Accessing Relational Databases via XML
Schema

Chengfei Liu', Minyi Guo?, Jixue Liu®

1" Advanced Computing Research Centre, School of Computer and Information
Science, University of South Australia, SA 5095, Australia
2 Department of Computer Software, The University of Aizu, Aizu-Wakamatsu City,
Fukushima, 965-8580, Japan

Abstract. This paper proposes a new architecture for publishing rela-
tional data as XML documents. The architecture allows users to access
relational databases via XML schema which is transformed from the un-
derlying relational database schema. XML queries can be issued directly
against the XML schema and then be translated into corresponding SQL
queries. The SQL query results are converted into XML documents and
returned to users. In the paper, the architecture and its components are
presented.

1 Introduction

Recently, XML has emerged as the standard for data exchange and publication
on the Web. However, most business data of enterprises has been stored and will
continue to be stored in relational database management systems. Consequently,
there have been a lot of research interests in publishing relational data as XML
documents [5, 3]. One approach to publish relational data is to create XML views
of the underlying relational data. SilkRoute [5] is one of the systems taking this
approach. In SilkRoute, XML views of a relational database are defined using
a relational to XML transformation language called RXL, and then XML-QL
queries are issued against views. The queries and views are combined together
by a query composer and the combined RXL queries are then translated into
corresponding SQL queries. XPERANTO [3] takes a similar approach but uses
XQuery [2] for user queries.

In this paper, we propose a new approach to publish relational data as XML
documents by translating the underlying relational schema into equivalent XML
schema. The translated XML schema preserves integrity constraints defined in
the relational database schema, it is also normalized. After the XML schema
is created, XQuery queries can be issued directly against the XML schema and
then be translated into the corresponding SQL queries against the underlying
relational schema. As such, the query translation gets simplified. Finally, the SQL
query result relations are re-formatted and converted into XML documents. The
remainder of the paper presents the architecture and its components.

17



2 The Proposed Architecture

There are three components in our proposed architecture: a schema translator,
a query translator, and an XML document generator.

2.1 Schema Translator

The schema translator is responsible for translating a relational database schema
into the corresponding XML schema. XML Schema [4] is chosen for defining
XML schema because Data Type Definition (DTD) has some limitations, e.g.,
extremely limited data typing, insufficient support for identity and reference.

Integrity constraints are associated with a relational schema, e.g., primary
keys (PKs), foreign keys (FKs), null/not-null, unique, etc. The null/not-null
and unique constraints can be represented easily in XML Schema. Therefore,
we focus on the mapping of PK/FK constraints. We set two goals in schema
transformation: no data redundancy introduced, and high level of nesting.

XML Schema supports two mechanisms to represent identity and reference:
one is ID/IDREF while the other is KEY/KEYREF. There are differences in
using these two mechanisms. The former supports the dereference function in
path expressions in most XML query languages, however, it only applies to a
single element/attribute. The latter may apply to multiple elements/attributes
but does not support the dereference function. For schema translation, we use
ID/IDREF where possible because of the dereference function support. For this
purpose, we differentiate the single attribute primary/foreign keys from multi-
attribute primary/foreign keys. We also classify a relation into the following
categories based on different types of primary keys: regular relation where the
primary key contains no foreign keys, component relation where the primary
key contains one foreign key, supplementary relation where the primary key as
a whole is also a foreign key, and association relation where the primary key
contains more than one foreign keys.

For a relational database schema, we create a root element in the target
XML schema. For a regular or an association relation, we create an element
with the same name as the relation schema and put it under the root element.
The created element may be moved down later depending on some constraints.
For a component or a supplementary relation, an element is created and placed
as a child element of the element for its parent relation. For a non-key attribute,
an element is created under the element for its relation.

For each single attribute primary key of a regular relation R, an attribute of
the element for R is created with ID data type. For each multiple attribute pri-
mary key of a regular, a component or an association relation R, an attribute of
the element for R is created for each primary key attribute with its correspond-
ing data type, a key element is defined with a selector to select the element for
R and several fields to identify all primary key attributes.

For each foreign key of a relation R except one which is contained in the
primary key of a component or a supplementary relation, if it is a single at-
tribute foreign key, an attribute of the element for R is created with IDREF

18



data type; otherwise, an attribute is created for each foreign key attribute with
its corresponding data type, a keyref element is defined with a selector to select
the element for R and several fields to identify all the foreign key attributes.

To achieve high level of nesting, the position of the above created elements
can be adjusted. If a relation R; has a NOT-NULL foreign key which references
another relation R, and there is no loop between R; and R in terms of reference
relationship, we can move the element for R; to under the element for R.

Detailed mapping rules and examples can be found in [7].

XViews [1] constructs graph based on PK/FK relationship and generate can-
didate views by choosing node with either maximum in-degree or zero in-degree
as root element. The candidate XML views are of high level of nesting but suffer
considerable level of data redundancy. NeT [6] derives nested structures from
flat relations by repeatedly applying nest operator on tuples of each relation.
The result nested structures may be useless because the derivation is not at the
type level. Compared with XViews and NeT, we introduce no data redundancy
while achieve high level of nesting.

2.2 Query Translator

The query translator is responsible for translating XML queries issued against
XML schema into the corresponding SQL queries against the underlying rela-
tional database schema. XQuery [2] is chosen as the XML query language since
it is currently being standardized by W3C. In this paper, we only consider the
translation of basic XQuery queries which do not include aggregate functions.
The main structure of an XQuery query can be formulated by an FLWR ex-
pression with the help of XPath expressions. FOR and LET clauses serve to
bind values to one or more variables using (path) expressions. The FOR clause
is used for iteration, with each variable in FOR iterates over the nodes returned
by its respective expression; while the optional LET clause binds a variable to
an expression without iteration, resulting in a single binding for each variable.
As the LET clause is usually used to process grouping and aggregate functions,
the processing of the LET clause is not discussed here. The optional WHERE
clause specifies conditions to restrict the binding-tuples generated by FOR and
LET clauses. The RETURN clause is used to specify an element structure and
to construct the result elements in the specified structure. As our XML schema
is mapped from the underlying relational database schema, we know the reverse
mapping which is crucial for query translation.

To translate an XQuery query Qzquery to the corresponding SQL query @ sq,
we first make Qzquery canonical, i.e., to move the test conditions in path expres-
sions to the WHERE clause, iteration variables may be added in the FOR clause.
Then we identify all relations which are normally indicated by the end labels
of all path expressions in the FOR clause. After that, we identify all target
attributes for each identified relation. All target attributes appear in the RE-
TURN clause as leaf elements or attributes. Finally, we identify conditions. All
conditions in the WHERE clause of Q3query are moved to the WHERE clause of

19



()sq- In addition, extra join conditions between identified relations representing
an element and its parent element are added.

If a nested FLWR expression appears in the RETURN clause of Qzquery, the
above translation procedure needs to be done recursively.

2.3 XML Document Generator

After the execution of a translated SQL query, the result flat relation is passed to
the XML document generator which is responsible for generating the result XML
document. From the above query translation procedure, the SQL query takes all
leaf elements or attributes defined in an XQuery query RETURN clause and
output them in a flat relation. Therefore, we are able to apply a nest operator
on the flat relation several times to generate the nested structure as specified in
the original XQuery query.

3 Conclusion and Future Work

This paper proposed a new architecture for publishing relational databases as
XML documents. The schema translator, query translator, and XML document
generator of the architecture were presented. The architecture presents to user
with a clear XML schema which is normalized and preserves integrity constraints
defined in the underlying relational schema. It also simplifies query translation
process as compared with SilkRoute and XPERANTO. We believe that the pro-
posed architecture is an effective and practical architecture for accessing rela-
tional databases via XML. In the future, we will investigate the query translation
of complex XQuery queries.

References

1. C. Baru. Xviews: Xml views of relational schemas. In Proceedings of DEXA
Workshop, pages 700-705, 1999.

2. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Simeon, and
M. Stefanescu. XQuery 1.0: An XML Query Language, April 2002. W3C Working
Draft, http://www.w3.org/TR/2002/WD-xquery-20020430/.

3. M. Carey, J. Kiernan, J. Shanmugasundaram, E. Shekita, and S. Subramanian.
Xperanto: Middleware for publishing object-relational data as xml documents. In
Proceedings of VLDB, pages 646648, 2000.

4. D. Fallside. XML Schema Part 0: Primer, May 2001. W3C Recommendation,
http://www.w3.org/TR/xmlschema-0/.

5. M. Fernandez, W. Tan, and D. Suciu. Silkroute: Trading between relations and
xml. In Proceedings of WW W, pages 723-725, 2000.

6. D. Lee, M. Mani, F. Chiu, and W. Chu. Nesting-based relational-to-xml schema
translation. In Proceedings of the WebDB, pages 61-66, 2001.

7. C. Liu, J. Liu, and M. Guo. On transformation to redundancy free xml schema
from relational database schema. In Proceedings of APWeb (to appear), 2003.

20



	Str: 
	:161: 17
	:171: 18
	:181: 19
	:191: 20



