ax:B x:A=>2x2:B
(cut)

=ux:B

For (RCEA), we proceed as follows. As usualA < B is a shorthand for A — B
and- B — A. Suppose we have a derivationferu : A — Bandfor= u: B — A.
We have that alse> u : (A saysC) — (B saysC') has a derivation in Seq., (the

other half is symmetric):

u:A—-B =u:B—A
B x (EQ)
y>r=y>x Yy—z2=>yY— =z z:C=2z2:C

(saysL)

yZm,xZu,m:AsaySC,yiziz:C
(saysR)

x> u,x: AsaysC = x : B saysC

(= R)
= u: (AsaysC) — (B saysC)

For (RCK), suppose there is a derivation in gl%g for=y: A — B. Since(— R)
is invertible (Lemma 7), we have also a derivatior(bfz > y,z : A= z: B and, by
weakening (Lemmab), dfl’) z > y,y > x,y <, z,x > u,x:Csaysd,z: A=
z : B, from which we conclude:

>p =y > (INz>y,...,2:A=2:B
v=t=y="% (Unit)

C C C
Yy—z=>y—2z y>xr,y—2,...,2: A=>z2:B

= (saysL)
y>x,y — z,x>u,x:CsaysA=z:B

(saysR)
x> u,z: CsaysA = z: C saysB

= u: (C saysA) — (C saysB)
O
Completeness of S with respect toCic.  models of Definition 1 immediately
follows from the completeness of the axiomatization@g, with respect to the se-

mantics, shown in Theorem 2. We have that a formulka £ is valid if and only if the
sequent u : ¢ has a derivation in S%gCL .

5 Conclusions

We have defined an intuitionistic conditional logic for AsseControl (CicL ) by pro-
viding an axiomatization, a Kripke model semantics and &g sequent calculus.



14 V. Genovese, L. Giordano, V. Gliozzi, G.L. Pozzato

From an axiomatic point of view, the employment of constigclogics for access
control has been put forward by Abadi in [6], where he shows fitom (UNIT) axiom
in classical logic we can deducésaysy — (¢ V A saysy). The previous axioms
is called (Escalation) and it represtents a rather degenari@rpretation of says, i.e.,
if A saysyp, eithery is permitted or the principal can sanything On the contrary,
if we interpret thesays within an intuitionistic logic we can avoid (Escalation) ok
generally, as put forward in [12, 13], constructive logics well suited for reasoning
about authorization, because constructive proofs pregbejustification of statements
during reasoning and, therefore, information about actaility is not lost. Classical
logics, instead, allows proofs that discard evidence. Fstance, we can proveusing
a classical logic by proving — ¢ and—yp — 1, since from these theorems we can
conclude(p V —p) — 1, henceT — 1.

From a logical point of view, several formal systems havenbéeveloped in the
recent years [1, 2, 14, 3-5]. Up to authors knowledge, thg works that introduce a
logic for access control with a Kripke semantics, a calcidod a completeness re-
sult are [15, 8]. In [15], principals are atomic and they aarlve combined, moreover
the underlying semantics is constructive S4 enriched wighvs i.e. a mapping from
worlds to sets of principals, this approach breaks the Udefund between axioms
of saysand accessibility relationships and, as a consequencedfiEs not provide
canonical properties for its axioms. As already mentioiref8] is provided an axiom-
atization of ICL, a sequent calculus for it and a translatbiCL into modal logic S4.
It also presents extensions of ICL for dealing with delemafiCL=") and with boolean
principals (ICL5).

In this work, we have proven that the axiomatization of thaitionistic conditional
logic CicL is sound and complete with respect to the semantics. Moezpw@ have
provided a cut-free, labelled, sequent calculus for thigcdoln Cic. , principals are
defined as arbitrary formulas. The generality of the languagkes it possible to for-
malize, for instance, the so called boolean principalstf&t is, principals which are
formed by boolean combinations of atomic principals. Fertime being, Cic. only
includes few uncontroversial axioms of access controldegit it can be extended in
order to cope with richer axioms, as well as with the well knawtion of “speaks for".
Other issue to be tackled are the complexity of the logje. and the termination and
complexity of the sequent calculus Sﬁcq . This is what we plan to do in future work.

Acknowledgements

The work has been partially supported by Regione Piemontge® “ICT4Law -ICT
Converging on Law: Next Generation Services for Citizemsegprises, Public Admin-
istration and Policymakefs Valerio Genovese is supported by the National Research
Fund, Luxembourg. This paper extends [16], where somenrpirgdiry results are pre-
sented.

References

1. Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G.D.: Alcalus for access control in
distributed systems. In: Advances in Cryptology, 11th Aadrinternational Cryptology Con-



11.

12.

13.

14.

15.

16.

A Constructive Conditional Logic for Access Control 15

ference (CRYPTO). (1991) 1-23

. Bertolissi, C., Fernandez, M., Barker, S.: Dynamic ¢élmased access control as term rewrit-

ing. In: Data and Applications Security XXI, 21st Annual FFWG 11.3 Working Confer-
ence on Data and Applications Security (DBSec). (2007) 226—

. Gurevich, Y., Roy, A.: Operational semantics for DKAL: @ljization and analysis. In:

Trust, Privacy and Security in Digital Business, 6th Intional Conference (TrustBus).
(2009) 149-158

. Lesniewski-Laas, C., Ford, B., Strauss, J., Morris, Riastioek, M.F.: Alpaca: extensible

authorization for distributed services. In: Proceedinfshe 2007 ACM Conference on
Computer and Communications Security (CCS). (2007) 432-44

. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logidogic-based approach to distributed

authorization. ACM Trans. Inf. Syst. Sec6(1) (2003) 128-171

. Abadi, M.: Variations in access control logic. In: DEOI2008) 96-109
. Boella, G., Gabbay, D., Genovese, V., van der Torre, Lbrdd security language. Studia

Logica92(3) (2009) 395-436

. Garg, D., Abadi, M.: A modal deconstruction of access @bgics. In: 11th International

Conference on Foundations of Software Science and Connput&tructures (FoSSacCs),
Budapest, Hungary (2008) 216—230

. Nute, D.: Topics in Conditional Logic. Reidel, Dordre¢h980)
. Troelstra, A., van Dalen, D.: Constructivism in Mathéice An Introduction. North-

Holland Publishing, Amsterdam

Olivetti, N., Pozzato, G.L., Schwind, C.B.: A Sequentddlus and a Theorem Prover for
Standard Conditional Logics. ACM Transactions on Companal Logics (ToCL)8(4)
(2007)

Garg, D., Pfenning, F.: Non-interference in constugctiuthorization logic. In: 19th IEEE
Computer Security Foundations Workshop, (CSFW-19), 5i7 2006, Venice, Italy. (2006)
283-296

Sire, E.G., Schneider, F., Walsh, K.: Nexus authowraldgic (nal): Design rationale and
applications. Technical report, Cornell Computing anainfation Science Technical Re-
port (January 2009) Available at http://hdl.handle.r&t3/13679.

Garg, D., Bauer, L., Bowers, K.D., Pfenning, F., Relt&K.: A linear logic of authorization
and knowledge. In: European Symposium on Research in Cem@eturity (ESORICS).
(2006) 297-312

Garg, D.: Principal centric reasoning in constructiutharization logic. In: Informal Pro-
ceedings of Intuitionistic Modal Logic and Application (IM\). (2008) Full version avail-
able as Carnegie Mellon Technical Report CMU-CS-09-120.

Genovese, V., Giordano, L., Gliozzi, V., Pozzato, GA constructive conditional logic for
access control: a preliminary report. To appear in Procgsdhf ECAI 2010 (19th European
Conference on Atrtificial Intelligence).



