
A Scenario Description Language Based on

Action Frame

Zhang Hong Hui and Atsushi Ohnishi

Department of Computer Science, Ritsumeikan University, Shiga 525-8577, Japan,
{zhh,ohnishi}@selab.cs.ritsumei.ac.jp

Abstract. Scenarios that describe concrete behaviors of system play an
important role in system development and in particular requirements
engineering. Scenarios are informal, and are difficult to be processed
automatically. This paper describes a language for describing scenarios
in which simple action traces are embellished to include typed frames
based on a simple case grammar of actions.

1 Introduction

Scenarios are important in system development and in particular requirements
engineering for providing concrete system description, especially when used to
define system behavior by system developers and to validate the requirements
by customers. However, scenarios are informal, and are difficult to be processed
automatically.

Ben Achour proposed guidance for writing scenarios [1]. He provides style
and content guidelines referring to conceptual and linguistic model of scenarios,
based on the case grammar. This work demonstrates that the case grammar is
suitable to the semantic characterization of any design models as well as the
semantic characterization of any natural language sentence. However, in Ben
Achour’s guidance, styles and contents are restricted, so it may be difficult to
describe a scenario.

In the authors’ previous work [2], we proposed to build software requirements
in VRDL (Visual Requirements Definition Language) from textual requirements
in Japanese, based on a typology of concepts very similar to the semantic roles
of the case grammar. Scenarios can be regarded as a sequence of events. Each
event corresponds to a certain action. We have developed a scenario description
language based on this notion. We outline a frame-based approach for structuring
the actions in a scenario, and use ideas from the previous work and Jackson’s
problem frames for structuring the content of scenarios and action descriptions
in specifications. Scenarios described with this language have clear syntax and
semantics, and can be transformed into internal representations automatically.

The authors have introduced the scenario description language in [3]. In this
paper, a brief description of this language will be given, and then the evaluation
of this language will be presented in detail.



2 Scenario Description Language

We assume that scenario is composed of description of event and description of
sequence among events.

Events are behaviors employed by users or system for accomplishing their
goals. We assume that each event has just one verb, and that each verb has
its own case structure. Verbs and their own case structures depend on problem
domains, but roles of cases are independent of problem domains. There exist
several roles, such as agent, object, recipient, instrument, source, and so on
[3]. We provide action frames in which verbs and their own case structures are
specified [3]. The action frame depends on problem domains.

Just like Ohnishi’s Case Frame [2], each action has its case structure. For
example, action ”move” has four cases, such as ”agent,” ”source,” ”goal,” and
”instrument.” A sentence ”Mr. X moves from Tokyo to Vienna by airplane” can
be transformed into an internal representation as shown in Table 1.

Table 1. Internal representation example

Action agent source goal instrument

move Mr. X Tokyo Vienna airplane

We assume that a scenario represents a sequence of events, and each event
can be transformed into internal representation based on the action frame. In
the transformation, concrete words will be assigned to pronouns and omitted
indispensable cases. Some cases are not indispensable, but optional. In case of
optional cases, such as the instrument case of action ”notify,” a concrete word
may not be assigned. Just like Requirements Frame [2], we can detect both lack
of cases and illegal usages of noun type.

We also assume several kinds of time sequences among events, such as sequen-
tial events, selective events, iterative events, and parallel events (AND/OR/XOR)
[3]. A scenario example is given in [3].

Scenario description language has been applied to various problem domains,
such as (a) program chair’s jobs, (b) seat reservation, (c) goods purchase in
company, (d) claiming payment of motoring accidents, (e) use case description
of report sales, (f) elevator control. This language depends on problem domains.
By changing the action and case frame according to domain, (1) in case of (a)
a scenario of 172 lines is described, (2) in cases of (c), (d), and (e), scenarios
that contain same information with scenarios appeared in materials open to the
public, can be described, and (3) in cases of (b) and (f), information of existing
systems can be described as scenarios.

3 Evaluation

3.1 Ease of writing

Scenario description language is a semi-formally controlled language. In order
to evaluate whether it is easy to describe scenario with this language, following
experiments have been performed.



exp.1 ease of writing: comparison between scenario description language (SL)
and natural language (NL)

exp.2 ease of writing: comparison between scenario description language (SL)
and activity diagram (AD)
Two testers alternated their description order of different languages on two

problems, so proficiency should not be reflected in experiment results. Time for
describing scenario and a percentage of correct events and time sequence (cor.)
were measured. Experiment results of exp.1 are shown in Table 2.

Table 2. Ease of writing: comparison between SL & NL
problem tester description order language time cor.

A 1 NL 10 min. 0.8
(i) 2 SL 10 min. 1

B 1 SL 13 min. 0.8
2 NL 7 min. 0.4

A 1 SL 18 min. 1
(ii) 2 NL 15 min. 1

B 1 NL 15 min. 0.6
2 SL 10 min. 0.6

As shown in Table 2, (1) regardless of language, a tester describes a problem
firstly takes more time than that same tester describes same problem secondly,
and (2) regardless of description order, scenario described with SL has higher cor.
than scenario described with NL. As a result, SL and NL have the same degree
of ease of writing. However, if using SL the quality of scenario can be increased.
Furthermore, SL is superior to NL in clarity, completeness, rigorousness, and
verifiability.

Because description time of AD depends on used tool, in exp.2 handwritten
time was measured for both AD and SL. Experiment results of exp.2 are shown
in Table 3.

Table 3. Ease of writing: comparison between SL & AD
problem tester description order language time cor.

A 1 SL 30 min. 1
(iii) 2 AD 55 min. 1

B 1 AD 12 min. 0.4
2 SL 15 min. 0.6

A 1 AD 23 min. 1
(iv) 2 SL 17 min. 1

B 1 SL 15 min. 0.9
2 AD 13 min. 0.6

In case of tester A, cor. is high, and description time of SL is shorter than
description time of AD. In case of tester B, cor. is low, therefore description time
does not make much sense, but SL is superior to AD in cor. As a result, SL is
easier to write than AD.

3.2 Understandability

We assume that SL has same understandability with NL. Following experiment
has been performed to compare the understandability of SL and AD.
exp.3 understandability: comparison between SL and AD



The scenario described with SL and the scenario described with AD, which
represent the same problem and so contain same information, were provided
to two testers. Testers read these scenarios, then answered prepared questions.
Four questions (a,b,c,d) that have same degree of difficulty were prepared for
each problem.

Time for answering questions, until answers became correct, was measured.
Experiment results are shown in Table 4. As shown in Table 4, SL and AD have
the same degree in understandability.

Table 4. Understandability: comparison between SL and AD
first second

problem tester language question time language question time
(iii) C SL a,b 5min. AD c,d 6min.

D AD a,b 6min. SL c,d 10min.
(iv) C AD a,b 10min. SL c,d 10min.

D SL a,b 8min. AD c,d 12min.

3.3 Total evaluation

In exp. 1 and 2, not only the ease of writing but also the cor. was compared
between languages, so we can get the evaluation of accuracy. The total evaluation
of languages is shown in Table 5 according to results of exp.1, 2, and 3.

Table 5. Total evaluation of languages
language ease of writing understandability accuracy total

SL A A A A
AD B A B B-
NL A A B B

A: excellent, B: medium, C: poor

4 Conclusion

Since our scenario description language enables us to define both the syntax and
the semantics of scenarios, it is easy to analyze and validate scenarios written
with this language. Using this scenario description language, we can distinctly
describe scenario, and improve the correctness of scenario description. In ad-
dition, scenarios can be transformed into internal representation automatically
based on the action frame.

References

1. Ben Achour, C.: Guiding Scenario Authoring, Proc. of the Eight European-Japanese
Conference on Information Modeling and Knowledge Bases, Vamala, Finland, May
25-29, (1998)

2. Ohnishi, A.: Software Requirements Specification Database Based on Requirements
Frame Model, Proc. of the IEEE second International Conference on Requirements
Engineering (ICRE’96), (1996) 221–228

3. Ohnishi, A., Zhang, H.H., Fujimoto, H.: Transformation and Integration Method of
Scenarios, Proc. of 26th International Computer Software and Applications Confer-
ence (COMPSAC), Oxford, U.K., Aug. (2002) 224–229


	Str: 
	:801: 81
	:811: 82
	:821: 83
	:831: 84



