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Abstract. We describe a new approach to workflow analysis, which combines a
rich graph representation of workflow schemes with simple (i.e., stratified), yet
powerful DATALOG rules to express complex properties and constraints on execu-
tions. Both the graph representation and the DATALOG rules are mapped into a
unique program in DATALDG®", that is a recent extension of DATALOG for handling
events. This mapping enables the designer to simulate the actual behavior of the
modelled scheme by fixing an initial state and an execution scenario (i.e., a se-
quence of executions for the same workflow) and querying the state after such
executions.

1 Introduction

A great deal of recent research concerns the task of modelling workflow schemes
and several formalisms for specifying structural properties have been already
proposed to support the designer in devising all admissible execution scenarios.
Most of such formalisms are based on graphical representations in order to give
a simple and intuitive description of the workflow structure. In particular, the
most common approach is the use of a control flow graph, in which the workflow
is represented by a labelled directed graph whose nodes correspond the task to
be performed, and the arcs describe the precedences among them.

As pointed out by many authors, see e.g [2], the essential drawback of ap-
proaches based on the control flow graph is their limited expressive power: they
are only able to specify local dependencies whereas properties such as synchro-
nization, concurrency, or serial execution of tasks, also called in the literature
global constraints, cannot be described. The current trend in workflow manage-
ment system is to left unstated all the complex constraints (thus delivering an
incomplete specification) or to eventually expressed them using other formalisms,
e.g., some form of logics.

In this paper, we present an overview of a system which realizes a logic based
formalism which combines a rich graphical representation of workflow schemes
with simple (i.e., locally stratified), yet powerful DATALOG rules to express complex
properties and global constraints on executions. Both the graph representation
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and the DATALOG rules are mapped into a unique program in DATALOG®Y', that is a
recent extension of DATALOG for handling events. We stress that we are currently
on the way of implementing the system using the DLV system [5], with the aim of
obtaining an effective tool for simulating and reasoning on workflows. Concerning
the translation of DATALOG®Y' programs into DLV programs, we mention that in
[4] some of the authors have already shown how to compile them into a classical
logic programming framework.

2 The Overall Architecture

Our workflow system comprises three databases: DB p(WS), storing the control
flow structure, DBy g(ID), storing information on the instance evolution, such
as the status of the tasks and of the servers, and DB;(WS), storing additional
information needed to the execution. Note that, DBcr(WS) and DB (WS) are
shared among the different instances.

Moreover, all the global constraints and additional constraints on the scheduling
of the activities can be translated into a DATALOG®"' program P constr(WS) over
the predicates contained in the above databases. Finally, the run-time execution
mechanism can be also defined in term of DATALOG®™ rules (P(WS)). The logic
program consists of a static definition, that is a classical DATALOG program with
stratified negation, and (of a number of event definitions. An event definition
consists of the event declaration within brackets and of one or more transition
rules. Two event definitions are:

[init(ID)Q(T)]
run()++, started;p(), readyp(ST,[ ], T) < startTask(ST).
[run()@(T)]
evaluate;p (Task,L,Duration)++,
startRunning;p (Task, L, Server, T) «— —unsatp(), ~executed p(),

statesp(Task, L, Ready), available(Server),
executable(Server, Task, Duration)
® choice((Task), (Server)) ® choice((Server), (Task)).

The first event, called init, is an external event which starts a new workflow
instance at a certain time, and triggers the event run()@(T). Each time a run
event occurs, the system tries to assign the ready tasks to the available servers
— as we do not use a particular policy for scheduling the servers, the assignment
is made in a nondeterministic way. The predicate unsat jp() is true if it has been
already checked that the workflow instance does not satisfy possible constraints
on the overall execution — this check is performed during another event complete.
The predicate executedp() is true if the workflow instance has already entered a
final state so that no other task need to be performed. Once the tasks are assigned
to servers, their executions start, and an event evaluate is triggered to continue
the analysis of the workflow instance.
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Fig. 1. Example of workflow.

The DATALOG®" program can be thought of as a simulation environment for
workflow executions, and it is quite intuitive, declarative in the spirit, yet so
powerful to cover all the features of current workflow systems.

3 An Example of Usage

For a better understanding of the main concepts of our workflow system, let us
consider the following example, which describes a typical process for a selling
company.

A customer issues a request to purchase a certain amount of given product
by filling in a request form on the browser (task ReceiveOrder). The request is
forwarded to the financial department (task VerifyClient) and to each company
store (task VerifyAvailability) in order to verify respectively whether the customer
is reliable and whether the requested product is available in the desired amount
in one of the stores. The task ReceiveOrder will activate both outgoing arcs after
completion.

Note that the task VerifyAvailability, which is instantiated for each store, either
notifies to the task OneAwvailable that the requested amount is available (label
"T’) or otherwise it notifies the non-availability to the task NoneAwvailable (label
'F’). Observe that the task OneAwvailable is started as soon as one notification
of availability is received whereas the task NoneAwailable needs the notifications
from all the stores to be activated. The order request will be eventually accepted
if both OneAwailable has been executed and the task VerifyClient has returned
the label "T’; otherwise the order is refused.

As pointed out by many authors, see e.g [2], the essential limitation of the
approach based on the control flow graph lies in the ability of specifying local
dependencies only; indeed, properties such as synchronization, concurrency, or
serial execution of tasks, also called in the literature global constraints, cannot be
expressed. The example confirms that real world cases often includes properties,
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which cannot be captured by a graph; in particular, a natural constraint in every
instantiation is that the company will try to satisfy the request by looking at the
store nearest to the client, in order to reduce transportation costs. This constraint
can be easily expressed using our logic programming formalism.

Our system is able not only to model the workflow behavior but also provides
a mechanism for querying the model in order to obtain information on its (pos-
sible) evolutions. For instance, in our example, the designer may be interested
in knowing whether (and when) a given task has been executed for a given pre-
defined scenario. A typical scenario of execution consists of a number of requests
that are planned in a certain period of time. For instance, the list

H: [init(id;)@(0),init(idy)@(2), init(ids)@(4), init(ids)Q(5)]

specifies (with the syntax of our language) that four orders are planned at times
0, 2, 3, 5.

Since for each order, the requested products with the desired quantity are
assumed to be taken from a single store, it is obvious that not all the possible
schedules will eventually lead to the satisfaction of all the orders. One important
feature of our language is the powerful querying mechanism, that can be used for
planning and scheduling purposes; for instance, by simple supplying a query of
the form

(H, [3 executed(ids)@Q(10)],R)

we can collect in the set of results R, all the steps in the workflow execution that
will lead to the execution of the order idy. Obviously, in the case R = ) we are
ensured that there is no way for satisfying such an order, and, hence, we can
think at rejecting it in advance, or at planning a new production.
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