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Abstract
Aggregate constructs are one of the major linguistic extensions to logic

programming. In this paper, we focus on logic programming with mono-
tone and antimonotone aggregate literals with the well-founded semantics
defined in [1], which allows for aggregates occurring in recursive definitions.
We formally show that computing this semantics is tractableand present a
prototype system obtained by modifying DLV. To our knowledge, this is
the only system supporting well-founded semantics for logic programs with
recursive aggregates. While aggregates yield an obvious representational im-
provement, we also present experiments involving our prototype system and
XSB, showing that aggregates are also beneficial from a computational point
of view.

1 Introduction

Logic Programming (LP) is a formalism widely used in various areas. In LP,
problems are solved providing a declarative representation of the requirements to
be achieved, instead of defining an ad-hoc algorithm. Several semantics for LP
have been proposed, the well-founded semantics [2] is one of them, associating a
three-valued model to every logic program.

Even if LP is a declarative programming language, standard LP does not al-
low for representing properties over sets of data in a natural way, a relevant aspect
in several application domains. To overcome this lack, several syntacticalexten-
sions to LP have been proposed, the most important of which is the introduction of
aggregate functions (LPA) [3, 4, 5, 6]. Among them, recursive definitions involv-
ing aggregate functions (i.e., aggregation in which aggregated data depend on the
evaluation of the aggregate itself) are particularly relevant [7].

In this paper we focus on the fragment of LPA allowing for monotone and an-
timonotone aggregate literals (LPA

m,a) [1]. LPA
m,a programs have many interesting

properties. Among them, we highlight similarities between monotone aggregate
literals and positive standard literals, and between antimonotone aggregate literals
and negative standard literals. In particular, this aspect is exploited for defining
unfounded sets and well-founded semantics of LPA

m,a programs. Another interest-
ing property of LPAm,a programs is the tractability of literal evaluation w.r.t. partial
interpretations.
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The main contributions of the paper are as follows.

• We work with unfounded sets and the well-founded operatorWP for LPA
m,a

programs defined in [1], and formally prove that each fixpoint ofWP is a
(partial) model, thatWP admits a least fixpoint (the well-founded model),
that the well-founded model of a ground LPA

m,a program is polynomial-
time computable. For non-ground programs, the data-complexity remains
polynomial, while the program complexity rises fromP to EXPTIME as for
aggregate-free programs.

• We implement a prototype system supporting the well-founded semantics
for LPA

m,a programs. The prototype extends DLV and is the first system
implementing a well-founded semantics for unrestricted LPA

m,a programs.

• We report on the results of the experimentation with the implemented pro-
totype. Specifically, we define a problem having a natural representationin
LPA

m,a: Attacks, a variant of the classicalWin-Loseproblem.

The sequel of the paper is organized as follows. In Section 2 we recall the LPA

language and its fragment LPAm,a, for which in Section 3 we recall the well-founded
semantics and prove some of its properties, followed by a complexity analysis in
Section 4. In Section 5 we discuss how some particular aggregates can be compiled
away, which we used for some of the experiments reported in Section 6, in which
we also overview the implemented prototype system. In Section 7, we discuss the
literature, and draw our conclusions in Section 8.

2 The LPA Language

In this section, we present the LPA language – an extension of Logic Programming
(LP) by set-oriented functions (also called aggregate functions). Subsequently, we
introduce the LPAm,a fragment, the language analyzed in this paper. For further
background on LP, we refer to [8, 9].

2.1 Syntax, Instantiations, Interpretations, and Models

We assume sets ofvariables, constants, andpredicatesto be given. Atermis either
a variable or a constant. Astandard atomis an expressionp(t1, . . . , tn), wherep

is apredicateof arity n ≥ 0 andt1, . . . , tn are terms.

Aggregate Atoms. An aggregate functionis of the formf(S), wheref is an
aggregate function symbol andS is a set term; a set term is a pair{Terms :Conj},
whereTerms is a list of terms (variables or constants) andConj is a conjunction
of standard atoms. Finally, anaggregate atomis a structure of the formf(S) ≺ T ,
wheref(S) is an aggregate function,≺ ∈ {<, ≤, >,≥} is a comparison operator,
andT is a term (variable or constant).
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Literals. A literal is either (i) a standard atom, or (ii) a standard atom preceded
by thenegation as failuresymbolnot , or (iii) an aggregate atom. Two standard
literals are complementary if they are of the forma andnot a, for some standard
atoma. For a standard literalℓ, we denote by¬.ℓ the complement ofℓ. Abusing of
notation, ifL is a set of standard literals, then¬.L denotes the set{¬.ℓ | ℓ ∈ L}.

Programs. A program is a set ofrulesr of the forma :− ℓ1, . . . , ℓm. , wherea

is a standard atom,ℓ1, . . . , ℓm are literals, andm ≥ 0. The atoma is referred to
as theheadof r, denotedH(r), while the conjunctionℓ1, . . . , ℓm is thebodyof
r, denotedB(r). A structure (atom, literal, rule, or program) without variables is
ground.

Safety. A local variable of a ruler is a variable appearing solely in sets terms
of r; a variable ofr which is not local is calledglobal. A rule r is safeif both
the following conditions hold: (i) each global variable appears in some positive
standard literal ofB(r); (ii) each local variable appearing in a set term{Terms :
Conj} also appears inConj . Finally, a program is safe if all its rules are safe.

Instantiation. The universeof an LPA programP, denotedUP , is the set of
constants appearing inP. Thebaseof P, denotedBP , is the set of standard atoms
constructible from predicates ofP with constants inUP .

A substitutionis a mapping from a set of variables toUP . Given a substitution
σ and an LPA objectobj (literal, rule, etc.), we denote byobj σ the object obtained
by replacing each variableX in obj by σ(X). A ground instanceof a rule r

is obtained in two steps: First, a substitutionσ for the global variables ofr is
applied, and then every set termS in rσ is replaced by its instantiationinst(S) =
{〈Terms σ : Conj σ〉 | σ is a local substitution forS}. The set of all instances of
rules in a programP is denotedGround(P).

Example 1. Consider the following programP1:

q(1) ∨ p(2, 2). q(2) ∨ p(2, 1). t(X) :− q(X), #sum{Y : p(X,Y )} > 1.

The instantiationGround(P1) of P1 is the following program:
q(1) ∨ p(2, 2). t(1) :− q(1), #sum{〈1 : p(1, 1)〉, 〈2 : p(1, 2)〉} > 1.

q(2) ∨ p(2, 1). t(2) :− q(2), #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1.

Interpretation. An interpretationI for an LPA programP is a consistent set of
standard ground literals, that is,I ⊆ BP ∪¬.BP such thatI ∩¬.I = ∅. The set of
all the interpretations ofP is denoted byIP .

Given an interpretationI, a standard literalℓ is either (i) true ifℓ ∈ I, or (ii)
false if¬.ℓ ∈ I, or (iii) undefined otherwise. We denote byI+ andI− the set of
standard positive and negative literals occurring inI, respectively. An interpreta-
tion I is total if there are no undefined literals w.r.t.I, otherwiseI is partial.

An interpretation also provides a meaning to set terms, aggregate functions and
aggregate literals, namely a multiset, a value, and a truth value, respectively.We
first consider a total interpretationI. The evaluationI(S) of a set termS w.r.t. I is
the multisetI(S) defined as follows: LetSI = {〈t1, ..., tn〉 | 〈t1, ..., tn :Conj 〉 ∈
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S and all the atoms inConj are true w.r.t.I}, thenI(S) is the multiset obtained
as the projection of the tuples ofSI on their first constant, that is,I(S) = [t1 |
〈t1, ..., tn〉 ∈ SI ]. The evaluationI(f(S)) of an aggregate functionf(S) w.r.t.
I is the result of the application off on I(S). If the multisetI(S) is not in the
domain off , I(f(S)) = ⊥ (where⊥ is a fixed symbol not occurring inP). A
ground aggregate atomf(S) ≺ k is true w.r.t.I if both (i) I(f(S)) 6= ⊥, and (ii)
I(f(S)) ≺ k holds; otherwise,f(S) ≺ k is false.

We now consider apartial interpretationI and defineextensionof I an inter-
pretationJ such thatI ⊆ J . If a ground aggregate literalℓ is true (resp. false) w.r.t.
each totalinterpretationJ extendingI, thenℓ is true (resp. false) w.r.t.I; otherwise
ℓ is undefined.

Example 2. Let S1 be the set term in the literalℓ1 = #sum{〈1 : p(2, 1)〉, 〈2 :
p(2, 2)〉} > 1, and consider a partial interpretationI1 = {p(2, 2)}. Since each
total interpretation extendingI1 contains eitherp(2, 1) or not p(2, 1), we have
eitherI1(S1) = [2] or I1(S1) = [1, 2]. Thus, the application of#sum yields either
2 > 1 or 3 > 1, and soℓ1 is true w.r.t.I1.

Remark 1. Observe that our definitions of interpretation and truth values preserve
“knowledge monotonicity”: If an interpretationJ extendsI (i.e., I ⊆ J), then
each literal which is true w.r.t.I is true w.r.t.J , and each literal which is false w.r.t.
I is false w.r.t.J as well.

Model. Given an interpretationI, a ruler is satisfied w.r.t.I if either (i) the head
atom is true w.r.t.I, or (ii) some body literal is false w.r.t.I, or (iii) both the head
atom and some body literal are undefined w.r.t.I. An interpretationM is amodel
of an LPA programP if all the rules inGround(P) are satisfied w.r.t.M .

2.2 TheLPA
m,a Language

In this section, we present the LPA
m,a fragment of LPA.

Monotonicity. Given two interpretationsI andJ , we say thatI ≤ J if I+ ⊆ J+

andI− ⊇ J−. A ground literalℓ is monotoneif for all interpretationsI, J , such
thatI ≤ J , we have that: (i)ℓ true w.r.t.I implies ℓ true w.r.t.J , and (ii) ℓ false
w.r.t. J implies ℓ false w.r.t.I. A ground literalℓ is antimonotoneif the opposite
happens, that is, for all interpretationsI, J , such thatI ≤ J , we have that: (i)ℓ
true w.r.t.J impliesℓ true w.r.t.I, and (ii)ℓ false w.r.t.I impliesℓ false w.r.t.J . A
ground literalℓ is nonmonotoneif ℓ is neither monotone nor antimonotone.

Positive standard literals are monotone, while negative standard literals arean-
timonotone. Aggregate literals may be monotone, antimonotone or nonmonotone.

We denote by LPAm,a the fragment allowing only monotone and antimonotone
aggregates. For an LPAm,a rule r, the set of its monotone and antimonotone body
literals are denoted byBm(r) andBa(r), respectively.
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3 Unfounded Sets and Well-Founded Semantics

In this section, we recall the notion of unfounded set for LPA
m,a programs defined

in [1]. We then exploit unfounded sets for extending the well-founded semantics
defined in [2] for aggregate-free programs to the LPA

m,a framework. A complexity
analysis of the well-founded semantics herein defined will be presented in Sec-
tion 4.

In the following we deal with ground programs, so we will usually denote
by P a ground program. We will also exploit the notationL ∪̇ ¬.L′ for the set
(L \ L′) ∪ ¬.L′, whereL andL′ are sets of standard ground literals.

Definition 1 (Unfounded Set [1]). A setX ⊆ BP of ground atoms is an unfounded
set for an LPAm,a programP w.r.t. a (partial) interpretationI if and only if, for each
rule r ∈ P havingH(r) ∈ X, either (1) some (antimonotone) literal inBa(r) is
false w.r.t.I, or (2) some (monotone) literal inBm(r) is false w.r.t.I ∪̇ ¬.X.

Intuitively, each rule having the head atom belonging to some unfounded set is
either already satisfied w.r.t.I (in case condition (1) holds), or satisfiable by taking
as false all the atoms in the unfounded set (in case condition (2) holds).

Example 3. Consider an interpretationI2 = {a(1), a(2), a(3)} for the following
programP2:

r1 : a(1) :− ℓ2. r2 : a(2). r3 : a(3) :− ℓ2.

whereℓ2 = #count{〈1:a(1)〉, 〈2:a(2)〉, 〈3:a(3)〉} > 2. ThenX1 = {a(1)} is an
unfounded set forP2 w.r.t. I2, since condition (2) of Definition 1 holds forr1 (the
only rule with heada(1)). Indeed, the (monotone) literal appearing inBm(r1) is
false w.r.t.I2 ∪̇ ¬.X1 = {not a(1), a(2), a(3)}. Similarly, we can check that
{a(3)} and{a(1), a(3)} are unfounded sets forP2 w.r.t. I2, and clearly also∅ is.
No other set of atoms is an unfounded set forP2 w.r.t. I2.

The union of all the unfounded sets for a programP w.r.t. an interpretationI is
an unfounded set as well; it is called thegreatest unfounded setfor P w.r.t. I and
denotedGUSP(I), cf. [1].

Definition 2 ([1]). Let P be an LPAm,a program. Theimmediate logical conse-
quence operatorTP : IP → 2BP and thewell-founded operatorWP : IP →
2BP∪¬.BP are defined as follows:

TP(I) = {ℓ ∈ BP | ∃r ∈ P such thatH(r) = ℓ

and all the literals inB(r) are true w.r.t.I}
WP(I) = TP(I) ∪ ¬.GUSP(I).

BothTP andGUSP are monotone operators, and soWP is monotone as well.
Moreover, on aggregate-free programs, the well-founded operatorof Definition 2
exactly coincides with the well-founded operator defined in [2].

We next show that a fixpoint ofWP is a (partial) model.
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Theorem 1. LetP be anLPA
m,a program andM a (partial) interpretation. IfM

is a fixpoint ofWP , thenM is a (partial) model ofP.

Proof. Let assumeWP(M) = M and consider a ruler ∈ P. If all the literals
in B(r) are true w.r.t.M , thenH(r) ∈ TP(M) ⊆ M . If H(r) is false w.r.t.M ,
thenH(r) ∈ GUSP(M). SinceGUSP(M) is an unfounded set forP w.r.t. M ,
either some literal inBa(r) is false w.r.t.M , or some literal inBm(r) is false w.r.t.
M ∪̇ ¬.GUSP(M) = M . We can then conclude thatr is satisfied byM .

We can then prove that the sequenceW0 = ∅, Wn+1 = WP(Wn) is well-
defined, that is, each element of the sequence is an interpretation.

Theorem 2. Let P be an LPAm,a program. The sequenceW0 = ∅, Wn+1 =
WP(Wn) is well-defined.

Proof. We use strong induction. The base case is trivial, sinceW0 = ∅. In order to
prove the consistency ofWn+1, we assume the consistency of everyWm such that
m ≤ n. We have to show thatGUSP(Wn)∩Wn+1 = ∅. To this end, we show that
if a setX of atoms is such thatX∩Wn+1 6= ∅, thenX is not an unfounded set forP
w.r.t.Wn. LetWm+1 be the first element of the sequence such thatX∩Wm+1 6= ∅
(note thatm ≤ n). Consider any atomℓ ∈ X ∩ Wm+1. By definition ofTP , there
is a ruler ∈ P havingH(r) = ℓ and such that all the literals inB(r) are true
w.r.t.Wm. Note that no atom inWm can belong toX (for the wayWm+1 has been
chosen). Thus, by Remark 1, all the literals inB(r) are true w.r.t. bothWn and
Wn ∪̇ ¬.X (we recall thatWn ⊇ Wm becauseWP is monotone). This ends the
proof, as neither condition (1) nor (2) of Definition 1 hold forℓ.

The theorem above and the monotonicity ofWP imply thatWP admits a least
fixpointWω

P(∅) (as a consequence of Tarski’s fixed point theorem [10]). The well-
founded semantics of an LPAm,a programP is exactly given by the least fixpoint of
WP , called thewell-founded modelof P.

4 The Complexity of the Well-Founded Semantics

For the complexity analysis carried out in this section, we consider ground pro-
grams and polynomial-time computable aggregate functions (note that all sample
aggregate functions appearing in this paper fall into this class).

We start by stating an important property of monotone and antimonotone ag-
gregates, from which the tractability of the evaluation of LPA

m,a literals w.r.t. partial
interpretations immediately follows.

Lemma 3. Let I be a partial interpretation for an LPAm,a programP, A a ground
aggregate literal occurring inP, Imin andImax two total interpretations such that
Imin = I ∪ ¬.(BP \ I) andImax = I ∪ (BP \ ¬.I).

1. If A is a monotone literal, thenA is true (resp. false) w.r.t.I if and only if A
is true w.r.t.Imin (resp. false w.r.t.Imax).
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2. If A is an antimonotone literal, thenA is true (resp. false) w.r.t.I if and only
if A is true w.r.t.Imax (resp. false w.r.t.Imin).

Proof. We start by noting thatImin (resp.Imax) is a total interpretation extending
I and such that all the standard atoms which are undefined w.r.t.I are false w.r.t.
Imin (resp. true w.r.t.Imax). Thus, we have (∗) Imin ≤ I ≤ Imax. If A is
monotone and true w.r.t.Imin (resp. false w.r.t.Imax), thenA is true (resp. false)
w.r.t. I because of (∗). If A is antimonotone and true w.r.t.Imax (resp. false w.r.t.
Imin), thenA is true (resp. false) w.r.t.I because of (∗). We end the proof by
observing that ifA is true (resp. false) w.r.t.I, thenA is true (resp. false) w.r.t.
Imin andImax by definition.

We now define an operator which can be used for computingBP \ GUSP(I),
and thusGUSP(I) itself.

Definition 3. Let I be a partial interpretation for anLPA
m,a programP, andY ⊆

BP , let

φI(Y ) = {ℓ ∈ BP | ∃ r ∈ P with H(r) = ℓ such that
no (antimonotone) literal inBa(r) is false w.r.t.I, and
all the (monotone) literals inBm(r) are true w.r.t.Y \ ¬.I−}

Proposition 1. For a partial interpretationI for an LPA
m,a programP, the least

fixpointφω
I (∅) coincides with the setBP \ GUSP(I).

We can now prove the tractability of the well-founded semantics.

Theorem 4. Given an LPAm,a programP, Wω
P(∅) is polynomial-time computable.

Proof. Bothφω
I (∅) andWω

P(∅) are obtainable by at most|BP | application ofφ and
WP , respectively.

Well-founded semantics is also hard for polynomial-time. In particular, de-
ciding whether a (ground) atom is true w.r.t. the well-founded semantics isP-
complete, as this task isP-hard even for aggregate-free programs [11].

5 Compilation into Standard Logic Programming

We now briefly present a strategy for representing#count, #sum and#times
1

with standard constructs. The compilation is in the spirit of the one introduced for
#min and#max in [12] and defines a subprogram computing the value of a (re-
cursive) aggregate exploiting monotone/antimonotone peculiarities of the specific
aggregate function. For these reasons, the compilation is referred to asmono-
tone/antimonotone encoding(maeencoding).

1Since we are considering only monotone and antimonotone aggregate literals, the domains of
#sum and#times are assumed to beN andN+, respectively.
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The monotone/antimonotone encoding of an LPA
m,a programP is obtained by

replacing each aggregate literalA = f(S) ≺ T by a new predicate symbolf≺
whose definition is a compilation ofA into standard LP. In the compilation we
exploit a total order< on the elements ofUP ∪ {⊥}, where⊥ is a symbol not
occurring inP and such that⊥ < u for eachu ∈ UP . We further assume the
presence of a “built-in” relation< (Y , Y ′), whereY = Y1, . . . , Yn and Y ′ =
Y ′

1 , . . . , Y
′
n are lists of terms, defining those pairs of tuplesy, y′ such thaty precedes

y′ in the lexicographical order induced by<.
For simplicity, we consider an aggregate literalf({Y : p(Y ,Z)}) ≺ k having

only local variables. We introduce a new predicate symbolfaux of arity |Y | + 1.
Intuitively, an atomfaux(y, s) is intended for representing that there are at least
s tuplesy′ such thaty does not precedey′ andp(y′, z) is true, for some tuplez.
For this purpose, we first evaluate the aggregate function on the empty set,and
then opportunely increase its evaluation for greater sets. For guaranteeing that
each element in the set term is never taken twice, we exploit the lexicographical
order induced by<. The two rules below encode this monotonically increasing
evaluation:

faux(⊥, α).

faux(Y ′, β) :− faux(Y , S),

p(Y ′, Z), <(Y , Y ′).

where







α = 0, β = S + 1, if f = #count

α = 0, β = S + Y ′
1 , if f = #sum

α = 1, β = S × Y ′
1 , if f = #times

In case≺∈ {≥, >}, the aggregate is definitely true ifsomefaux(y, s) with
s ≺ k is true:

f≥ :− faux(Y , S), S ≥ k. f> :− faux(Y , S), S > k.

For≺∈ {≤, <}, to conclude the truth of the aggregate we have to be sure that
nofaux(y, s) with s ⊀ k is true. We can model this aspect by means of the follow-
ing rules:

f≤ :− not f>. f< :− not f≥.

Extending the technique to aggregate literals with global variables is quite sim-
ple: Global variables are added to the arguments of all the atoms used in the com-
pilation, and a new predicatefgroup−by is used for collecting their possible substi-
tutions.

6 Implementation and Experimental Results

The well-founded semantics for LPAm,a programs has been implemented in the
DLV [13] system. In this section, we give a very rough description of the im-
plementation and discuss the results of our experimentation aimed at assessingthe
efficiency of the prototype.
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6.1 System Architecture and Usage

We have developed a prototype system by implementing our well-founded oper-
ator in the core of DLV. Both theintelligent groundingmodule and themodel
generatormodule of DLV have been modified for the implementation of the well-
founded semantics for LPAm,a programs. In particular, in the grounding module, we
extended the technique for aggregate literal instantiation to correctly deal with ag-
gregate atoms occurring recursively, while in the model generator we implemented
a polynomial time algorithm for computing the least fixpoint of the operatorφ

introduced in Section 4.
In our prototype, the well-founded semantics is adopted when the user invokes

DLV with -wf or--well-founded. If none of these two options are specified,
then the stable model semantics is adopted as usual. In both cases, the systemex-
ploits the well-founded operatorWP introduced in Section 3. For the stable model
semantics, the well-founded model is profitably used for search space pruning after
each non-deterministic choice. For the well-founded semantics, instead, thewell-
founded model is yielded immediately after the least fixpoint of the well-founded
operator is computed; in this case, the system outputs two sets, representingtrue
and undefined (standard) atoms w.r.t. the well-founded model.

An executable of the DLV system supporting well-founded semantics for LPA
m,a

programs is available athttp://www.dlvsystem.com/dlvRecAggr/.

6.2 Experimental Results

To our knowledge, the implemented prototype is currently the only system sup-
porting a well-founded semantics for logic programs with recursive aggregates. In
particular, one of the major systems supporting the well-founded semantics, XSB,
has some support for aggregates, but (apart from#min and#max) not when they
occur in recursive definitions. Therefore, our experiments have been designed for
evidencing the computational advantages of aggregate constructs w.r.t. equivalent
encodings without aggregates.

The experiments have been performed on a 3GHz IntelR© XeonR© processor
system with 4GB RAM under the Debian 4.0 operating system with GNU/Linux
2.6.23 kernel. The tested systems have been compiled with GCC 4.4.1. For every
instance, we have allowed a maximum running time of 600 seconds (10 minutes)
and a maximum memory usage of 3GB.

For the benchmark, we have defined theAttacksproblem, a problem similar
to the classicWin-Loseproblem often used as an example for the well-founded
semantics of standard logic programs (see for instance [9]). In the Attacks problem,
a set ofp players, each one attackingn other players, and a positive integerm are
given. A player wins if no more thanm winners attack it.

Example 4. An instance of the Attacks problem in whichp = 6, n = 2 andm = 1
could be the one represented by the following directed graph:
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a

b

c

d

e

f

Sinced is attacked only byf , we can con-
clude thatd is a winner. Similarly fore.
Therefore,f is a loser becausef is attacked
by d ande, which are winners. For the other
players, namelya, b andc, it is not possible to
determine whether they are winners or losers.

The encodings used in our experiments are reported below, wheremax, player

andattacks are EDB predicates representing the parameterm, the set of players
and the attacks done by the players, respectively.

Aggregate-Based Encoding:
win(X) :− max(M), player(X), #count{Y : attacks(Y,X), win(Y )} ≤ M.

This encoding exploits aggregate constructs and is a natural representation of the
Attacks problem.

Join-Based Encoding:
win(X) :− player(X), not lose(X).
lose(X) :− max(1), attacks(Y1,X), win(Y1),

attacks(Y2,X), win(Y2), Y1 < Y2.

lose(X) :− max(2), attacks(Y1,X), win(Y1),
attacks(Y2,X), win(Y2), Y1 < Y2,

attacks(Y3,X), win(Y3), Y1 < Y3, Y2 < Y3.

lose(X) :− max(3), . . .

In this encoding there is a rule for each possible value of them parameter. How-
ever, the presence of the predicatemax in the body of these rules assures that the
solvers considered in our experiments automatically disregard rule instances that
do not match the givenmax.

Mae-Based Encoding(from monotone/antimonotone encoding):
win(X) :− player(X), not lose(X).
lose(X) :− count(X,Y, S), max(M), S > M.

count(X,Y, 1) :− aux(X,Y ).
count(X,Y ′, S + 1) :− count(X,Y, S), aux(X,Y ′), Y < Y ′.

aux(X,Y ) :− attacks(Y,X), win(Y ).

This is an encoding in the spirit of [12] substantially obtained by applying the
compilation presented in Section 5 (with some minor simplifications). Intuitively,
an atomcount(x, y, s) stands for “there are at leasts constantsy′ such thaty′ ≤ y

andattacks(y′, x), win(y′) is true”. The definition ofcount exploits the natural
order of integers for guaranteeing that noy′ is counted twice.

Example 5. The EDB representing the instance in Example 4 is the following:
player(a). player(d). attacks(a, b). attacks(c, a). attacks(e, c).
player(b). player(e). attacks(a, c). attacks(c, b). attacks(e, f).
player(c). player(f). attacks(b, a). attacks(d, b). attacks(f, d).
max(1). attacks(b, c). attacks(d, f). attacks(f, e).

For all the encodings, the well-founded model restricted to thewin predicate is
{win(d), win(e), not win(f)}. Note thatwin(a), win(b) andwin(c) are undefined.
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Figure 1: Attacks: Average execution time of DLV running the aggregate-based
encoding and DLV running the join-based encoding.

We performed an intensive experimentation for theAttacksproblem, varying
the parametersp, m andn. For each combination of these parameters, we measured
the average execution time of DLV and XSB on 3 randomly generated instances.
The results of our experimentation are reported in figures 1–4. In the graphs,
DLVA is the implemented prototype with the aggregate-based encoding, DLV-
join and DLV-mae the implemented prototype with the aggregate-free encodings,
XSB-join and XSB-mae the XSB system with the aggregate-free encodings (as
mentioned earlier, XSB does not support recursive aggregates). For the XSB sys-
tem, we explicitly set indexes and tabled predicates for optimizing its computation.

For each graph, the number of players is fixed, while parametersm (x-axis) and
n (y-axis) vary. Therefore, the size of the instances grows moving fromleft to right
along the y-axis, while is invariant w.r.t. the x-axis. However, the number ofjoins
required by the join-based encoding depends on the parameterm. As a matter of
fact, we can observe in the graphs in figures 1–2 that the average execution time of
the join-based encoding increases along both the x- and y-axis (for bothDLV and
XSB). Instead, for the encoding exploiting aggregates, and for the mae encoding,
the average execution time depends only on instance size, as shown in the graphs
in Figures 3–4.

For the join-based encoding, XSB is generally faster than DLV, but consumes
much more memory. Indeed, in Figure 2, we can observe that XSB terminates
its computation in a few seconds for the smaller instances, but rapidly runs out of
memory on slightly larger instances.
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Figure 2: Attacks: Average execution time of DLV running the aggregate-based
encoding and XSB running the join-based encoding.

Considering the mae-based encoding, we can observe significant performance
gains for both DLV and XSB (see figures 3–4). Indeed, both systems complete
their computation in the allowed time and memory on larger instances. Compu-
tational advantages of the mae-based encoding w.r.t. the join-based encoding are
particularly evident for XSB, which can solve all instances of the benchmark with
this encoding. However, also XSB with the mae-based encoding is outperformed
by DLV with native support for aggregate constructs (see Figure 4).

In sum, the experimental results highlight that the presence of aggregate con-
structs can significantly speed-up the computation. Indeed, the encoding exploiting
recursive aggregates outperforms the aggregate-free encodings inall the instances.

7 Related Work

The definition of well-founded semantics for LPA has been a challenge of major
interest in the last years. The first attempts, not relying on a notion of unfounded
set, have been defined on a limited framework. Some of these are discussedin [3].

A first attempt to define a well-founded semantics for LPA without restriction
has been done in [3]. Even if the semantics defined in [3] has the advantage of being
based on a notion of unfounded set, it often leaves too many undefined literals.

Our work is particularly related to [14], wherẽD-well-founded semantics has
been defined.̃D-well-founded semantics is based on approximating operators, not
on unfounded sets, and the semantics depends on the adopted approximating ag-
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Figure 3: Attacks: Average execution time of DLV running the aggregate-based
encoding and DLV running themae-based encoding.

gregate relation; the authors discusstrivial , boundandultimateapproximating ag-
gregate relations. Semantics relying ontrivial approximating aggregates is very
imprecise, but it is still suitable for the class of stratified aggregate programs. Both
trivial andboundapproximations have polynomial complexity, whileultimatehas
been proved to be intractable for nonmonotone aggregate functions [4].For LPAm,a

programs, theD̃-well-founded semantics underultimate and boundapproxima-
tions coincide with the well-founded semantics presented in this paper.

Other works attempted to define stronger notions of well-founded semantics
(also for programs with aggregates), like the Ultimate Well-Founded Semantics of
[5], or WFS1 and WFS2 of [6]. Whether a characterization in terms of unfounded
sets exists for these semantics is an open problem.

Programs with aggregates are related toabstract constraint programs[15], for
which no well-founded semantics has been defined to our knowledge. Thedefini-
tions in this paper can be easily adapted to cover abstract constraints.

8 Conclusion

In this paper we analyzed LPAm,a programs under well-founded semantics. We
showed that computing this semantics is a tractable problem. Indeed, the semantics
is given by the least fixpoint of the well-founded operatorWP . The fixpoint is
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Figure 4: Attacks: Average execution time of DLV running the aggregate-based
encoding and XSB running themae-based encoding.

reached in a polynomial number of applications ofWP (w.r.t. the size of the input
program), each of them requiring polynomial time. For showing that an application
of WP is polynomial-time feasible, we have proved that evaluating monotone and
antimonotone aggregate literals remains polynomial-time doable also for partial
interpretations, since in this case only one of the possibly exponential extensions
must be checked. For a monotone aggregate literal, this extension is obtainedby
falsifying each undefined literal, while for an antimonotone aggregate literal,each
undefined literal is taken as true in the extension.

Motivated by these positive theoretical results, we have implemented the first
system supporting a well-founded semantics for unrestricted LPA

m,a. Allowing for
using monotone and antimonotone aggregate literals, the implemented prototype is
ready for experimenting with the LPAm,a framework. The experiments conducted
on the Attacks benchmark highlight the computational gains of a native implemen-
tation of aggregate constructs w.r.t. equivalent encodings in standard LP.
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