MEMOS: A Methodology for Modeling Services

Mick Kerrigan
Semantic Technology Institute
University of Innsbruck

) Austria__
mick.kerrigan@sti2.at

ABSTRACT

The Semantic Business Process Management (SPBM) ap-
proach from the SUPER project utilizes a Semantic Execu-
tion Environment (SEE) for the automatic discovery, com-
position, mediation, and invocation of Web services. In or-
der to enable the Semantic Execution Environment, an en-
gineer must create semantic descriptions of functional, non-
functional, and behavioural aspects of Web services and end-
user requirements. In this paper we introduce MEMOS, a
methodology for modeling services that provides a detailed
description of the different activities, tasks, roles, and arti-
facts that exist within a Semantic Web Service (SWS) en-
gineering project, from both a service provider and service
requester perspective. By introducing the first methodol-
ogy for Semantic Web Services, we aim to support engineers
in their development projects, ultimately improving quality,
reducing cost, and enabling the adoption of Semantic Web
Services at large.

Categories and Subject Descriptors

D.2 [Software Engineering]: Interoperability;
D.2.10 [Design|: Methodologies

General Terms

Human Factors, Design

Keywords
Semantic Web Services, WSMO, Methodology

1. INTRODUCTION

Business Process Management (BPM) is an established dis-
cipline whereby the processes of a company are modelled,
monitored, managed, and adapted according to business ex-
perts’ viewpoint, well-separated from the lower-level IT con-
cerns associated with their realisation. Meanwhile the ap-
proach of Service-Oriented Architecture (SOA) has made

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SBPM ’10 Crete, Greece

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Barry Norton
Institute AIFB
Karlsruhe Institute of
Technology
Germany
barry.norton@kit.edu

13

Elena Simperl
Institute AIFB
Karlsruhe Institute of
Technology
Germany
elena.simperl@kit.edu

strides towards supporting the requirements of agile cross-
organisational business processes at this implementation level.
Semantic Business Process Management (SBPM) [9] is a re-
cent approach based on the application of ontology-based
semantics to bridge the gap between the business analyst’s
and IT department’s viewpoints in BPM, which is an appli-
cation of the principle of ontological role separation. Many
SBPM approaches use Semantic Web Services (SWS) and
semantics-driven execution.

Semantic Web Services (SWS) represent the next evolu-
tionary step forward in Service Oriented Computing, namely
the addition of ontology-based semantic descriptions for each
service, comprising a formal description of the services func-
tionality, non functional aspects, and external behaviour.
Once services are described semantically, many of the tasks
involved in using them can be automated and real dynamism
can be added to applications using the Semantically-enabled
SOA paradigm. SWS have reached a maturity level where
there is a shared understanding within the research commu-
nity, which is supported by conceptual models, languages,
and tools and there is considerable interest in the use of SWS
as a technology for enabling the dynamic discovery, compo-
sition, mediation, and invocation of Web services. However,
the barrier to the adoption of this new technology is its com-
plexity and a lack of understanding of which activities need
to be performed in order to achieve successful results.

In order to achieve this meeting between different com-
munities beyond the sphere of research it is necessary to
concretely and methodically describe the results and shared
understanding of 7 years research and development in SWS.
In particular the conceptual models, languages, frameworks,
and tools must be placed in the context of methodologies,
best practices, and guidelines. The introduction of method-
ological support for SWS will enable engineers to receive the
consistency of action [12] that a methodology provides, and
improve the quality of the resulting descriptions in terms
of meeting cost estimates, having all of the functionality
promised, and delivering in the right time frame.

We begin this paper by giving a brief overview of SBPM
and SWS (Section 2) and then summarize our preliminary
analysis of how SWS are currently being used in the SBPM
community from [11] (Section 3). In this analysis we iden-
tify a set of scenarios for SWS that describe the high-level
tasks that must be performed by engineers in order to realise
each of them, with these scenarios acting as a starting point
for the methodology. We then introduce a Methodology for
Modeling Services (MEMOS), which provides a systematic
approach to the implementation of Semantic Web Services

by defining the activities and tasks that must be performed
by particular actors in each of the phases of the software
development cycle (Section 4). This methodology has un-
dergone evaluation in the form of both professional reviews
and a case study (Section 5), which have highlighted open
issues and motivate our future work (Section 6).

2. BACKGROUND

To support the separation of business analysts’ and I'T view-
points of business processes the SUPER project has intro-
duced two main ontologies: the Business Process Modelling
Ontology (BPMO)' and a Semantic BPEL model, which is
grounded for execution to a compliant extended WS-BPEL
2.0 schema, BPEL4SWS [17]. Common features between
the two can be mediated using ontology-based rules [18].

BPMO’s stated intention is to “[model] business processes
at the semantic level, integrating knowledge about the or-
ganisational context, workflow activities and Semantic Web
Services.” The workflow aspect is conceptualised via the ab-
stractions encoded in Workflow Patterns [21] and aims to
be graphically represented in a fragment of the Business
Process Modelling Notation (BPMN) [19]. The patterns
covered are also intended to abstract over the features of
Event-driven Process Chains (EPCs), the extended model
of which in the ARIS toolset is inspiration for the modelling
of organisational context [20].

The Web Service Modeling Ontology (WSMO) [8] is a con-
ceptual model for Semantic Web Services and has four top
level elements, namely Ontologies, Web Services, Goals and
Mediators. Ontologies are the basis for the other descrip-
tions by providing the terminology that they use. WSMO
Web Services provide a semantic description of both the
function of a service, in terms of a Capability, and the mech-
anism for interacting with it, in terms of an Interface. A
WSMO goal allows for the requirements of the requester to
be semantically described. Finally, WSMO Mediators pro-
vide a means to resolve heterogeneity issues that inevitably
occur between the other elements due to the open and dis-
tributed nature of the Web.

WSMO'’s service model is primarily used in two regards
in BPMO. The concept of goal allows the requirements for
external tasks to be functionally specified, along with non-
functional requirements related to, for instance, Quality of
Service. The concept of mediator allows both the specifica-
tion of necessary data mediation within a process, as well as
a mediation process to be specified between a set of processes
that are otherwise lacking in mutual conformance. In trans-
lation to Semantic BPEL mediators are intended to play the
same role [16]. Goals, on the other hand, may either be left
in place for run-time matching to a web service, as described
below, or may be replaced with the semantic description of
a suitable service in the executable process.

A number of other conceptual models and languages ex-
ist for semantically describing services, including OWL-S
[14] and WSMO-Lite [22]. Recently the Reference Ontol-
ogy for Semantic Service Oriented Architectures (SSOA-
RO) [2] was defined in the OASIS Semantic Execution En-
vironment technical committee (SEE-TC). It provides a un-
ambiguous definition in RDF-S of the different concepts that

!Final SUPER version submitted to SBPM.

Alternate link via post-SUPER, pre-standardisation activity
in STT Conceptual Models for Services Working Group:
http://cms-wg.sti2.org/reports/

14

exist within a SSOA inspired by existing models and lan-
guages. Transformations from this reference ontology to and
from OWL-S, WSMO, and WSMO-Lite have also been de-
fined in [6]. Thus in this paper we use the terminology from
the SSOA-RO to define the MEMOS methodology such that
it can be applied to WSMO as well as the other models
and languages. The SSOA-RO terminology is introduced
throughout the next section.

3. ENGINEERING SCENARIOS FOR
SEMANTIC WEB SERVICES

In [11], we performed an analysis of recent projects on the
topics of Semantic Web Services and Semantic Business Pro-
cess Management (SBPM), as well as a survey of SWS ex-
perts, in order to understand how Semantic Web Services
are being used in the community. From this analysis, in [11]
we also defined a set of engineering scenarios that describe
the high-level tasks that must be performed by engineers in
order to realise each of them. The benefit of these scenarios
is they can be combined by an engineer in order to design
rich and complex systems, while still allowing the engineer to
have a clear understanding of the SWS artifacts that must
be implemented in order to enable the final system. The
scenarios are a starting point for the MEMOS methodology
and are summarized here in terms of the SSOA-RO, a full
description of which can be found in [4]:

Scenario 1: Using the SSOA-RO for Service Ad-
vertisement: A discovery broker service can be used to
find service descriptions advertised by providers based on
a requesters goal description. There are two common ap-
proaches to service discovery, described in the scenarios be-
low. If service ranking is required in either scenario, providers
should annotate their service descriptions with non func-
tional properties describing the quality of service aspects of
their Web service and requesters should provide their pref-
erences over non functional properties in their goal descrip-
tions.

Scenario la: Capability-based Service Advertisement:
In this scenario the provider creates a functional description
of the service to be advertised in the form of a capability de-
scription. Similarly, the service requester provides a capabil-
ity description of their functional need. Matches are found
by comparing the requesters capability description against
provider capability descriptions.

Scenario 1b: Mediator-based Service Advertisement:
In this scenario mediators are used to define matches be-
tween service descriptions and goal descriptions. These mat-
ches are defined at design time and thus the process of dis-
covery is a simple lookup of a mediator. Mediator-based
discovery is especially suitable in an environment where the
number of services is limited.

Scenario 2: Using the SSOA-RO for Service Invo-
cation: In a different context the services needed within
a system may already be known, so no discovery is neces-
sary; however automatic invocation of these services may be
needed, particularly in cases where service interfaces change
regularly. There are two ways in which service invocation
can occur:

Scenario 2a: Service Choreography-based Invoca-
tion: The provider creates a process model, entitled a chore-

ography, that describes the external behavior of their ser-
vice, i.e. how the requester should interact with the service.
The choreography is accompanied by a grounding that en-
ables ontological instances to be sent to the service according
to a particular data schema. The requester need only pro-
vide the relevant ontological instances to invoke the service.
Scenario 2b: Goal Choreography-based Invocation:
Scenario 2a is only possible in cases where all the informa-
tion needed to execute the service choreography is available
prior to the execution. If new data needs to be generated
based on the responses from the service, then the requester
also requires a choreography such that a conversation be-
tween the requester and provider can be made.

Scenario 3: Using the SSOA-RO for Service Com-
position: Scenario 1 enables the automatic discovery of
services; however, it is often the case that no single service
can fulfil a requesters goal description. In such a case it may
be possible to combine a number of services in order to fulfil
the requesters requirements. There are two approaches to
service composition:

Scenario 3a: Design-time Service Composition: Some
actor manually creates a new service description containing
an orchestration, which brings together individual service
and goal descriptions to deliver a composite functionality.
This scenario can be combined with scenarios 1 or 2 so that
this service description can be automatically discovered or
invoked.

Scenario 3b: Run-time Service Composition: An or-
chestration of service descriptions is created automatically
to fulfil a goal description. The composition process is end-
user-guided, through the specification of a capability de-
scription, non functional preferences, a target choreography,
or a partial orchestration.

Scenario 4: Engineering Ontologies in the SSOA-
RO Context: Scenarios 1, 2, and 3 require ontologies to
enable service and goal descriptions to be created. While
engineers should use existing ontology engineering method-
ologies, the following scenarios should be considered in the
ontology engineering process:

Scenario 4a: Engineering Ontologies from a Data
Schema: Using the provider or requesters data schema,
e.g. the XML Schema of a SOAP Web service, as input to
the ontology engineering process makes it easier to create
a grounding for the resulting ontology; however no shared
understanding with other parties exists and heterogeneity
issues must be resolved later.

Scenario 4b: Reusing Existing Ontologies: Reusing
existing ontologies to describe service and goal descriptions
results in few heterogeneity issues between requesters and
providers, but the process of creating a grounding becomes
more complicated due to the potential gap between the data
schema used by the provider or requester, and the reused on-
tologies.

Scenario 4c: Reengineering Existing Ontologies: Ex-
isting ontologies are reengineered taking into account the
provider or requester data schema. Creating a grounding is
more complex than in 4a and more heterogeneity exists than
in 4b, but better than the worst case in both.

Scenario 5: Enabling Interoperation Between On-
tologies: Using scenarios 4a and 4c results in ontologies

15

that are locally relevant but not shared with others in the
community. Discovery, invocation, and composition in sce-
narios 1, 2, and 3 will not function correctly unless the on-
tologies used by requesters and providers are aligned. There-
fore, to enable interoperability between requester goal de-
scriptions and provider service descriptions it is necessary to
define an ontology to ontology mediator (ooMediator), be-
tween the ontologies that they use. An ooMediator is usually
accompanied by a mapping document containing mappings
between the different elements in the source and target on-
tologies.

4. MEMOS: AMETHODOLOGY FORMOD-
ELING SERVICES

The Methodology for Modeling Services (MEMOS) provides
a systematic approach to the implementation of Semantic
Web Services using the SSOA-RO by defining the specific
activities and tasks that must be performed by particular
actors in each of the phases of the Software Development
Cycle (SDC). The methodology is designed considering the
different scenarios in which Semantic Web Services are cur-
rently being used by the community, as described in Section
3. The MEMOS activities and tasks are defined in a Soft-
ware Development Process Model (SDPM) independent way
such that they can be combined into a process with activities
and tasks from other methodologies, for example the OASIS
FWSI Web Service Implementation Methodology [3].

Phase

icontains

L. produces)

Activity »| Artifact

¢contains A

performs 4 isinputto
al
Role > Task contributes to

Figure 1: Relationship between Phases, Activities,
Tasks, Roles and Artifacts in MEMOS

MEMOS is structured around the Software Development
Cycle and defines activities that should be conducted in the
context of the requirements, design, implementation, test-
ing, and installation & checkout phases of the Software Life
Cycle (SLC) as defined by the IEEE in [1]. Activities in the
MEMOS methodology define a collection of common tasks
that lead towards the output of a particular artifact. In cer-
tain activities, particularly in the requirements phase, tasks
within a particular activity are split into provider tasks and
requester tasks. Provider tasks are undertaken by service
providers as they attempt to expose their services according
to the scenarios defined in section 3. Requester tasks are
similarly performed by those attempting to use Semantic
Web Services to fulfil some functional need within an appli-
cation. A task in the MEMOS methodology is a unit of work
that contributes to the completion of a given activity and its
output artifact(s). One or more roles perform the task by
utilizing the provided input artifacts, according to the spec-
ified guidelines, to produce the output artifacts. Figure 1
illustrates the relationship between phases, activities, tasks,
roles, and artifacts, which is in-line with the IEEE standard
documentation.

« Implement
- Ontologies
- Service Descriptions
— Goal Descriptions

Requirements

- Groundings . . .
_ Mediators « Establish Testing Environment
¢ Identify the Need Design - 00 Mappings « Perform:
¢ Gather Requirements: « Perform Unit Testing — Functional Testing
= Functional

- Non Functional (NF) ¢ High Level Design
- Behavioural ¢ Physical Design
- Knowledge * Detailed Designs:

Implementation

- Integration Testing
— System Testing
— User Acceptance Testing

« Manage Requirements ~ — Capabilities
« Prepare Test Cases — NF Properites & Prefs
— Choreographies
— Ontologies
— Groundings
— Mediators
— OO Mappings
¢ Prepare Functional Tests
* Prepare Integration Tests

« Document Artifacts

« Install Artifacts

¢ Train Maintainers

Installation
&

Checkout

Testing

Figure 2: Overview of Activities in the MEMOS Methodology

The methodology aims to support SWS engineers and aid
them to realize system that use scenarios 1, 2, 4, and 5 as de-
scribed in Section 3. The pace at which the different SWS
artifacts have been adopted and used to date in the com-
munity varies, and this is especially true for orchestrations.
Thus service composition (scenario 3) is deemed out of scope
for this version of the methodology and will be added later
when the community has more experience. It should also be
noted that a large amount of effort has been spent within the
ontology engineering community developing methodologies
for creating, reusing, and reengineering ontologies. While
the MEMOS methodology has tasks in each of the relevant
software development cycle phases related to the develop-
ment of ontologies, these tasks are delegated to an appro-
priate ontology engineering methodology, which is selected
during the requirements gathering phase.

MEMOS is made up of 28 activities, which are in turn
made up of 94 individual tasks with accompanying guide-
lines, an overview of which can be seen in Figure 2. The
tasks are performed by 14 roles including usual software en-
gineering roles, for example requirements analyst, designer,
and domain expert, and those specific to SWS development,
namely ontology engineer, semantic service engineer, and
mapping engineer. Due to space restrictions it is not possible
to describe all 94 MEMOS tasks in detail, thus in the follow-
ing sections we provide an overview of each of the MEMOS
activities and summarize the tasks within them. A full de-
scription of all activities and tasks can be found in [4].

4.1 Requirements Phase

The requirements phase is made up of 7 activities and aims
to solicit requirements from stakeholders and domain ex-
perts regarding the problem to be solved:

Activity R1 - Identify the Need: The aim of this activ-
ity is to discover the exact problem that needs to be solved
by the development project. The requirements analyst be-
gins by identifying the stakeholder and the relevant domain
experts needed in this process and goes on to elicit a prob-
lem statement from these individuals. Once a problem state-
ment exists the requirements analyst should identify those
scenarios from section 3 needed to solve the problem and fi-

16

nally gather the knowledge sources from the domain expert
needed in the requirements phase, for example service or
application design documentation, WSDL documents, and
XML Schemas.

Activity R2 - Gather Functional Requirements: If
scenario 1 is identified during activity R1 then the require-
ments analyst should gather requirements related to the
functional aspects of the service description or goal descrip-
tion to be created. In a provider context this involves the
requirements analyst understanding the functionality offered
by the Web service, the specific functionality that the stake-
holder wants to advertise, and the discovery broker services
where the advertisement will be made. In a requester con-
text the requirements analyst should understand the appli-
cation in question, determine the functional need that this
application has, and the discovery broker services where the
stakeholder wants to search for this functionality.

Activity R3 - Gather Non Functional Requirements:
If scenario 1 is identified during activity R1 then the require-
ments analyst should gather requirements related to the non
functional aspects of the service description or the goal de-
scription to be created. In a provider context this means
understanding the non functional behaviour of the Web ser-
vice to be described and choosing which of these aspects
should be advertised, e.g. availability, security, obligations.
In a requester context the requirements analyst should gain
an understanding of the non functional aspects which are
important to the application that will use services, and iden-
tify the importance that the stakeholder assigns to these non
functional aspects.

Activity R4 - Gather Behavioral Requirements: If
scenario 2 was identified during activity R1 then the require-
ments analyst should gather requirements related to the be-
havioral aspects of the service description or goal description
to be created. In a provider context this means understand-
ing the behaviour of the different operations on the Web
service, the relationship between them, and the groupings
of operations that should be advertised as choreographies.
While in a requester context this means identifying the data
that is available within the application which could be sent
to services, and the data that would be expected as a result
of invocation.

|Existing Ontology | |Data Schema |

uses

*
—>| ooMediator 1 | Grounding 1
v

imports describes
Ontology 1 [

Web
Service

enables

- Service Description 1
Mapping Doc 1 <—| ssMediator 1 I—-»l Existing Service Description |

| Capability Description 1 |

| NF Properties 1 | <—| sgMediator 1 I—->| Goal Description 4 |<—| ggMediator 1 |
imports | Choreography 1 | <—| sgMediator 2 I—->| Goal Description 5 |<—| ggMediator 2 |
finds
Goal Description 1 Goal Description 3
Capability Description 2 | | Capability Description 4
Existing Goal Description

Goal Description 2

| Capability Description 3 |

Figure 3: Example of a Providers High Level Architecture Diagram

Activity R5 - Gather Knowledge Requirements: Us-
ing the functional, non functional, and behavioral require-
ments as input, the requirements analyst can begin the pro-
cess of requirements gathering for the ontologies that will
be required to describe the functional, non functional, and
behavioral aspects of the service description or goal descrip-
tion to be created. This activity involves the selection of an
appropriate ontology engineering methodology and perform-
ing the activities from this methodology. The requirements
analyst should also work with domain experts to identify
those models that are used (or could be used) by potential
collaborators and competitors.

Activity R6 - Manage Requirements: In this activ-
ity the requirements are checked for consistency and to en-
sure that they meet the original problem statement from the
stakeholder. This activity also includes the identification of
dependencies between requirements and the assignment of
requirement priorities.

Activity R7 - Prepare User Acceptance and System
Tests: The aim of this activity is to identify relevant test
cases that can be used for system and user acceptance test-
ing in the test phase of the development process. This ac-
tivity also ensures that all of the requirements identified in
the requirements specification are covered by test cases by
creating a validation matrix.

4.2 Design Phase

The design phase is made up of 10 activities, and aims to
build a well-organized representation of the set of artifacts
needed to meet the gathered requirements.

Activity D1 - Define High Level Architecture: The
aim of this activity is to define the overview architecture of
all the service descriptions and goal descriptions needed to
realize the gathered requirements, along with the ontologies

17

that they use. The high-level architecture also contains the
mediators that link service descriptions, goal descriptions
and ontologies together, and where necessary the mappings
that enable these mediators. Finally the high level archi-
tecture shows the different groundings that are required to
enable interoperability between the SSOA-RO artifacts and
the concrete services or applications they describe. An ex-
ample of a providers high level architecture diagram can be
seen in Figure 3, a requesters high level architecture diagram
would look similar, except that it would be centred around
the application with a functional need. An in depth expla-
nation of Figure 3 can be found in [4].

Activity D2 - Define Physical Architecture: In this
activity the architect and deployer work together to tie the
high level architecture to a physical architecture. The phys-
ical architecture specifies the different repositories and bro-
ker services where the artifacts in the high level architecture
will be registered and used. This activity also produces a
step-by-step deployment plan, which will be followed in the
installation and checkout phase.

Activity D3 - Design Capability Description: In this
activity the designer should create a detailed design de-
scription for each of the capability descriptions defined in
the high level architecture. This activity involves creating
natural language descriptions of each of the preconditions,
postconditions, assumptions, and effects that describe the
functionality of the service. The designer should consider
the information gathered about the discovery broker service
where the capability will be used, as it may ignore service
preconditions, or mandate the specification of a minimum
number of postconditions or effects, etc.

Activity D4 - Design Non Functional Properties and
Preferences: In this activity the designer should create a
detailed design of the non-functional properties on each ser-

vice description and the non functional preferences of each
goal description in the high level architecture. This activity
involves taking the properties or preferences identified in the
requirements phase and assigning values to each. In the case
of preferences, this activity also involves assigning weights
to each of the preferences according to the requesters non
functional needs.

Activity D5 - Design Choreography: In this activity
the designer should create a detailed design for the chore-
ographies of each of the service descriptions and goal descrip-
tions in the high level architecture. The main output of this
activity is a dependency diagram, which captures the dif-
ferent operations on the service, their inputs, their outputs,
and the dependencies that exist between them. Choreogra-
phies on goal descriptions have a similar diagram except that
they capture the requested interface of a Web service rather
than that of a real Web service.

Activity D6 - Design Ontology: In this activity the
designer is responsible for designing each of the ontologies
in the high level architecture according to the ontology en-
gineering methodology selected in the requirements phase.
The main job of the engineer in this task is to design the
concepts, attributes, relations, axioms, and instances that
make up the ontology. The designer should take note of the
logical formalism identified in the high level architecture for
this ontology, as the choice of formalism will have an impact
on the design of the ontology, and, a particular ontology may
need to be created in more than one formalism in order to
support different broker services.

Activity D7 - Design Grounding: In this activity the
designer should create a design for each of the groundings
identified in the high level architecture. The dependency
graph created in activity D6 contains a clear specification of
the different schema elements that need to be sent and re-
ceived via the choreography and can be used by the designer
to identify those parts of the underlying schema that need
to be transformable to and from ontologies. The designer
should go on to identify the equivalent ontology elements
for each of these schema elements.

Activity D8 - Design Mediators: In this activity the
designer should create a list of the sources and targets for
each mediator in the high level architecture.

Activity D9 - Design OO Mappings: In this activity
the designer should create a design for each of the mapping
documents identified in the high level architecture. This
activity begins by identifying the different elements of the
source ontology that need to be transformed to the target
ontology, utilizing the functional, non functional, and be-
havioural requirements. The designer should go on to iden-
tify discrepancies between source and target data values and
design a set of data value transformation services to resolve
these discrepancies, e.g. if the values ”John” and ”Smith”
from the source become the value "John Smith” in the tar-
get, a service which concatenates the values together would
be required.

Activities D3 to D9 also involve the definition of func-
tional tests for each of the detailed designs created. For ex-
ample, in the context of capability descriptions this means
identifying the requesters capability descriptions that should
find a particular providers capability description, or in the
context of OO Mappings the test designer should create
pairs of ontology instances from the source and target on-
tologies, which are equivalent with one another.

18

Activity D10 - Prepare Integration Tests: While the
test cases used for system tests, which were created in ac-
tivity R7, look at the end-to-end behavior of the artifacts
in the system, the test designer should create integration
test cases that should focus on how two or more individual
artifacts interact.

4.3 Implementation Phase

In the implementation phase the detailed design of the indi-
vidual components within the high level architectural design
are reduced down to concrete SSOA-RO artifacts. The im-
plementation phase is made up of 7 activities as follows:

Activity I1 - Implement Ontology: In this activity
the ontology engineer creates an ontology for each of the
ontologies in the high-level architecture according to their
respective detailed design specifications, by performing the
implementation tasks from the chosen ontology engineering
methodology.

Activity I2 - Implement Service Description & Activ-
ity I3 - Implement Goal Description: These activities
involve the reduction of the capability description design,
non functional design, and choreography design down into
concrete implementations for each service description and
goal description in the high level architecture respectively.
Activity I4 - Implement Grounding: In this activity,
lifting and lowering mappings are created to realize each
of the groundings in the high level architecture, according
to the approach used by the targeted broker service. For
example, lifting and lowering broker services exist that are
powered by rules [13], XSLT mappings [7], while others exist
that require a specific Java class to be written [7].
Activity I5 - Implement Mediator: This is a relatively
trivial activity, with each of the mediators specified in the
high-level architecture being created and linking to the re-
spective source and target SSOA-RO artifacts.

Activity I6 - Implement OO Mappings: In this activity
each of the mapping documents in the high level architecture
are created according to the OO mappings design created in
activity D9. [15] defines two approaches to creating map-
ping documents. In the bottom-up approach, the engineer
starts by creating mappings between the most primitive on-
tological concepts in the source and target ontologies, which
act as a minimal agreement between these ontologies upon
which more complex mappings can be made. Intuitively the
top-down approach starts with the engineer creating map-
pings for the more complex ontological concepts first and
then drilling down to map the less complex ontological con-
cepts as necessary.

Activity I7 - Unit Test: The purpose of this activity is to
test particular units of functionality in the system of SSOA-
RO artifacts. The semantic service engineer should execute
the functional tests defined in activities D3 to D9 in this
activity against the artifacts created in I1 to I6.

4.4 Testing Phase

The testing phase ensures that the software designed in the
design phase and implemented in the implementation phase
meets the requirements laid down in the requirements phase.
In the MEMOS methodology it has just a single activity, as
much of the work related to testing is performed across the
other phases of the development cycle:

Activity T1 - Execute Test Plan: Unit testing has been

performed in the implementation phase to ensure that the
created artifacts function as expected within the develop-
ment environment. The testing of the artifacts is brought a
step further in this activity, with the functional, integration,
system, and user acceptance test cases, defined throughout
the development process, being executed in a testing envi-
ronment that is equivalent to where they will be deployed.

4.5 Installation & Checkout Phase

The installation & checkout phase finalizes the Software De-
velopment Cycle and comprises 3 activities, which ensure
that the artifacts created in the implementation phase are
documented, deployed to the locations where they will be
available to end users, and that maintainers are trained in
how to maintain these artifacts:

Activity IC1 - Document Artifacts: The aim of this
activity is to create the documentation needed for end users
and maintainers to successfully work with the SSOA-RO ar-
tifacts created in the project, including annotations on the
artifacts themselves and printed and on-line materials, e.g.
user manuals.

Activity IC2 - Install Artifacts: This activity involves
the execution of the deployment plan created in D2 such
that the created SSOA-RO artifacts are deployed to the lo-
cations where they will be available to end users. Crucially
this activity also involves the re-execution of the test plan
to ensure these artifacts function as expected in the deploy-
ment environment.

Activity IC3 - Train Maintainers: The aim of this activ-
ity is to train the maintainers, who must maintain the SSOA-
RO artifacts in the deployment environment, such that they
have the relevant knowledge to perform their jobs.

5. EVALUATION

A two step approach to the evaluation of the methodology
has been taken, using professional reviews and a case study:

OASIS SEE-TC Professional Review: As we utilized
the SSOA-RO as the main language for describing the arti-
facts in the MEMOS methodology, the first logical place to
conduct professional reviews was within the OASIS SEE-TC
that produced this specification. The MEMOS methodol-
ogy is currently available as a working draft [4] within the
SEE-TC and has received useful feedback from the mem-
bers of this technical committee, who are all experts in the
field of Semantic Web Services. This feedback has enabled
the improvement of activities and tasks in the methodol-
ogy, and their associated guidelines. In the coming months
the MEMOS methodology working draft will be voted on
by SEE-TC members in order to create a committee draft,
which will act as a supporting document to the SSOA-RO
specification.

SHAPE Professional Review: Independently the SHAPE
European framework project?, which develops the needed
infrastructure and technology for using the new OMG Ser-
vice Oriented Architecture Markup Language (SoaML) stan-
dard [5], has adopted the MEMOS methodology as their
methodology for engineering SWS in the SoaML context.
By integrating the activities and tasks from MEMOS into
the SHAPE methodology, the engineers have shown that

Zhttp:/ /www.shape-project.eu

19

MEMOS is generally applicable to service modeling and can
be easily adapted to new conceptual models and languages,
in this case SoaML. Feedback from these engineers regard-
ing the methodology has been very positive and their sug-
gestions have been used to improve the guidelines associated
with MEMOS tasks. Future case study activities plan in the
SHAPE project will act as further evaluation of the appli-
cation of the MEMOS methodology in the SoaML context.

Case Study: A first case study was recently conducted
with a group of three Semantic Web Service experts, who
had all developed Semantic Web Services before, and who
are experts in the areas of functional descriptions, non func-
tional descriptions, and behavioural descriptions respectively.
The tourism domain was selected for the use case, and the
experts were asked to act on behalf of a service provider
to advertise a hotel and car booking Web service using the
MEMOS Methodology. The case study was conducted over
the course of a week, with the experts using WSMO as the
conceptual model for developing the service descriptions,
and completing an experience report for each of the activi-
ties and tasks in the methodology as they performed them.
The experts were given a requirements and design document
for the Web service they needed to describe, along with the
WSDL description of that Web service, and access to the
domain expert who developed it. The experts felt that the
activities and tasks in the requirements phase were easy to
conduct and that the resulting requirements specification
contained all the information needed to perform the rest of
the development project. Where they experienced difficulty
was in the design of the high level architecture, due to its
size and complexity. They suggested that this issue could
be resolved through the addition of tools to support this
activity. The implementation tasks were relatively trivial
for them to perform given their previous experience, how-
ever they stated that the guidelines provided with the im-
plementation activities are a useful resource for those with
less experience. The experts used the Web Service Mod-
eling Toolkit (WSMT) [10], an integrated development en-
vironment for Semantic Web Services through the WSMO
paradigm, throughout the implementation and installation
& checkout phases. The saw the availability of these tools
as crucial to the successful completion of the activities in
these phases. Overall, the participants clearly stated that
the MEMOS methodology was useful, could be feasibly ap-
plied within a development project, and that they believed
that the availability of such a methodology would improve
the consistency and repeatability of development of Seman-
tic Web Services. The experience reports generated by the
experts led to the addition of a number of new tasks to the
methodology, as well as the improvement of the guidelines
for particular tasks.

6. CONCLUSIONS

In this paper we have given a broad overview of a Method-
ology for Modeling Services (MEMOS), which defines the
activities, tasks, artifacts, and roles that exist across the
different phases of the Software Development Cycle for Se-
mantic Web Services. In all there are 28 activities and 94
tasks in the methodology performed by 14 roles. Each of
the tasks is accompanied with detailed guidelines on how to
achieve the best result when performing them. We direct
readers wishing to go into the details of these guidelines to

[4]. Tt should also be noted that the methodology is sup-
ported by development tools in the form of the Web Service
Modeling Toolkit (WSMT) [10], an integrated development
environment for modeling services semantically.

In terms of next steps, additional case studies will be con-
ducted to further test the feasibility, usability, and useful-
ness of the methodology, and to further hone the guidelines
and recommendations that accompany it. The methodol-
ogy currently supports scenarios la, 1b, 2a, 2b, 4a, 4b,
4c, and 5 as defined in Section 3. In coming versions of
the methodology, we will examine the use of orchestrations
within the community for enabling service compositions and
extend the methodology with support for creating these or-
chestrations, both at design-time (scenario 3a) and in run-
time (scenario 3b). Finally, while the WSMT supports many
of the activities and tasks that must be conducted within the
methodology, it does not currently guide the roles through
the methodology itself. Subsequent versions of the WSMT
will be extended in this direction, such that the process of
following the methodology can be made easier.

Acknowledgements

The work is funded by the European Commission under the
projects ACTIVE, COIN, LarKC, MUSING, Service Web
3.0, SHAPE, and SOA4ALL.

7. REFERENCES

[1] Glossary of Software Engineering Terminology (IEEE
Standard 610.12-1990), 1990. Available from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
159342.

[2] OASIS Committee Draft 1, Reference Ontology for
Semantic Service Oriented Architecture Version 1.0.
November 2008. Available from http://docs.oasis-
open.org/semantic-ex/ro-soa/v1.0/see-rosoa-v1.0.pdf.

[3] OASIS Committee Draft 1, Web Service
Implementation Methodology. 2005. Available from
http://www.oasis-

open.org/committees/documents.php?wg_abbrev=fwsi.

[4] OASIS Working Draft, Modeling Services with the
Reference Ontology for Semantic Service Oriented
Architecture 0.1. November 2009. Available from
http://www.oasis-
open.org/committees/document.php?document_id=
35702.

[5] Service Oriented Architecture Modeling Language
(SoaML), Object Management Group. November
2008. Available from
http://www.omgwiki.org/SoaML/.

[6] L. Cabral, M. Kerrigan, and B. Norton. D14.1
Evaluation Design and Collection of Test Data for
Semantic Web Service Tools. Semantic Evaluation At
Large Scale (SEALS) framework project
(FP7-238975), 20009.

[7] F. Facca, S. Komazec, and I. Toma. WSMX 1.0: A
Further Step toward a Complete Semantic Execution
Environment. In Proc. of the 6th FEuropean Semantic
Web Conf. (ESWC 2009), Jun 2009.

[8] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn,

M. Stollberg, D. Roman, and J. Domingue. Enabling
Semantic Web Services — The Web Service Modeling
Ontology. Springer, 2006.

20

[9] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and
D. Fensel. Semantic business process management: A
vision towards using semantic web services for
business process management. In Proceedings of IEEE
Intl. Conf. on e-Business Engineering (ICEBE 2005),
pages 535—540. IEEE Computer Society, 2005.

M. Kerrigan, A. Mocan, M. Tanler, and D. Fensel.
The Web Service Modeling Toolkit - An Integrated
Development Environment for Semantic Web Services.
In Proc. of the 4th Furopean Semantic Web Conf.
(ESWC2007), June 2007.

M. Kerrigan, B. Norton, E. Simperl, and D. Fensel.
Semantic Web Service Engineering for Semantic
Business Process Management. In Proc. of the jth
Intl. workshop on Semantic Business Process
Management (SBPM), June 2009.

H. Kerzner. Strategic Planning for Project
Management using a Project Management Maturity
Model. John Wiley & Sons, 2001.

D. Lambert and J. Domingue. Grounding Semantic
Web Services with Rules. In Proc. of the 5th
Workshop on Semantic Web Applications and
Perspectives (SWAP2008), Dec 2008.

D. Martin. OWL-S: Semantic Markup for Web
Services. Member Submission 22 November 2004,
W3C, Available from
http://www.w3.org/Submission/OWL-S/.

A. Mocan and E. Cimpian. Mappings Creation Using
a View Based Approach. In Proc. of the 1st Intl.
Workshop on Mediation in Semantic Web Services
(Mediate-2005), Dec 2005.

J. Nitzsche and B. Norton. Ontology-based data
mediation in BPEL (for semantic web services).
LNCS. Springer, 2008.

J. Nitzsche, T. van Lessen, D. Karastoyanova, and

F. Leymann. BPEL for semantic web services
(BPEL4SWS). In Proceedings of 3rd International
Workshop on Agents and Web Services in Distributed
Environments (AWeSome’07), volume 4806 of LNCS.
Springer, 2007.

B. Norton, L. Cabral, and J. Nitzsche. Ontology-based
translation of business process models. In Proceedings
of 4th International Conference on Internet and Web
Applications and Services (ICIW 2009, to appear).
IEEE Computer Society, 2009.

Object Management Group. Business process
modelling notation (BPMN) specification. Technical
report, Object Management Group, 2006.
http://www.omg.org/docs/dtc/06-02-01.pdf.

A. Scheer, T. Oliver, and A. Otmar. Process modelling
using event-driven process chains. In M. Dumas,

W. van der Aalst, and A. H. M. ter Hofstede, editors,
Process-Aware Information Systems, chapter 5, pages
117-166. Wiley, 2005.

W. van der Aalst, A. ter Hofstede, B. Kiepuszewski,
and A. Barros. Workflow patterns. Distributed and
Parallel Databases, 14(3):5-51, July 2003.

T. Vitvar, J. Kopecky, J. Viskova, and D. Fensel.
WSMO-Lite Annotations for Web Services. In Proc.
of the 5th Furopean Semantic Web Conf. 2008
(ESWC 2008), June 2008.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

21]

(22]

