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In this paper, we describe a mapping language for converting data contained in 
arbitrary spreadsheets into the Web Ontology Language (OWL). The developed 
language overcomes shortcomings with existing spreadsheet mapping 
techniques, including their restriction to well-formed spreadsheets reminiscent 
of a single relational database table and verbose syntax for expressing mapping 
rules when transforming spreadsheet contents into OWL. We additionally 
present an implementation of the mapping approach, Mapping Master, which is 
available as a plug-in for the Protégé ontology editor.  

1 Introduction 

One of hurdles that new and existing users of Semantic Web standards continue to 
face is converting preexisting, non-Semantic Web encoded information into one of 
the many Semantic Web languages (e.g., RDF, OWL). In some domains, a large deal 
of information is represented in spreadsheets (e.g., financial services). This volume of 
spreadsheet content has motivated both academia [1] and industry [2, 8] to develop a 
variety of general-purpose spreadsheet mapping techniques to avoid manually 
encoding spreadsheet content in OWL or writing custom extraction programs.   
 
However, existing mapping approaches suffer from a variety of limitations. First, 
many mapping techniques assume very simple data models within spreadsheets [3]. 
Typically, it is assumed that each table in a spreadsheet adheres to a relational model 
where each row in the table describes a different entity and each column describes an 
attribute for that entity; we refer to this as the ‘entity-per-row’ assumption.  
Unfortunately, there are numerous real-world spreadsheets that do not adhere to this 
simple data model, as many spreadsheet-authoring tools are extremely flexible and do 
not restrict the manner in which users author tabular structures. Common examples of 
complex layouts can be found in the financial domain. Here, analysts or companies 
publish sales forecasts or results, which are typically represented by tables that have 
products or market segments listed in a column, quarters or years listed in a row, and 
sales figures specified for each product/market segment and date. An example of this 
type of spreadsheet is illustrated below:  
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Figure 1: Drugs, their primary use, and their sales for a number of years.1

Recently, there have been efforts to overcome this limitation and support mappings 
for arbitrary spreadsheets [1]. However, to the best of our knowledge, these 
approaches use a RDF triples-based approach to encode mapping rules. They can be 
effective when mapping spreadsheet content to RDF but are very cumbersome when 
encoding that content in OWL due to its verbose RDF serialization. To illustrate, let’s 
assume a financial analyst wants to model the information in Figure 1 in OWL. First, 
assume the analyst models each drug as a class that has OWL property restrictions for 
the drug’s treated disease type and primary indication2. Using this representation, the 
drug Zyvox could be modeled as follows (presented using the Manchester Syntax [4]): 

Class: Zyvox SubClassOf: Drug and treatsDisease some 
‘Infectious and respiratory diseases’ and 
forIndication some ‘Bacterial infections’ 

 (Ex. 1) 

Next, assume the analyst models each sales figure as an OWL class that has OWL 
property restrictions for the drug, date, and actual amount. Thus, the cell C5 could be 
modeled using a new OWL class, sales1, as follows: 

Class: sales1 SubClassOf: SalesAmount and forDrug some Zyvox and 
forDate has 2008 and amount has “1,115” 

 (Ex. 2) 

To encode the OWL class axioms in Ex. 1 & 2 in RDF, 10s of triples are required 
because the RDF serializations for owl:intersectionOf, owl:hasValue and 
owl:someValuesFrom require multiple triples. Therefore, using state-of-the-art 
mapping techniques, even simple mapping rules can be extremely verbose. 
 
To overcome these limitations, we propose a new declarative OWL-centric mapping 
language that supports arbitrary spreadsheet-to-OWL mappings. The language also 
supports syntactic transformations of cell contents, as well as inline OWL axioms 
involving classes, properties and individuals extracted from cell contents. In the end, 
the mapping language enables mapping information from arbitrary spreadsheets to 
OWL using a compact, user-friendly syntax. 

                                                           
1 Source: Pfizer 2008 Financial Report: 
http://media.pfizer.com/files/annualreport/2008/financial/financial2008.pdf 

2 A philosophical discussion regarding whether this information should be modeled as classes 
or individuals is out of the scope of this paper.  However, a class-based representation is 
consistent with modeling conventions used in widely accepted biomedical ontologies. 



     

2 Background  and Related Work  

A variety of systems have been developed to map spreadsheet content to RDF. The 
earliest systems include Excel2RDF [6] and Convert2RDF [6]. Both systems support 
basic mappings from entity-per-row spreadsheets. The later RDF123 system [3] 
supports less restricted data models. However, it is still primarily row-centric. While 
complex mapping conditions are supported, the mapping language still fundamentally 
assumes entity-per-row storage. The recent XLWrap system [1] attempts to addresses 
this shortcoming. It allows data to be organized in essentially arbitrary ways and 
supports an expressive mapping language for generating RDF content. Other 
primarily metadata-based systems include MIT’s Simile project, Aperature/Nepomuk 
from Semantic Discovery Systems, and Cambridge Semantic’s Anzo for Excel [8]. 
 
Some systems use an XSLT-based approach to map automatically-generated XML 
representations of spreadsheets to RDF. However, these approaches can be very 
cumbersome and are generally useful for only a small range of simple mappings. A 
related, higher level approach is to use importation tools to generate OWL or RDF 
tabular representations of spreadsheet data and to then map these tabular 
representations to domain ontologies using rule or scripting languages. For example, 
TopBraid Composer’s SPARQLMotion [2] provides a range of scripting modules for 
generating RDF from tabular data imported from spreadsheets. The authors have used 
a similar approach with a data importation tool called DataMaster [9] that uses SWRL 
[10] rules to map spreadsheet data imported by DataMaster to domain-level 
constructs. While these approaches provide great flexibility, a multitude of rules or 
mapping scripts can quickly accumulate, which can be difficult to manage and debug. 
 
A general shortcoming of existing mapping systems is that they are RDF-centric and 
are not designed to directly work with OWL. The only exception known to the 
authors is ExcelImport [11]. However, this tool assumes simple-entity-per row 
spreadsheets and provides only a small set of OWL constructs that are specified 
graphically. It does not support a mapping language. 

3 Mapping Language 

As discussed previously, the primary goal is to address the limitations of existing 
mapping tools by developing a new declarative OWL-centric mapping language. 
Importantly, this domain-specific language (DSL) should support complex and 
arbitrary spreadsheets that do not conform to the entity-per-row assumption. To 
ensure the mapping approach is compatible with the workflow familiar to users of 
spreadsheet tools, the language must also allow mappings of data spread over multiple 
sheets. A related requirement is that is should support mapping of data that may be 
distributed non-uniformly in individual sheets (for example, multiple disconnected 
tables in a sheet representing the same underlying information). Additionally, it 
should allow the selective extraction of data from within cells. 
 



 

Full coverage of all OWL constructs is also a primary goal of the mapping language. 
In addition to supporting the definition of simple OWL entities such as named classes, 
properties, and individuals, class expressions and potentially complex necessary and 
sufficient declarations should be expressible. While an RDF triple-based mapping 
mechanism can in principle generate arbitrary OWL constructs, such an approach is 
not practical in general because of OWL’s complex RDF serialization. This approach 
would also not be compatible with the goal of producing a concise language. 
 
Additionally, the language should not only be concise but also simple to learn for 
users familiar with both OWL and spreadsheet tools. An additional usability difficulty 
when developing custom languages is providing debugging support. The typical 
levels of complexity when mapping from spreadsheets to OWL make this support 
particularly crucial. An important language design goal is thus to support 
instantaneous preview of mapping results before they are executed and to allow those 
previews to be updated dynamically when underlying data are changed. 

3.1 Core M2 Language  

Rather than design a DSL from scratch, the proposed language is built upon the 
Manchester Syntax [4], a widely-used DSL for declaratively describing OWL 
ontologies. As illustrated in Ex. 1 & 2, this DSL has concise clauses for defining 
common OWL entities. It also provides full coverage of all OWL constructs and is 
familiar to most users of OWL since it is the standard presentation syntax used by the 
Protégé ontology editing tools. It has a very clean language definition, allowing it to 
be extended in a principled way. The DSL that we have defined—called M2, or 
mapping master—is a superset the Manchester Syntax, so any valid Manchester 
Syntax expression is also a valid M2 expression3. 
 
M2 extends the Manchester Syntax to allow references to spreadsheet content in 
expressions. It introduces a new reference clause to support these references. This 
clause can indicate one or more cells in spreadsheet. In this DSL, any clause in a 
Manchester Syntax expression that indicates an OWL class, OWL property, OWL 
individual, data type, or data value can be substituted with this reference clause. 
 
References clauses are prefixed with the character ‘@’ and are followed by an Excel-
style cell reference. In the standard Excel cell notation, cells extend from A1 in the 
top left corner of a sheet within a spreadsheet to successively higher columns and 
rows, with alpha characters referring to columns and numerical values referring to 
rows. For example, a reference to cell A5 in a spreadsheet is written as follows: 

@A5 

The above cell specification indicates that the reference is relative, meaning that if a 
formula containing the reference is moved then the row and column components of 

                                                           
3 A full description of the language can be found on the MappingMaster wiki [11]. Its BNF can 
be found at: http://swrl.stanford.edu/MappingMaster/1.0/BNF/MappingMasterParser.html

http://swrl.stanford.edu/MappingMaster/1.0/BNF/MappingMasterParser.html


     

the reference are updated appropriately. An equivalent absolute reference, again 
adopting Excel notation, can be written as follows: 

@$A$5 

References can also be preceded by a sheet name. For example, a reference to the 
same cell in the sheet “Sales Data” can be written: 

@“Sales Data”!$A$5 

In many real-world spreadsheets, users may wish to evaluate the same mapping 
formula over a range of spreadsheet cells.  For example, an analyst would likely want 
to evaluate the mapping expression in Ex. 2 over the cell range C5:E8 of the 
spreadsheet presented in Figure 1.  To avoid repeatedly defining mapping expressions 
for each cell such a range, M2 allows the user to define a cell range and then use 
wildcards, denoted by '*', in place of row and/or column references (illustrated in 
Figure 2).  Then when the mapping expression is evaluated, the cell range is iterated 
over and the wildcards are replaced with the current row/column.  
 
This reference clause can then be used in M2 expressions to define OWL constructs 
using spreadsheet content. For example, an M2 expression to take the name in cell A5 
of the spreadsheet in Figure 1 and declare an OWL named class that is a subclass of 
an existing Drug class can be written: 

Class: @A5 SubClassOf: Drug 

This expression declares an OWL class named by the contents of cell A5 (‘Zyvox’ in 
this case) and asserts that it is a subclass of class Drug. If the class has previously been 
declared and it is not already a subclass of Drug then that relationship will be asserted. 
 
Using this approach, any OWL axiom can be declared using the appropriate 
Manchester Syntax clause, with references used in these clauses to specify 
spreadsheet content. For example, an M2 expression to instead declare an individual of 
type Drug using the contents cell A5 as its name can be written: 

Individual: @A5 Types: Drug 

Ambiguities may arise regarding the type of the entity being referenced. In the above 
drug class declaration example, it is clear that @A5 refers to an OWL class. However, 
the type can not always be inferred. Explicit entity type specifications are provided to 
deal with this case. To support this specification, a reference may be optionally 
followed by a parenthesis-enclosed entity type specification to explicitly declare the 
type of referenced entity. This specification can indicate that the entity is an OWL 
named class, an OWL object or data property, or an OWL individual or a data type. 
The M2 keywords to specify the types are: Class, ObjectProperty, DataProperty, 
Individual, and any XSD type name (e.g., xsd:int). Using this specification, the 
above drug declaration, for example, can be written: 

Class: @A5(Class)  SubClassOf: Drug 

In many cases, specifying the super class, super property, individual class 
membership, or the data type of referenced entities is also desired. While these types 
of relationships can be defined using standard Manchester Syntax expressions, this 



 

approach will often entail the use of multiple mapping expressions. To concisely 
support defining these types of relationships, a reference may optionally be followed 
by a parenthesis-enclosed list of type names. Using this approach, the above drug 
declaration, for example, can be written as follows: 

Class: @A5(Drug) 

These type specifications can themselves be cell references and can be nested to 
arbitrary depths, though excessive use of nesting may make expressions difficult to 
understand and debug. Super properties, individual class membership, and data types 
can be specified in the same way. 
 
A variety of name encoding strategies are supported when creating entities from 
spreadsheet content. The primary strategies are to either use direct URI-based names 
(equivalent to using rdf:about or rdf:ID clauses in an RDF serialization of OWL) or 
to use rdfs:label annotation values. The default naming encoding uses the 
rdfs:label annotation property. The default may also be changed globally (discussed 
in Section 5). Using rdfs:label encoding, the OWL entity generated from a cell 
referenced is given an automatically generated (and non meaningful) URI and its 
rdfs:label annotation value is set to the content of the cell.  
 
A name encoding clause is provided to explicitly specify a desired encoding. As with 
entity type specifications, this clause is contained in parenthesis after the cell 
reference. The M2 keywords to specify the three types of encoding are rdf:about, 
rdf:ID, and rdfs:label. Using this clause, a specification of rdf:ID encoding for the 
previous drug example can be written: 

Class: @A5(rdf:ID Drug) 

The default M2 behavior is to directly use the contents of the referenced cell when 
encoding a name. However, this default can be overridden using an optional value 
specification clause. This clause is indicated by the ‘=’ character immediately after 
the encoding specification keyword and is followed by a parenthesis-enclosed, 
comma-separated list of value specifications, which are appended to each other. These 
value specifications can be cell references or values. For example, an expression that 
extends the earlier reference to specify that the entity created from cell A5 is to use 
rdfs:label name encoding and that the name is to be the value of the cell preceded 
by the string “Sale:” can be written as follows: 

Class: @A5(rdfs:label=(“Sale:”, @A5) Drug) 

Value specification references are not restricted to the referenced cell itself and may 
indicate arbitrary cells. More than one encoding can also be specified for a particular 
reference so, for example, names and annotation values can be generated for a 
particular entity using the contents of different cells. 
 
A similar approach can be used to selectively extract values from referenced cells. A 
regular expression capture group clause is provided and can be used in any position 
in a value specification clause. This clause is contained in a quoted string enclosed by 
square parenthesis. For example, if cell A5 in the previous example contained the 



     

string “Pfizer:Zyvox” but only the text following the ‘:’ character is to be used in the 
label encoding, an appropriate capture expression could be written as: 

Class: @A5(Drug rdfs:label=(“Sale:”, [“:([a-zA-Z][a-zA-Z0-9]*)”])) 

Note that parentheses around the sub-expressions in a regular expression clause 
specify capture groups and indicate that the matched strings are to be extracted. In 
some cases, more than one capture group may be matched for a cell value, in which 
case they are extracted in the order that they are matched and appended to each other.  
 
To deal with missing cell values, default values can also be specified in references. A 
default value clause is provided to assign these values. This clause is indicated by the 
keyword mm:default and is separated from a value specification clause by a comma. 
It is followed by a parenthesis-enclosed, comma-separated list of value specifications. 
For example, the following expression uses this clause to indicate that the value 
“Unknown” should be used as the created class label if cell A5 is empty: 

Class: @A5(rdfs:label, mm:default=(“Unknown”) Drug) 

Each value specification clause can be followed by a default, so different default 
values can be used for rdf:ID and rdfs:label encodings. This clause can also be 
used for data values and may itself contain M2 references.  
 
Finally, a filter clause may be used to indicate that cells that do not meet particular 
criteria should be ignored. This clause is indicated by the keyword mm:filter and, 
like value and type specifications, is enclosed in parenthesis after a cell specification. 
This keyword is followed by the ‘=’ character and a quoted condition, which is 
specified using Excel-style Boolean condition notation. Using this clause, a variant of 
the previous expression that skips cells with the value ‘Zyvox’ can be written: 

Class: @A5(mm:filter=“A5<>Zyvox” Drug) 

Excel-style conditions are very expressive and allow almost arbitrary filter criteria.  

3.2 M2 Mapping Process 

The M2 mapping process takes a source spreadsheet, a set of M2 expressions, and a 
target ontology. The mappings are processed in three phases. In first phase, every 
expression is preprocessed and the relevant content specified by references in these 
expressions is retrieved from the source spreadsheet. This content, which will either 
specify a data value or the name of a data type or an OWL entity, is substituted for 
each reference in an M2 expression to generate a valid Manchester Syntax expression. 
The second phase declares all referenced OWL entities that are not already declared 
in the target ontology. The type specification for each reference is used to generate the 
appropriate declaration clause. Any super class, super property, individual class 
membership, or data type specifications in the reference are also declared in this 
phase. Once the entities have been declared, the third phase involves sending the final 
Manchester Syntax expression to a Manchester Syntax processor. This processor will 
populate the target ontology with the OWL axioms specified by the expressions.  



 

At the end of phase one, the generated expressions can be checked for syntactic 
correctness. They can also be previewed at this stage if desired, allowing users to see 
the final entity names expanded within their enclosing M2 expression.  
 
M2 supports several preprocessing directives to specify configuration options for the 
mapping process. These directives include the ability to declare both a default 
namespace for generated entities and to specify prefix-to-namespace mappings. The 
latter option allows M2 to deal with cells that contain both prefixed and fully qualified 
URI entity names. An option is also supported to indicate that cell values refer to 
OWL entities using annotation values. In the default case, these names—be they 
prefixed, fully qualified, or annotated—are assumed to either refer to existing OWL 
entities or to name entities that are to be declared during the import process. M2 

supports a pair of options to modify this behavior. The first option can be set to 
indicate that an error should be thrown if a name refers to an existing entity in the 
target ontology; the second option indicates that an error should be thrown if the name 
foes not refer to an existing entity. A related option deals with the possible ambiguity 
introduced by the use of annotation value references. It can be set to produce an error 
if more than one existing OWL entity could be named by the value.  
 
A final set of options is designed for dealing with missing values. Three behaviors can 
be specified: (1) throw an error if any referenced cell contains a missing value; (2) 
skip the affected mapping expression for a missing-value cell and continue to other 
cells; and (3) attempt to generate an expression by conservatively dropping only the 
sub-expressions that reference the missing-value cell. 
 
M2 provides an option specification clause for each option type. The general form of 
this option specification clause is a keyword followed by a value. For example, the 
default name encoding for all mappings can be written: 

mm:DefaultNameEncoding = rdfs:label 
It is noted that OWL axioms generated during the mapping process may cause 
inconsistencies in the target ontology. Further, since users have full control over M2 
expression authoring, the expressions can also generate axioms that are inconsistent 
with each other. To immediately detect such inconsistencies, an ideal implementation 
would invoke an incremental reasoner after each expression is executed. 

4 Implementation 

A parser, editor, and execution engine for the M2 DSL have been written. The parser 
currently supports core Manchester Syntax OWL entity declarations plus arbitrary 
class expressions, though full coverage is anticipated soon. Additionally, a 
development environment has been released as an open source plugin to the Protégé-
OWL editor [5]. This development environment includes Java APIs for interacting 
with M2 from software applications and a graphical user interface. This user interface 
is available as a Protégé-OWL plug-in called Mapping Master and provides an editor 
for defining, managing and executing M2 expressions. It supports the loading and 



     

previewing of spreadsheets defined in both Excel and CSV formats. An interface to 
interactively specify the array of configuration options supported by the M2 DSL is 
also provided. M2 expressions can also be defined interactively and then executed to 
map the contents of these loaded spreadsheets to a target ontology (see Figure 2). The 
plug-in includes a persistence mechanism to save and reload these mappings.  

 

 
Figure 2. Screen shot of the Mapping Master Protégé plug-in showing its 

spreadsheet preview screen, configuration control panel, and M2 expression editor. 

5 Conclusion 

Recent approaches on mapping information contained in spreadsheets to OWL suffer 
from a variety of limitations, including assuming well-formed spreadsheets 
reminiscent of a single relational database table and verbose syntaxes for expressing 
mapping rules. In this paper, we have overcome these limitations by developing a 
mapping language, M2, which is based on an extension of the OWL Manchester 
Syntax that supports arbitrary spreadsheet cell references. This mapping language 
provides a compact, user-friendly approach for expressing mapping rules for arbitrary 
spreadsheets. The language also supports syntactic transformations of cell contents, as 
well as inline OWL axioms involving classes, properties and individuals extracted 
from cell contents. Lastly, we have recently released a free, open source 
implementation of the approach as a Protégé plug-in called Mapping Master. 



 

 
The plug-in has been used successfully by several research groups. For example, 
researchers from the OBI consortium [12] have used it to import analyte assay 
instances from spread sheets and encode them in OWL. Internally, it has been used by 
colleagues to import clinical definition from spreadsheets for a biomedical 
terminology project. We have extensively tested the expressivity of the language 
against a range of publicly available financial spreadsheets. We are currently in the 
process of carrying out an in-depth evaluation of the language and tool. 
 
Future work includes extending the mapping approach to work directly within 
Microsoft Excel, which will allow mapping expressions to be authored directly in 
cells and use native Excel cell references and functions. This will additionally enable 
standard Excel formula operations, such as copy and paste, for mapping expressions 
associated with cells, as well as allow interactive previews of M2 expressions in cells 
using references substituted with cell values. Other potential future work includes 
supporting user-defined functions in mapping expressions.  
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