
Computing Event Dependencies
in System Designs and Programs

Bruc Lee Liong1, Leszek A. Maciaszek2

1 Macquarie University, Department of Computing, NSW 2109,
Sydney, Australia

bliong@ics.mq.edu.au
2 Macquarie University, Department of Computing, NSW 2109,

Sydney, Australia
leszek@ics.mq.edu.au

Abstract. This paper presents a method to compute metrics that predict main-
tainability of a system with respect to its event processing. The metrics reflect
the complexity of event dependencies in an object-oriented system. They can
be computed from a UML design or from a program code. The maintainability
factor is obtained by comparing the calculated metrics with the metrics for a
design conforming to a predefined architectural framework. The framework is
claimed to minimize event dependencies.

1 Introduction

The power of modern information technology makes it possible to write software
with functionality and usability unthinkable before. But this frequently leads to a
decline in understandability and maintainability of the software product. To counter-
act we must be able to compute metrics that predict maintainability.

 A system is a set of intercommunicating objects. The allowed object communica-
tion paths determine the possible set of object dependencies. A necessary condition to
understand a system behavior is to identify and measure all object dependencies. A
goal is to minimize the dependencies through skillful system design, so that a main-
tainable solution can be obtained.

This paper focuses on computing event dependencies in designs and programs
where Java-style event processing is used. Event dependencies are inherently difficult
to determine because of the underlying asynchronicity (multi-threading), flexibility
and dynamic behavior of event-driven systems.

2 The Approach and Related Work

Our approach to computing dependencies is two-faceted: proactive and reactive. The
proactive approach offers an architectural framework that minimizes the dependen-
cies. The framework is called BCEMD (Boundary-Control-Entity-Mediator-

DBInterface). The proactive approach is in a forward-engineering direction – from
design to implementation. The aim is to deliver a software design that minimizes
dependencies by imposing an architectural solution on programmers.

The reactive approach aims at measuring dependencies in implemented software.
This is a reverse-engineering approach – from implementation to design. The imple-
mentation may or may not conform to the BCEMD design. If it does not, the aim is to
compare the metric values in the software with the values that the BCEMD architec-
ture would have delivered. The troublesome dependencies are pinpointed.

A simplified version of the BCEMD architecture was introduced in [6]. [7] applied
the Cumulative Class Dependency (CCD) to designs conforming to the BCEMD
framework. [5] discussed the Cumulative Message Dependency (CMD) and its com-
ponent metrics.

 Most metrics research aims at striking a balance between object cohesion and
coupling in a measured product (e.g. [1], [3], [8]). [4] and [2] report on metrics that
predict maintainability. However, their research is not extended on event dependen-
cies.

Our approach is a proactive-reactive loop. We aim at advocating a software archi-
tectural framework (BCEMD) that minimizes object dependencies and facilitates
system understanding, maintainability and scalability. When computing metrics reac-
tively, i.e. from existing code, we immediately compare and validate them with the
target metrics for a system conforming to our architectural framework.

3 Cumulative Event Dependency

We distinguish between the computation of message dependencies and event depend-
encies. The computation of metrics that lead to CMD handles synchronous messages
and excludes messages that fire and service asynchronous events. The cost of event
processing is calculated separately as the cumulative event dependency (CED).

In event processing there is a separation between an event originator (publisher
object) and various event listeners (subscriber objects) that want to be informed of an
event occurrence and take their own, presumably different, actions. Usually a sepa-
rate registrator object performs the subscription, i.e. the “handshaking” between the
publisher and subscribers.

In CMD, if object A sends a message to object B, then A depends on B because A
expects some results from B. In CED this will translate to a publisher being depend-
ent on the subscriber. Due to the fact that the publisher has no knowledge how the
subscriber processes the event, the dependency is weaker but it exists nevertheless.
Publisher depends on the signature of the subscriber’s method that processes the
event. The fact that publisher and subscriber execute in separate threads introduces
additional maintenance cost.

As opposed to CMD, where – for each message – the client object depends on the
supplier object but not vice versa, in CED the dependency is both-directional. The
subscriber object depends on the publisher object and vice versa.

DEFINITION: Cumulative Event Dependency (CED) is the total maintenance cost
over all methods containing “fire event” messages FEi plus over all methods containing
“process event” messages PEi within publisher objects plus over all methods servicing
these “process events” SEi within subscriber objects. The PEi maintenance cost is associ-
ated with changes to signatures of SEi methods. The SEi maintenance cost is associ-
ated with changes to messages in the bodies of PEi methods. Messages within registrator
objects as well messages contained in bodies of SEi methods are excluded as they are
computed as part of the CMD calculation. If event dependencies break principles of
adopted architectural framework (such as BCEMD) then the costs of all inter-package
event dependencies are increased by the Maintainability Growth Factor (MGF).

Let us assume, for example, that a registrator object R1 registered a subscriber ob-
ject S1 to an event that can be fired by a publisher object P1. This means that P1
contains a method p1 which “fires” a message s1 to S1 once an event object E1 is
created by P1. This makes P1 dependent on S1 (on the signature of the method s1 in
S1, to be precise). However, due to asynchronous communication, the dependency is
both-directional. Any changes to a body of p1 can affect S1 (e.g. it can result in S1
not receiving information about events to which it subscribed or receiving incorrect
information, such as incorrect event object or wrong timing).

The CED calculation is conducted in four steps. Initially we calculate event de-
pendencies for each event in any method of a class. Let us call this calculation simply
Event Dependency (ED). The sum of all EDs in a method is called the Event Depend-
ency for Method (EDM). Next we compute event dependencies for each class within a
package, which is the sum of all EDMs of the class. Let us call this Event Depend-
ency for Class (EDC). Then we calculate event dependencies for each package, which
is the sum of all EDCs within the package. We label this Event Dependency for Pack-
age (EDP). Finally, the CED is the sum of all EDPs in the system.

Event Dependency (ED) is calculated as follows:
1. one (1) for each fire message to a publisher fire method when the message and

the method are in the same class (i.e. in the publisher class) or in the same
package (the class containing the fire message depends on publisher),

2. two (2) for each fire message to a publisher method when the message and the
method are in neighboring packages (the class containing the fire message de-
pends on publisher),

3. one (1) for each publisher’s process message to a subscriber method when the
publisher and subscriber are in the same package (publisher depends on sub-
scriber),

4. two (2) for each publisher’s process message to a subscriber method when the
publisher and subscriber are in neighboring packages (publisher depends on
subscriber),

5. one (1) for each subscriber method’s dependency on the publisher when the
publisher and subscriber are in the same package,

6. two (2) for each subscriber method’s dependency on the publisher when the
publisher and subscriber are in neighboring packages,

7. if the subscriber is an interface then ED costs in points 5 and 6 are replaced by
the costs of interface inheritance (a subscriber implementing the interface de-

pends on it; this cost is added to CED but excluded from the calculation of an-
other metric called Cumulative Inheritance Dependency (CID) – not discussed
here).

Summary

Modern programming languages and database environments make event processing
an integrated part of their development platforms and provide necessary infrastructure
(e.g. Java multithreading, listeners, database triggers). In event processing the need
for a service is separated from the invocation of the service. Event systems decouple
generators and processors of events. As a consequence, object dependencies in an
event system may be hard to discover.

This paper described a method for computing event dependencies in object-
oriented designs and programs. Event dependencies are but one metric in a set of
metrics to produce maintainable systems. At a higher level, event dependencies (and
message and inheritance dependencies) translate to class dependencies.

Computing event dependencies from code has two main goals. Firstly, we are able
to discover programming violations of an architectural design. Secondly, we are able
to reverse-engineer all event dependencies from code to design models and, in the
process, we can establish the maintainability of the system.

References

1. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design, IEEE Tran.
Soft. Eng, 6 (1994), pp.476-493

2. Genero, M., Olivas, J., Piattini, M., Romero, F.: Using metrics to predict OO information
systems maintainability, http://alarcos.inf-cr.uclm.es/CAISE2001.pdf, (accessed March
2003), 16p.

3. Henderson-Sellers, B., Constantine, L.L., Graham, I.M.: Coupling and Cohesion (Towards a
Valid Metrics Suite for Object-Oriented Analysis and Design), Object-Oriented Systems, 3
(1996), pp.143-158.

4. Li, W., Henry, S.: Object Oriented Metrics that Predict Maintainability, J. Syst. and Soft., 23
(1993), pp.11-122.

5. Liong, B.L., Maciaszek, L.A.: Computing Message Dependencies in System Designs and
Programs, submitted to: 5th Int. Conf. on Enterprise Information Systems ICEIS’2003, An-
gers, France, April, Springer Verlag (2003)

6. Maciaszek, L.A.: Requirements Analysis and System Design. Developing Information Sys-
tems with UML, Addison-Wesley (2001)

7. Maciaszek, L.A, Liong, B.L.: Scalable System Design with the BCEMD Framework, in:
Information Systems Development: Advances in Methodologies, Components and Man-
agement, Kluwer Academic Press (2002), pp.279-292

8. Tang, M.-H., Chen, M.-H.: Measuring OO Design Metrics from UML, in: <<UML>>2002 –
The Unified Modeling Language. Model Engineering, Concepts, and Tools, ed. J.-M.
Jezequel, H. Hussmann, S. Cook, Springer (2002), pp.368-382.

	Str:
	:1881: 189
	:1891: 190
	:1901: 191
	:1911: 192

