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Abstract: Case-based diagnosis handling multiple faults is still a challenging task.
In this paper we present methods for handling multiple faults, embedded in the stan-
dard CBR cycle. The approaches extend it by case decomposition and combination
strategies which generate candidate cases for case reuse. The context of our work is
to supplement a medical documentation and consultation system by CBR techniques
which facilitate the extended retrieval of experiences for experience management. We
present an evaluation of our approaches with a real-world case base.

1 Introduction

Case-based diagnosis reduces knowledge acquisition and maintenance costs consider-
ably compared to model-based approaches and has therefore become quite popular in
experience-rich domains. However, handling multiple faults is a major problem: in our
domain of sonography the examination considers several partially disjunctive subdomains,
e.g. liver or kidney, which results in multiple faults, i.e. most cases contain multiple di-
agnoses. Our goal is to extend a medical documentation and consultation system with a
component for experience management, which enables the retrieval of experiences such
as explanations for a query case based on the presented similarity to former cases and
additional information contained in these, e.g. therapy, complications, prognosis or the
treating physician as contact person for special questions. To obtain this information we
use case-based reasoning. Due to the combinatorial rules the chance to reuse a case with
even 3 independent diagnoses from say 100 alternatives is roughly just one to one million.
However, that many cases are rarely available. Therefore, since an average of about 6.8
diagnoses per case were found, naive case-based diagnosis performed very poor.
A closer look at other diagnostic problem solving methods like heuristic or set-covering
approaches being able to handle multiple faults in medical domains [BEF+02] shows,
that they exploit independence assumptions about the domain to reduce the combinatorial
search space. The major ideas are:

1. Decomposing complex cases into several simpler cases

2. Finding solutions for the simple cases

3. Combining the cases with their solutions



The difficult task is decomposition. We propose two approaches: The first one uses static
decomposition, which can be largely precomputed at compile time. The second one em-
ploys dynamic decomposition: it constructs partitions at run time. The static decomposi-
tion method takes advantage of the fact that many domains can be divided in rather inde-
pendent subdomains, e.g. in the medical domain according to the different organ systems
(i.e. liver, kidney etc. in our domain of sonography). Since a complete separation is usually
not possible, overlapping observations and diagnoses are assigned to all subdomains.

If a static decomposition is impossible, then a dynamic approach is necessary: We adopt a
set-covering strategy for dealing with multiple faults: Each diagnosis (fault) covers some
observations and all diagnoses should be able to cover all observations. Since pure case-
based reasoning has just the notion of similarity but not of set-covering, a combination
of both approaches is necessary. Therefore, we learn diagnostic profiles from cases and
use these within the set-covering approach to diagnose multiple faults and check the pro-
posed solution by composing cases covering all diagnoses. We have implemented both
extensions to case-based diagnosis and evaluated them with 744 cases from the sonogra-
phy domain. First results show, that both approaches are able to handle the multiple fault
problem.

The rest of the paper is organized as follows: In Section 2 we give essential basic defi-
nitions for case-based diagnosis. Furthermore, we introduce a conceptual process model
of case-based diagnosis handling multiple faults. In Section 3 we describe the enhanced
CBR retrieve and reuse step of the process model in more detail. An evaluation with a
real-world case base is given in Section 4. We will conclude the paper in Section 5 with a
discussion of the presented work and we show promising directions for future work.

2 Case-Based Diagnosis with Multiple Faults

In the following, we will first define the knowledge representation schema and discuss the
similarity metric for comparing cases. After that, we will outline the process model which
describes the case-based diagnosis process with multiple faults.

Basic Definitions Let ΩD be the set of all diagnoses andΩA the set of all attributes. To
each attributea ∈ ΩA a rangedom(a) of values is assigned. Further we assumeΩF to be
the (universal) set of findings(a = v), wherea ∈ ΩA is an attribute andv ∈ dom(a) is
an assignable value. LetCB be the case base containing all available cases that have been
solved previously. A casec ∈ CB is defined as a tuple

c = (Fc ,Dc , Ic) (1)

whereFc ⊆ ΩF is the set of findings observed in the casec. In CBR-problems these
findings are commonly calledproblem description. The setDc ⊆ ΩD is the set of diag-
noses describing thesolutionfor this case.Ic contains additional information like therapy
advices or prognostic hints.
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Similarity Metric To compare the similarity of a query casec with another casec′, we
apply the commonly used weighted similarity measure given in Equation 2. This measure
is an adaptation of theHamming distancewith weights and partial similarities between
values of attributea (e.g. see [BKI00], page 183f.):

sim(c, c′) =

∑
a∈Ω′

A

w(a) · sima

(
vc(a), vc′(a)

)
∑

a∈Ω′
A

w(a)
(2)

wherevc(a) is a function, which returns the value of the attributea in casec andw(a) is
the weight of attributea. If weights for attributes are not available, then we setw(a) = 1
for all a ∈ ΩA. sima

(
vc(a), vc′(a)

)
is a function which returns the similarity between

two valuesvc(a) andvc′(a) of attributea.
We consider the attributes contained in the the union of the defined attributes of both cases:

Ω′
A =

{
a ∈ ΩA | ∃f ∈ Fc ∪ Fc′ : f = (a = v), v ∈ dom(a)

}
If an attribute is only defined in one case then we treat this as an ’unknown’ attribute value
and give a default similarity ofsima(., .) = 0.1.

A Process Model for Case-Based Diagnosis handling Multiple Faults In [AP94],
Aamodt and Plaza defined the case-based reasoning process as a cycle containing the fol-
lowing four sub-processes:Retrieve, Reuse, Revise, Retain. Typically starting with a (par-
tial) problem description of observed findings the retrieve process ends with a previously
solved case which matches the problem description of the query case best.

We say, that a case issufficiently similarto another case, if the similarity between these two
cases exceeds a given (and usually high) thresholdTCBR. In [BAP02] we have described
appropriate methods to learn similarities and weights from cases which we can apply for
standard CBR. If we cannot retrieve a sufficiently similar case by standard CBR, then we
rely on an adaptedRetrieveandReuseprocess, which is illustrated in Figure 1.

1. Apply standard CBR (using Equation 2) utilizing the learned knowledge [BAP02].

2. If sufficiently similarcases have been found, then reuse the solutions of thek best cases.

3. Otherwise, if no case is sufficiently similar:

(a) Generate a setCa of candidate casesaccording to acandidate case generation strategy
(cf. Section 3)

(b) Using Equation 2 select thek most similar cases to the query casec, which are also
sufficiently similar: Cak ⊆ {ca ∈ Ca | sim(ca, c) ≥ TCBR}. Return these ask
possible solutions for the given problem description

A candidate caseis created from a set of subcases which are merged to one case. We will
discuss candidate case generation strategies in Section 3 in more detail.
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Figure 1: Process model for CBR handling multiple faults using candidate case creation

Definition 1 (Candidate Case).A candidate case

ca = (Fca, Dca, Cca)

consists of a set of subcasesCca ⊆ CBca of a given case baseCBca and a set of diagnoses
Dca ⊆ ΩD . The set of findingsFca ⊆ ΩF of the candidate case is created by joining the
findings of the subcases as described below. The setDca is defined as the union of the
subcases’ diagnoses, i.e.Dca =

⋃
c∈Cca

Dc.

To create candidate cases we have to combine the problem descriptions and the solutions
included in the subcases of the candidate case. However, when combining problem de-
scriptions, i.e. sets of findings, conflicts can arise if two cases contain different values for
the same attribute. For the creation of candidate cases we apply the following algorithm:

1. Joining sets of the solutions contained in the subcases.

2. Joining problem descriptions of the subcases:Fca =
⋃

c∈Cca
Fc

3. Conflict resolution: IfFca contains more than one finding for an attribute:

(a) If background knowledge is available, then we use it (see below).

(b) Otherwise we try to select an attribute value based on the finding in the query case:

i. We choose the value contained in the query case if included in one subcase.

ii. Alternatively, we select the value which is most similar to the value included in
the query case.

iii. Otherwise, if the value is not included in the problem description of the query
case, then we randomly pick a value from the set of the attribute’s values of the
subcases. For ordinal or numerical findings we could use the mean of the values,
alternatively.
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If no additional knowledge is available the conflict resolution strategy above is motivated
by the fact, that we want to obtain a candidate case explaining the findings in the query
case. So, when choosing between different values for an attribute, we base this decision
on the value which is contained in the query case. If the query case does not contain the
conflicting attribute, we do not know, which value is relevant for the candidate case, so we
can pick one randomly.
However, the conflict resolution step above can be enhanced using additional knowledge,
i.e. abnormalities. Abnormality knowledge specifies which findings represent a normal
or an abnormal state of their corresponding attribute (e.g.pain=noneis normal, whereas
pain=high is abnormal). If abnormalities are defined, then we take the value with the
highest abnormality. We motivate this approach by a heuristic explained with the following
example: If a patient has two (independent) diagnoses, then it seems to be reasonable that
the more severe finding will be observed, e.g.pain=high from one diagnosis rather than
pain=nonefrom another diagnosis.

3 Strategies for Candidate Case Generation

In Section 2 we have discussed how to solve cases containing multiple faults which cannot
be solved by standard CBR techniques. For these, we propose a special retrieve and reuse
method based on candidate case creation strategies. There are two approaches for generat-
ing candidate cases. The first approach uses partitioning knowledge provided by the expert
to split cases into several parts. Decomposed cases are retrieved and combined to candi-
date cases. The second approach does not need additional background knowledge, since it
uses learned diagnostic profiles to build set-covering models. So, if the static decomposi-
tion method is not applicable, i.e. if necessary partitioning knowledge is not available, then
we can always rely on the dynamic approach utilizing learned set-covering knowledge.

3.1 Candidate Case Generation using Partition Class Knowledge

For the first candidate case generation strategy, the expert can providepartition class
knowledge describing how to divide the set of diagnoses and attributes into partially dis-
junctive subsets, i.e. partitions. These subsets correspond to certain problem areas of the
application domain. For example, in the medical domain of sonography, we have subsets
corresponding to problem areas likeliver, pancreas, kidney, stomachand intestine. The
idea of using partition class knowledge is to split the original case base into several case
bases containing partial, decomposed cases corresponding to different partition classes.
This decomposition is static and therefore can be precomputed at compile-time. Accord-
ing to the given subsets of attributes and diagnoses of each partition class we can split
cases into subcases, where a case is divided by forming sets of attributes and diagnoses for
each partition class.

5



Definition 2 (Partition Class). A partition classpc is defined as a tuple

pc = (Dpc, Fpc)

whereDpc ⊆ ΩD andFpc ⊆ ΩF . For one partition classpc the setsDpc andFpc refer
to the same problem area of the application domain. All diagnoses are covered by the
different partition classespci, i.e. ΩD =

⋃
i

Dpci
.

Candidate Case Generation By recombining partial cases to candidate cases, we find
possible solutions, i.e. most similar cases for the query case. We obtain these partial cases
by first decomposing the query case into several subcases. Then we apply CBR for each
query subcase, retrieve a most similar partial case, and finally recombine the retrieved
solutions. We will outline the process in the following:

1. Precomputed: Divide the original case base into several ’partition class’ case bases.

2. Decompose the query case into a set of partial cases according to the given partition classes.

3. For each partial case, apply standard CBR using the respective partitioned case base saving
the set of most similar cases for each partial case in result sets.

4. Generate candidate cases by combining the result sets: Construct a set of subcases, for which
one case from each result set is drawn. Create a candidate case using these subcases.

We basically follow a divide-and-conquer strategy. We decompose cases into subcases,
which may even contain only a single diagnosis. Then we recombine the partial solutions
into the general solution, which is represented by the candidate case. However, we have
to make sure that the decomposed cases are still meaningful. Firstly, they must contain a
minimum number of attributes to guarantee a certain support for the diagnoses contained
in the case. Secondly, cases should still contain diagnostic information, i.e. they should
contain at least one diagnosis. If a generated subcase does not fulfill these requirements,
then it is not considered and removed.

Related Work In the literature the combination of standard case-based reasoning re-
trieval with special reuse, e.g. adaptation techniques has already been investigated in
several approaches. Watson and Perera [WP98] presented a system, which retrieves de-
composed cases from a case base made up of hierarchically structured cases, and adapts
multiple sub-cases into a solution semi-automatically. TheCADSYN[MZ91] system re-
combines sub-problems formed of decomposed cases into a solution taking the context of
such a partial case into account. Smyth and Cunningham [SKC01] presented case-based
reasoning on hierarchical case-bases, which allows complex problems to be solved by
reusing multiple cases at various levels of abstraction. These approaches apply mainly
techniques from case-based planning, i.e. utilizing hierarchical relations either in the CBR
retrieve or reuse step, or both. In contrast, our candidate case generation strategy using
partition class knowledge is a knowledge intensive approach, which uses the explicit par-
titioning information as background knowledge to decompose cases.
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3.2 Candidate Case Generation using Set-Covering Models

If the partition class approach is not feasible for the given domain, we propose a more gen-
eral dynamic approach for candidate case creation utilizing learning methods. In [BAP02]
we showed how to learn diagnostic profiles which are transformed to set-covering models.
This set-covering knowledge is used to generate hypotheses, i.e. a set of diagnoses, which
can explain the problem description of the query case. These hypotheses are used in a
combinedRetrieveandReusestep to generate candidate cases.

Set-Covering Models A set-covering modelcontains set-covering relations, which de-
scribe relations like:A diagnosisd predicts that the findingf is observed infreqf,d percent
of all cases."We denote a set-covering relation byr = d → f [freqf,d] . Originally, plain
set-covering models were introduced by [RNW83]. Due to the limited space we refer to
[BSP01, BS02] for a more detailled introduction into set-covering models using additional
knowledge, like weights and similarities. As additional knowledge we can use the induc-
tively learned knowledge which we use for standard CBR as well. In [BAP02] we showed
how diagnostic profiles are transformed to set-covering models. For short we add a set-
covering relationr = d → f [freqf,d] for all findingsf that occur in a given diagnostic
profile for a diagnosisd, to the set-covering knowledge base.

Candidate Case Generation The strategy for creating candidate cases with set-covering
models uses these models to generate hypotheses, i.e. sets of diagnoses, that represent an
explanation for the query case. Given a hypothesis we combine cases so that the union
of their solution parts has a high coverage of the hypothesis. When generating candi-
date cases, we first construct a candidate case hypothesis, which restricts the number of
subcases included.

Definition 3 (Candidate Case Hypothesis).A candidate case hypothesis

can = (Fca, Dca, Cca)

of sizen is a candidate case with not more thann subcases included, i.e.|Cca| = n.

For defining the quality of a candidate case, we applied a metric introduced by Thompson
and Mooney [TM94]. We call this metricintersection coverage. Intuitively, it measures
the size of the intersection between the hypothesis’ diagnoses and the candidate case’s
diagnoses compared to the size of the diagnoses. The metric is defined as follows:

Definition 4 (Intersection Coverage).The intersection coverage of a candidate case re-
flects, the degree of coverage between its set of diagnosesDca ⊆ ΩD and the hypothesis’
set of diagnosesDh ⊆ ΩD . The intersection coverageic is defined by:

ic(Dca, Dh) =
1
2
·
(
|Dca ∩Dh|

|Dh|
+
|Dca ∩Dh|
|Dca|

)
(3)

whereDca is the set of diagnoses of the candidate case, andDh is the set of diagnoses
included in the hypothesis.
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We say, that a candidate caseca = (Fca, Dca, Cca) completely coversa hypothesisDh

iff Dca = Dh. It is obvious thatic(Dca, Dh) = 1 iff ca completely coversDh. We use
this quality measure when combining partial cases to construct candidate cases, and when
ranking the best candidate cases which we return in the candidate case generation strategy
using set-covering knowledge. It is easy to see that we are interested in candidate cases
with a coverage of a given hypothesis as high as possible, because such candidate cases
can explain the hypothesis best.
The strategy for candidate case creation using set-covering models is outlined below:

1. We use the transformed set-covering models to compute thel best hypotheses. A hypothesis
is a set of diagnoses that can explain the problem description of the query case, i.e. the
observed findings.

2. Given the hypotheses, we generate a set ofcandidate cases: We construct candidate case
hypotheses first, restricting their size to a maximum number of subcases. The candidate
case generation process is guided by the idea, that a candidate case should contain subcases
whose combined solutions should cover the diagnoses of a given hypothesis according to the
intersection coverageic.

3. We rank the candidate cases given their corresponding hypotheses using the intersection cov-
erage (ic) metric.

4. We return them best candidate cases, i.e. the cases that fit the generated hypotheses best as
the candidate case set.

It is obvious that this strategy relies mainly on automatic learning methods, in contrast
to the alternative strategy for candidate case creation which we discussed in the previous
section.

Related Work The combination of case-based reasoning with abductive or set-covering
techniques has already been investigated in several approaches. The systems CASEY
[Kot88] and ADAPtER [PT95] are prominent examples that use case-based reasoning for
case retrieval. Abductive knowledge is applied to adapt old cases and give a verbose expla-
nation for the adaptation. In our work we use the reverse approach, when using abductive
reasoning for guiding the search of how to combine cases. Schmidt et al. [SPG99] consid-
ered a simple generation process of prototypes from cases with the ICONS project. Their
system uses these prototypes for retrieval and adaptation of query cases. Prototypes are
made up of cases, where new prototypes are generated, if new cases do not fit in existing
ones. Work on handling multiple faults applying set-covering models is another aspect
of the work presented here. TheLAB algorithm by Thompson and Mooney [TM94] is an
inductive learning algorithm, that generates set-covering relations from cases containing
multiple faults, but no additional knowledge is applied later.

So, in contrast to other systems, which use abductive reasoning mainly for explanation, we
apply a combined retrieve and reuse step guided by set-covering knowledge. The candidate
case generation strategy using set-covering models applies a tight coupling of CBR and
set-covering knowledge. The set-covering knowledge is learned automatically, and we are
also able to include additional knowledge like partial similarities and feature weights in
this process.
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4 Evaluation

In this section we will first describe the case base we applied for the evaluation. Then
we will discuss evaluation methods in multiple fault problems. After that, we will present
our results and discuss these in detail. For a more detailed evaluation, which also includes
learned background knowledge, we refer to [Atz02].

Properties of the Case Base For our evaluation we applied a real-world case base which
is based on the knowledge-based documentation and consultation system for sonography
SONOCONSULT, an advanced and isolated part of HEPATOCONSULT [BEF+02]. For the
development of HEPATOCONSULT the shell-kitD3 [Pup98] was applied directly by do-
main experts. The quality of the derived diagnoses usually is very good, i.e. the solutions
are correct in nearly all cases.

Currently, we are using a part of the SONOCONSULT case base containing 744 cases. The
case base contains an overall number of 221 diagnoses and 556 symptoms, with a mean
Md = 6.71 ± 04.4 of diagnoses per case and a meanMf = 48.93 ± 17.9 of relevant
findings per case.

Evaluating Accuracy in Multiple Fault Problems When evaluating the accuracy of
the learned knowledge, we want to obtain a quantitative measure of the accuracy of the
system’s diagnoses. For single category problems a case is correctly classified, if its diag-
nosis matches the correct diagnosis. However, for cases with multiple-diagnoses each case
is a positive or negative example for several diagnoses. Thompson and Mooney [TM94]
propose theIntersection Accuracyas a measure for multiple fault problems:

Definition 5 (Intersection Accuracy). The intersection accuracyIA(c, c′) is defined as

IA(c, c′) =
1
2
·
(
|Dc ∩Dc′ |

|Dc |
+
|Dc ∩Dc′ |
|Dc′ |

)
(4)

wherec andc′ are two cases,Dc ⊆ ΩD is the set of diagnoses of casec, andDc′ ⊆ ΩD

is the set of diagnoses contained in casec′ likewise.

Intersection accuracy is derived by the two standard measures:sensitivityandprecision,
where it is just the average of sensitivity and precision. Essentially the intersection accu-
racy metric is equal to the intersection coverage defined in equation 3. However, since the
semantics are slightly different, we define intersection accuracy as a metric for comparing
solutions of cases while intersection coverage relates a solution of a case and a hypothesis.

The SONOCONSULT knowledge base contains hierarchical relationships between diag-
noses, so it is possible to exploit these in accuracy assessment, e.g. differentiate between
coarse diagnoses and finer-grained diagnoses. However, since the hierarchies in the SONO-
CONSULT knowledge base are not constructed uniformly, we essentially only use direct
parent – child relationships, e.g. when a parent diagnosisp is present in one case and a
child c of p in the other, we count this as a reduced matchmatch(p, c) = 0.5. However,
this situation occurred only in a minority of cases.
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Experimental Results and Discussion Initially, we performed an analysis to find out,
how many cases can be solved by a perfect case-based reasoning method. So, we compared
each query case in the case base with its most similar case that exists in the case base
considering only the solution part. We ’found’ the perfect matching case by searching for
a compare case with the highest intersection coverage of its diagnoses with the diagnoses
of the query case. Performing this experiment, it turned out, that in principle all 744
cases are solvable with an intersection accuracy of 90%. However, the analysis showed
that due to the multiple fault characteristic of our case base, intersection accuracy did not
necessarily correlate with similarity. E.g., there are a lot of cases with an intersection
accuracy of the matching case around 85%, while the similarity between the two cases is
below 20%, i.e. cases with similar diagnoses may have quite different findings.

In the following table we present results of the experiments E0, E1 and E2. Before evaluat-
ing our methods, we performed an experiment E0 which applied a standard CBR approach
using ordinary case-comparison. E1 and E2 illustrate the performance of the two hybrid
methods introduced in Section 3. E1 uses the set-covering method, with the learned set-
covering models, whereas E2 uses partition class knowledge provided by the expert. For
these two methods we use all the available (learned) knowledge e.g. learned similarities
and weights as discussed in [BAP02].

For the evaluation of our experiments we adopted theintersection accuracymeasure, de-
scribed in Section 4. We used leave-one-out cross-validation [Mit97] which is a variation
of k-fold cross validation, where each fold consists only of exactly one case. We say that
a compare casec′ solvesa query casec, iff sim(c, c′) ≥ TCBR, i.e. if the cases are suf-
ficiently similar. Cases below this threshold were withdrawn and marked asnot solvable.
The more advanced strategies for candidate case generation enable us to decrease the case
similarity thresholdTCBR without receiving a dramatically decreased intersection accu-
racy of the solved cases. In addition to the mean accuracy (mean acc) of all cases, we have
also included the mean accuracy (mean (40) acc) of the 40 ’best’ cases, i.e. the cases with
the highest intersection accuracy.

CB (744 cases)
used knowledge / methodthreshold solved mean (40) mean

TCBR cases acc acc
E0 no knowledge 0.78 33 (4%) 0.72 0.73
E1 set-covering strategy 0.54 443 (60%) 0.83 0.70
E2 partition class strategy 0.40 635 (85%) 0.88 0.78

Table 1: Results of Experiments E0, E1, E2 (Analysis using 744 cases)

E0 shows that the standard CBR method is performing poor for cases with multiple faults.
Standard CBR utilizing no additional background knowledge can only solve 4% of the
cases in the case base which is clearly insufficient. E1 performs acceptable since it can
return 443 cases as solved, i.e. it can solve about 60% of the cases in the case base with a
mean accuracy of 70%. This means a dramatic improvement compared to standard CBR-
methods performed on cases with multiple faults. This conclusion strongly motivates the
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usage of set-covering techniques in the case-based process. Experiment E2 using partition
class knowledge is even better since it can solve about 85% of the cases in the case base
with a mean accuracy of 78%. It is obvious that the partition class based strategy can deal
with the multiple fault problem quite well.

The results presented above are quite promising. Nevertheless, we see enhancements for
the number of solved cases and intersection accuracy when applying refined partition class
knowledge. Also, refining the used set-covering models using quality measures will cer-
tainly improve the results for E1.

5 Conclusion and Outlook

Our context was to supplement a medical documentation and consultation system by CBR
techniques for experience management to enable the extended retrieval of experiences. In
this context, standard CBR showed not to be appropriate for handling multiple faults. We
presented two approaches which significantly improved the handling of multiple faults.
We arrived at a dynamic retrieve and reuse process that does not leave the paradigm of
case-based reasoning, since it always explains its presented solutions in parts of cases. For
this process, we combined dynamic case reuse strategies with common case-based tech-
niques to form a new hybrid method for CBR. This method was especially well suited for
the problem of handling cases with multiple faults. Additionally, the system uses various
learning methods to acquire and integrate helpful background knowledge for improving its
performance [BAP02]. One approach for the reuse process utilizing candidate cases uses
set-covering knowledge to create hypotheses that guide the retrieve and reuse process. The
alternative strategy uses background knowledge to decompose cases, exploiting indepen-
dent assumptions of the domain and produced very promising results. The decomposition
of cases can be precomputed in advance at compile-time. So, this strategy is more efficient
concerning run-time than the strategy based on set-covering knowledge.

For future work we see room for improvements in several directions: Considering de-
pendencies between features or diagnoses, when building the diagnostic profiles and set-
covering models can enhance the quality of the models. If dependencies are provided by
the expert, then this can further enhance the quality of the models if taken into account
properly. Furthermore, fine-tuning partition class knowledge, learning partition classes
automatically, and looking at the combine step of the candidate cases more closely, pro-
vide promising opportunities here. For example, techniques that evaluate the quality of
the candidate cases may prove essential to ensure a certain quality of the generated can-
didate cases. So, methods which can evaluate combinations of cases, e.g. using Bayesian
networks [HBR02], are a promising direction. An integration of both candidate case gen-
eration strategies could be a worthwhile approach, too. Cases could be decomposed into
smaller problems using partition knowledge in a first step. The candidate case creation
strategy using set-covering knowledge could be applied in a second step to produce solu-
tions for the subproblems which can then be combined using the partition class strategy.
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