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Abstract. Major purposes underlying the functionality of
formal systems include reasoning services and presentation fa-
cilities, prominently their systematic coordination. An impor-
tant role in this coordination is played by the ontology and its
underlying organization principles exhibited in the systems’
knowledge bases. We address this issue by presenting spe-
cific components of our proof development system (QMEGA,
which combines reasoning facilities for handling mathemati-
cal proofs with presentation capabilities in natural language.
These components are the mathematical knowledge base of
QMEGA and the linguistic knowledge base of the attached
proof explanation system Prexr. We feature their ontologi-
cal principles, modeling coverage, and their interoperability.
Interfacing reasoning and presentation skills is crucial for in-
creasing the quality in illustrating the results of formal infer-
ence systems.

1 INTRODUCTION

Major purposes underlying the functionality of formal sys-
tems include reasoning services and presentation facilities, in
particular their systematic coordination. An important role in
this coordination is played by the ontology and its underlying
organization principles exhibited in the systems’ knowledge
bases, prominently the interoperability across several knowl-
edge bases.

We address this issue by a case study, presenting specific
components of our proof development system QMEGA [14].
QMEGA is a mathematical assistant tool that supports proof
development at a user-friendly level of abstraction. The sys-
tem combines interactive and automated proof construction
in mathematical domains. Figure 1 illustrates the architecture
of OMEGA: several independent modules are connected via the
mathematical software bus MATHWEB-SB [5]. An important
benefit is that MATHWEB modules can be distributed over the
Internet and are accessible by other distant research groups
as well. The core of IMEGA is the proof plan data structure
PDS [3], the proof planner MULTI [11], the suggestion mech-
anism -ANTs [2], and a hierarchy of mathematical theories,
represented by a mathematical data base, which constitutes
the basic mathematical ontology of the system.

Various heterogeneous external reasoning systems with
complementary capabilities are integrated into QMEGA (see
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the right side of Figure 1). IMEGA interfaces systems such
as computer algebra systems (CASs), higher- (HO) and first-
order (FO) automated theorem proving systems (ATPs), con-
straint solvers (CSs), and model generators (MGs). Their use
is twofold: they may provide a solution to a subproblem, or
they may give hints for the control of the proof search. These
systems are either connected directly or indirectly via proof
transformation modules, in order to orchestrate their use, and
to integrate their results. The output of the incorporated rea-
soning systems is translated and inserted as sub-proofs in
QMEGA’s central proof plan data structure, which maintains
proof plans simultaneously at different levels of abstraction.
This is beneficial for interfacing systems that operate at di-
vergent levels of abstraction as well as for a human oriented
display and inspection of a partial proof. From an ontologi-
cal perspective, the mathematical theories in OMEGA provide
some sort of normative ontology for mathematical concepts,
to which concepts of external systems must be related.

User interaction is supported by the graphical user inter-
face LOUZ [15] and the proof explainer Prex [4] (see the
left side of Figure 1). The latter is a particular feature of
QIMEGA, since it provides proof explanations in natural lan-
guage, in interactive and adaptive form. In order to be able
to describe mathematical concepts in context, P.rex needs its
own ontology, organized on the demands of natural language
presentations.

In the following, we address the two major subsystems in-
volved in ontological issues, the knowledge bases of QMEGA
and Prer, in dedicated sections. Thereby, we feature their
divergent ontological principles and complementary modeling
coverage. Next, we address their interoperability. Finally, we
list case studies carried out with 2MEGA and we sketch rela-
tions to other approaches to ontology.

2 THE REPRESENTATION
COMPONENT

The organization of QMEGA’s knowledge base is motivated by
the following observations. The statement of a mathematical
theorem can depend on the availability of a possibly large
set of definitions of mathematical concepts, which in turn,
may themselves depend on other concepts. Moreover, previ-
ously proven theorems or lemmas may be reused within the
context of a proof. Going beyond pure representation pur-
poses, a formal reasoning system needs access to other forms
of knowledge, including inference steps, such as tactics, and
information about control knowledge for automated reasoners
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The architecture of the QMEGA proof assistant. Thin lines denote internal interfaces, thick lines denote communication via

MATHWEB-SB. QMEGA has access to its local mathematical database (thin dotted line) and MBASE (thick dashed line).

and about human-oriented presentation knowledge. To sup-
port reasoning in such an environment, the main requirement
is an efficient access to definitions and axioms, thereby avoid-
ing redundancy in storing that information to ease mainte-
nance. For meeting this demand, we have decided to use an
inheritance network. It provides most effective percolation of
information to build the core semantics of each mathematical
object. In contrast, it ignores their meaning and interrela-
tions other than componential ones, since this knowledge is
irrelevant for the intended use.

In order to define a mathematical concept, which is a struc-
tured object with several properties, a number of options typ-
ically exist, depending on the subfield in question. The pro-
totypical alternative lies between the use of strictly minimal
properties in logical terms and commonly used ones. The lat-
ter are stronger than the former ones and might contain re-
dundancies, but they may be better known in the field or pre-
ferred for some social reasons. Hence, it is logically inferable
that these properties hold, once it is known that the minimal
properties hold. Consequently, it may be possible to define a
mathematical concept in several equivalent ways within the
same theory, each of which may prove useful for reasoning
purposes.

Let us consider a well-known example for which a number
of alternative, yet equivalent, definitions exist, the notion of a
group. A group is usually defined as a nonempty set together
with an operation, where the operation is closed and asso-
ciative for the elements of this set. Moreover, there exists a
unit element, and for each elements of this set an inverse ele-
ment. While this definition is the most common one, it is not
minimal: for instance we can replace the existence of the unit
element or of inverse elements with respective weaker proper-
ties that only a left unit element or left inverse elements exist.
Still we would arrive at a definition of a group, equivalent to
the first. Moreover, we can replace the postulation of the unit
element and the inverses entirely by the single axiom: For all
a,beqG emist x,y€G such that aox =b and yoa = 0.

We can also define the notion of a group via larger, less
concrete algebraic structures. Hereby we have several possible
ways to arrive at a definition as is outlined in Figure 2.

Let G be a nonempty set and let o be a binary operation
on G. The following assertions are equivalent:

e (G,o0) is a group.

e (G, o) is amonoid and every element of a€G has an inverse.
e (G,0) is a loop and o is associative.
e (G,0) is both a quasi-group and a semi-group.

The three variants except to the first one, each correspond
to one path leading to Group in Figure 2, where the link com-
ing from Loop adds the property of associativity, and the link
coming from Monoid adds the property of the existence of in-
verses. In order to establish these equivalent representations
within the system in a justified manner, the equivalences en-
tailed must be proved.

To support this task, we are currently replacing the knowl-
edge base by the system MBASE [6], which is a distributed
mathematical knowledge base designed to make storage and
access through queries efficient. The specification of corre-
spondences on the ontological level is to be carried out inter-
actively and supported by theorem proving devices.

In order to store and manipulate these kinds of informa-
tion, MBASE distinguishes several categories of information
objects, on which the structure of the underlying data base
model is grounded:

e Definitions for associating meanings to symbols in terms of
already defined ones.

e Assertions, which are logical sentences, including axioms,
theorems, conjectures and lemmas, distinguished according
to pragmatic or proof-theoretic status. item Proofs, encap-
sulating the actual proof objects in various formats, includ-
ing formal, informal, system-dependent proof scripts, and
even natural language formats.

e Examples, due to their importance in mathematical prac-
tice.

e Theories, which allow grouping of mathematical objects
and knowledge and the introduction of inheritance between
theories.

e Inference steps, in form of system-dependent programming
code, as basic calculus rules and compound steps.

e Human-oriented (technical) knowledge, such as names for
theorems, and specifications for notation and symbol han-
dling.

The data base model contains some relations between ob-
jects of these kinds onto which inheritance is made. These
include
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o Definition-entailment, to relate defined symbols to others
and, ultimately, to symbols marked as primitive.

e Depends-on/Local-in, which specify dependency and local-
ity information for primary knowledge items. The relation
makes explicit the use of symbols in a definition or asser-
tion, and the application of lemmas in a proof.

e Theory-inheritance, which specifies the organization of
mathematical subdomains and the associated inheritance
of their properties.

The purpose of the categories described before is to en-
sure correctness in the process of building mathematics on
computers and at the same time ease this process. The intro-
duced entities should help to construct proofs but at the same
time avoid additional efforts in their administration. Defini-
tions as explicit entities allow for the abbreviation of terms
and formulas. At the same time it has to be ensured that the
definition functionality will not introduce inconsistencies. The
explicit hierarchy of theories allows for grouping of mathemat-
ical knowledge and helps the user to keep an overview. On the
other hand one has to decide on how to structure the formal-
izations so that it will be useful for the proof construction
in theories that inherit these theories. As described for the
equivalent definitions of the concept Group there seems to be
no best formalization that covers every aspect and the rigidity
of the theory hierarchy has to be equalized by mechanisms as
the development graph [9], which allows us to manage a later
change of underlying formalizations.

The given categorization is not specific to QMEGA but holds
as well for other proof development systems which maintain
a library of mathematical knowledge. The systems can differ
in the following aspects:

e finer classification of objects, e.g. recursive definitions in
Coq [16],

o the language used for terms and formulas, e.g typed lambda
calculus in QMEGA or set theory in MizAR [13],

e the available functionality, e.g. theory interpretations as
mechanism for the reuse of theorems in IMPs [10],

e the basic logical calculus and the formalism to build more
complex inference steps.

3 THE PRESENTATION COMPONENT

P rex is a proof explainer attached to QMEGA, which is respon-
sible for expressing a mathematical proof in terms of natural
language text, interleaved with formulas. A particular capa-
bility of P.rez is to explain a proof step at different levels of
abstraction, initially at the most abstract level that the user
is assumed to know. The system reacts flexibly to questions
and requests. While the explanation is in progress, the user
can interrupt P.rez anytime, if the current explanation is not
satisfactory. P.rex analyzes the user’s interaction and enters
into a clarification dialog when needed to identify the reason
why the explanation was not satisfactory and re-plans a better
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explanation, for example, by switching to another level of ab-
straction. During the presentation process, P.rex constructs a
discourse structure tree to organize the utterances to be pro-
duced. Each utterance is represented by a tree, called Text
Structure, that encodes its linguistic specification (cf. [8] for
details).

The specifications in a proof at some level of abstraction,
which P rez is supposed to convert into a natural language
presentation, contain references to mathematical concepts.
For presentation purposes, these are organized in terms of
semantic categories. The main role of the semantic categories
is to provide vocabularies, which specify type restrictions for
nodes of the Text Structure. They define how separate Text
Structures can be combined, and ensure that the planner
only build expressible Text Structures. For instance, if tree
A should be expanded at node n by tree B, the resulting type
of B must be compatible to the type restriction attached to n.
Following Panaget [12], however, we split the type restrictions
into two orthogonal dimensions: the ideational dimension in
terms of the Upper Model [1], and the hierarchy of textual
semantic categories to be discussed below. As in other con-
ceptual hierarchies, the relation between the top level node
and its immediate successors is realized as a specialization,
rather than as an instantiation. Since the meaning of this re-
lation is never communicated, this inaccuracy is tolerable.

Technically speaking, the Text Structure in Prez is a
tree recursively composed of kernel subtrees or composite
subtrees: An atomic kernel subiree has a head at the root
and arguments as children, representing basically a predi-
cate/argument structure. Composite subtrees can be divided
into two subtypes: the first has a special matriz child and
zero or more adjunct children and represents linguistic hy-
potaxis, the second has two or more coordinated children and
stands for parataxis.

Each node is typed both in terms of the Upper Model
and the hierarchy of textual semantic categories. The Upper
Model is a domain-independent property inheritance network
of concepts that are hierarchically organized according to how
they can be linguistically expressed. Figure 3 shows a frag-
ment of the Upper Model in P.rez. For every domain of appli-
cation, domain-specific concepts must be identified and placed
as an extension of the Upper Model. In the domain of math-
ematics, most domain-specific concepts (formally: one-place
predicates) are placed under the concept non-conscious thing,
except to some real-world concepts, which appear in math-
ematical subtheories for puzzles. Moreover, domain proper-
ties appear under discrete place relations. The organization of
these items is driven by specialization relations and by type
restrictions of the fillers of relations. Note that these principles
are complementary to those of the mathematical knowledge
base, which leads to differently structured (typically flatter)
hierarchies.

The hierarchy of textual semantic categories is also a
domain-independent property inheritance network. The con-
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Figure 3. A Fragment of the Upper Model in Prez

cepts are organized in a hierarchy based on their textual real-
ization. For example, the concept clause-modifier-rankingl is
realized as an adverb, clause-modifier-rankingll as a preposi-
tional phrase, and clause-modifier-embedded as an adverbial
clause. Figure 4 shows a fragment of the hierarchy of textual
semantic categories.
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Figure 4. A Fragment of the Hierarchy of Textual Semantic
Categories in P rex

The equivalences in defining groups or similar mathematical
objects, as exposed in the previous section, are not reflected
by the linguistic knowledge bases. Therefore, building an al-
ternative representation, which may be motivated by various
presentation goals, has to be carried out on the basis of the
proof representation prior to verbalization, which is a matter
of future work. In contrast, P.rez is able to produce different
phrasings for some mathematical properties, such as associa-
tivity, the adjective ’associative’ or the noun ’associativity’,
enabled through the interplay of the Upper Model, the lexi-
con, and the textual semantic categories. This distinction is
not reflected by the mathematical knowledge base.

4 INTEROPERABILITY

When comparing the organization principles of MBASE and
the Upper Model of P.rez, it is interesting to see that the rea-
soning purposes motivating the organization in MBASE do not
require specialization in their hierarchical structuring, which
is quite common for other ontologies. In the Upper Model,
however, the way these specializations are set up is oriented
on presentation purposes rather than on mathematical prop-
erties. Conversely, the precise logical definitions percolated
through the inheritance network expressing the semantics of
the mathematical concepts and relations are not accessible to
the Upper Model.

Through these definitions extending the Upper Model, the
mathematical concepts are in some sense re-represented, with
links to their counterparts in the mathematical knowledge
base. The associated maintenance effort is unavoidable, since
for each mathematical notion newly modeled in the mathe-
matical theory part, the corresponding counterpart on the lin-

guistic side must be appropriately integrated in the linguistic
knowledge bases. Only for those cases, where a mathematical
concept requires no linguistic knowledge other than reference
by its name, we use a short-cut for handling interoperability
between mathematical and linguistic knowledge bases. Math-
ematical concepts of this kind are mapped onto a catch-all
concept in the linguistic knowledge base, and reference by
name to this concept is done by passing through its name
from the mathematical knowledge base. The main advantage
of this realization lies in some degree of independency, that is,
extending the mathematical knowledge base and re-running
the system without adapting the linguistic knowledge base
accordingly is possible, if the resulting (in some cases, tem-
porary) limitation in the presentation quality is acceptable.
Maintaining this short-cut will be impossible when the exten-
sions described below will be addressed.

Apart from this basic integration, purposes of presentation
impose some additional demands that cannot be met ade-
quately by the inheritance network and by the Upper Model
in its present state. Those which can be met easier by system
extensions are the following:

o Items preferred for referring expression need to be marked.
For example, the terms Group and Semigroup are more
common than Monoid, which identifies a similar algebraic
structure. The more common terms should be preferred
in descriptions even though this may require extended de-
scriptions.

e Conceptual equivalences must be made explicit to avoid re-
dundancy in presentations. As demonstrated in Section 2,
for example, various possibilities to define a group in alge-
braic terms, and switching between definitions might easily
result in a strange rephrasing of an obvious equivalence. For
reasoning purposes, the equivalence is established by an in-
ference step or, in more complicated cases, by a subproof.

o Additional, highly special conceptual definitions that have
no relevance for reasoning purposes may improve the pre-
sentation capabilities significantly. Typically, axioms that
are expressed as compound or nested rules are good sources
for building such definitions, which relate to subexpressions
that appear in that axiom and are likely to be described as
intermediate results in proofs.

The techniques described so far mainly support the coordi-
nation of static knowledge originating from heterogeneous
sources for problem solving purposes. For presentation pur-
poses, there are two fundamental shortcomings of the present
representation, which severely limit presentation capabilities:

e The connection between mathematical objects and Upper
Model objects is too simple, since it is restricted to one-
to-one correspondences. This is meaningfully applicable to
domain terms, but not to some relations and inference rules.

e The dynamic knowledge (e.g., proofs, examples) is repre-
sented too coarse-grained and on a superficial level only,
which limits variations for presenting it.

These shortcomings are as fundamental as they are deliber-
ate, since the complexity of the design and development tasks
for MBASE is high enough. For future extensions, these are
good candidates for linking more linguistically oriented tools.



5 CASE STUDIES AND AVAILABILITY

The OMEGA system is available on the Internet at
http://www.ags.uni-sb.de/~omega. It has been evaluated in
multiple case studies, which have been carried out for vary-
ing purposes motivated by theorem-proving issues; as a con-
sequence, XMEGA’s knowledge bases contain representation
fragments of a variety of subdomains, including:

e-0-proofs: Limit theorems and assertions about functions
and sequences and continuity of functions.

Automatic classification of residue-class structures:
Proofs of properties of residue classes and about isomor-
phisms between residue class structures.

Interactive proof planning: A combination of Q-ANTS
and MULTI was used to support the interactive exploration
of residue classes and to prove theorems about properties
of group homomorphisms in student exercises.

Set theory: Q-ANTS has been applied with ND rules, an
automated theorem prover, and a model generator to prove
or disprove set equations.

Group theory: Equivalence of different group definitions,
uniqueness of the unit element and inverse element.

The software components referred to in this paper are fur-
ther described at the following websites:

o (OMEGA: http://www.ags.uni-sb.de/"omega/soft/omega
e Prer: http://www.ags.uni-sb.de/ prex
e MBASE: http://wuw.mathweb.org/mbase

6 CONCLUSION AND DISCUSSION

In comparison to other domains, high quality representations
are required, so that they can only be produced in a hand-
crafted manner. Apart from that quality aspect, building on-
tologies for the domain of mathematics can in some sense be
considered less difficult than a similar task for another do-
main:

e Vagueness does not play a role at all.

e There is a high degree of agreement about the domain con-
cepts; discrepancies merely concern alternative representa-
tion variants, formats, and conventions.

e Although the domain as a whole is very large, it can be rea-
sonably well broken down into subdomains of manageable
size.

In some sense, the domain is atypical, since the domain ob-
jects are completely artificial from the reasoning perspective,
with the exception of puzzle subdomains. From the presenta-
tion perspective, however, the representation purposes are not
much different from other domains. They do differ in terms
of richness and degrees of variety, which is more limited in
our domain in comparison to narratives. Consequently, our
Upper Model is merely a copy of the one used by Penman [1],
oriented on the purpose of expressibility. The main emphasis
in our approach is establishing a basic interoperability.

Altogether, we have shown that representation and presen-
tation purposes in the domain of mathematical can be met by
distributed knowledge bases, with different organization prin-
ciples, complementary coverage, and minimal linking, which
reduces the maintenance effort. Not surprisingly, the present,

simple design, imposes limitations on the overall functional-
ity. In general, shortcomings in the presentation part raise
demands that can be met best by extensions in the math-
ematical representation component or by some module that
manipulates these representations. We have identified several
of these shortcomings, which we will address in future work.
When doing this, we expect aspects of formal ontologies, such
as identity and unity [7], to become relevant for our presen-
tation part as well.
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