
LDSpider: An open-source crawling framework
for the Web of Linked Data

Robert Isele3, Jürgen Umbrich2, Christian Bizer3, and Andreas Harth1

1 AIFB, Karlsruhe Institute of Technology
harth@kit.edu

2 Digital Enterprise Research Institute, National University of Ireland, Galway
juergen.umbrich@deri.org

3 Freie Universität Berlin, Web-based Systems Group
robertisele@googlemail.com, chris@bizer.de

Abstract. The Web of Linked Data is growing and currently consists
of several hundred interconnected data sources altogether serving over
25 billion RDF triples to the Web. What has hampered the exploitation
of this global dataspace up till now is the lack of an open-source Linked
Data crawler which can be employed by Linked Data applications to
localize (parts of) the dataspace for further processing. With LDSpider,
we are closing this gap in the landscape of publicly available Linked Data
tools. LDSpider traverses the Web of Linked Data by following RDF links
between data items, it supports different crawling strategies and allows
crawled data to be stored either in files or in an RDF store.

Keywords: Linked Data, Crawler, Spider, Linked Data tools

1 Introduction

As of September 2010, the Web of Linked Data contains more than 200 inter-
connected data sources totaling in over 25 billion RDF triples4. Applications
that need to localize data from the Web of Linked Data [1] for further pro-
cessing currently either need to implement their own crawling code or rely on
pre-crawled data provided by Linked Data search engines or in the form of data
dumps, for example the Billion Triples Challenge dataset5. With LDSpider, we
are closing this gap in the Linked Data tool landscape. LDSpider is an extensible
Linked Data crawling framework, enabling client applications to traverse and to
consume the Web of Linked Data.

The main features of LDSpider are:

• LDSpider can process a variety of Web data formats including RDF/XML,
Turtle, Notation 3, RDFa and many microformats by providing a plugin
architecture to support Any236.

4 http://lod-cloud.net
5 http://challenge.semanticweb.org/
6 http://any23.org/



2 Isele, Harth, Umbrich, Bizer

• Crawled data can be stored together with provenance meta-information ei-
ther in a file or via SPARQL/Update in an RDF store.

• LDSpider offers different crawling strategies, such as breadth-first traversal
and load-balancing, for following RDF links between data items.

• Besides of being usable as a command line application, LDSpider also offers
a simple API which allows applications to configure and control the details
of the crawling process.

• The framework is delivered as a small and compact jar with a minimum of
external dependencies.

• The crawler is high-performing by employing a multi-threaded architecture.

LDSpider can be downloaded from Google Code7 under the terms of the
GNU General Public License v3. In the following, we will give an overview of
the LDSpider crawling framework and report about several use cases in which
we employed the framework.

2 Using LDSpider

LDSpider has been developed to provide a flexible Linked Data crawling frame-
work, which can be customized and extended by client applications. The frame-
work is implemented in Java and can be used through a command line application
as well as a flexible API.

2.1 Using the command line application

The crawling process starts with a set of seed URIs. The order how LDSpider
traverses the graph starting from these seed URIs is specified by the crawling
strategy. LDSpider provides two different round-based crawling strategies:

The breadth-first strategy takes three parameters: <depth> <uri-limit>

<pld-limit>. In each round, LDSpider fetches all URIs extracted from the
content of the URIs of the previous round, before advancing to the next
round. The depth of the breadth-first traversal, the maximum number of
URIs crawled per round and per pay-level8 domain as well as the maximum
number of crawled pay-level domains can be specified. This strategy can be
used in situations where only a limited graph around the seed URIs should
be retrieved.

The load-balancing strategy takes a single parameter: <max-uris>. This strat-
egy tries to fetch the specified number of URIs as quickly as possible while
adhering to a minimum and maximum delay between two successive requests
to the same pay-level domain. The load-balancing strategy is useful in situ-
ations where the fetched documents should be distributed between domains
without overloading a specific server.

7 http://code.google.com/p/ldspider/
8 “A pay-level domain (PLD) is any domain that requires payment at a TLD or cc-

TLD registrar.”[3]



LDSpider: A crawling framework for the Web of Linked Data 3

LDSpider will fetch URIs in parallel employing multiple threads. The strategy
can be requested to stay on the domains of the seed URIs.

Crawled data can be written to different sinks: File output writes the crawled
statements to files using the N-Quads format. Triple store output writes the
crawled statements to endpoints that support SPARQL/Update.

2.2 Using the API

LDSpider offers a flexible API to be used in client applications. Each component
in the fetching pipeline can be configured by either using one of the implemen-
tations already included in LDSpider or by providing a custom implementation.
The fetching pipeline consists of the following components:

The Fetch Filter determines whether a particular page should be fetched by
the crawler. Typically, this is used to restrict the MIME types of the pages
which are crawled (e.g. to RDF/XML).

The Content Handler receives the document and tries to extract RDF data
from it. LDSpider includes a content handler for documents formatted in
RDF/XML and a general content handler, which forwards the documents
to an Any23 server to handle other types of documents including Turtle,
Notation 3, RDFa and many microformats.

The Sink receives the extracted statements from the content handler and pro-
cesses them usually by writing them to some output. LDSpider includes
sinks for writing various formats including N-Quads and RDF/XML as well
as to write directly to a triple store using SPARQL/Update. Both sinks can
be configured to write metadata containing the provenance of the extracted
statements. When writing to a triple store, the sink can be configured to
include the provenance using a Named Graph layout.

The Link Filter receives the parsed statements from the content handler and
extracts all links which should be fetched in the next round. A common use
of a link filter is to restrict crawling to a specific domain. Each Link Filter
can be configured to follow only ABox and/or TBox links. This can be used
for example to configure the crawler to get the schema together with the
primary data.

2.3 Implementation

LDSpider is implemented in Java and uses 3 external libraries: The parsing of
RDF/XML, N-Triples and N-Quads is provided by the NxParser library9. The
HTTP functionality is provided by the Apache HttpClient Library10, while the
Robot Exclusion Standard is repected through the use of the Norbert11 library.

9 http://sw.deri.org/2006/08/nxparser/
10 http://hc.apache.org/
11 http://www.osjava.org/norbert/



4 Isele, Harth, Umbrich, Bizer

3 Usage examples

We have employed LDSpider for the following crawling tasks:

– We employed LDSpider to crawl interlinked FOAF profiles and write them
to a triple store. For that purpose, we crawled the graph around a single seed
profile (http://www.wiwiss.fu-berlin.de/suhl/bizer/foaf.rdf) and com-
pared the number of traversed FOAF profiles for different number of rounds:

rounds 1 2 3 4 5
profiles 1 10 101 507 6730

– We employed LDSpider to crawl Twitter profiles, which expose structured
data using RDFa. We started with a single seed profile (http://twitter.
com/aharth) and wrote all traversed profiles to a triple store and compared
the number of profiles for different number of rounds:

rounds 1 2 3
profiles 1 38 1160

As the number of profiles grows faster than in the previsous use case, we
can conclude that the interlinked Twitter profiles build a much denser graph
than the FOAF web.

– LDSpider is used in an online service which executes live SPARQL queries
over the LOD Web12

– We used LDSpider to gather datasets for various research projects; e.g. the
study of link dynamics [4] or the evaluation of SPARQL queries with data
summaries over Web data [2]

In summary, LDSpider can be used to collect small to medium-sized Linked
Data corpora up to hundreds of millions of triples.

References

1. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

2. Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe Sattler, and
Jürgen Umbrich. Data summaries for on-demand queries over linked data. In
WWW ’10: Proceedings of the 19th international conference on World wide web,
pages 411–420, New York, NY, USA, 2010. ACM.

3. Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov. Irlbot:
scaling to 6 billion pages and beyond. In WWW ’08: Proceeding of the 17th in-
ternational conference on World Wide Web, pages 427–436, New York, NY, USA,
2008. ACM.

4. Michael; Hogan Aidan; Polleres Axel; Decker Stefan Umbrich, Jürgen; Hausenblas.
Towards dataset dynamics: Change frequency of linked open data sources. 3rd
International Workshop on Linked Data on the Web (LDOW2010), in conjunction
with 19th International World Wide Web Conference, 2010.

12 http://swse.deri.org/lodq


