Practical ABox cleaning in DL-Lite
(progress report)

Giulia Masotti, Riccardo Rosati, Marco Ruzzi

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
Sapienza Universitdi Roma
Via Ariosto 25, 1-00185 Roma, Italy

1 Introduction

One of the most important current issues in Description Logic (DL) ontology man-
agement is dealing with inconsistency, that is, the presence of contradictory informa-
tion in the ontology [7]. It is well-known that the classical semantics of DLs is not
inconsistency-tolerapt.e., it does not allow for using in a meaningful way any piece

of information in an inconsistent ontology. On the other hand, the size of ontologies
used by real applications is scaling up, and ontologies are increasingly merged and
integrated into larger ontologies: the probability of creating inconsistent ontologies is
consequently getting higher and higher.

In this paper we focus on ABoXx inconsistency, i.e., the case of inconsistent KBs
where the TBox is consistent while the ABox is inconsistent with the TBox, i.e., a
subset of the assertions in the ABox contradicts a TBox assertion (or a subset of the
TBox). In particular, we are interested in defining a form of automa&Box cleaning
i.e., givenk = (7, .A), we want to identify an ABox4’ such that{ 7, .A’) is consistent
and.A’ is “as close as possible” td.

The kind of ABox cleaning we adopt is formally based on inconsistency-tolerant se-
mantics, which overcome the limitations of the classical DL semantics in inconsistency
management. In particular, we consider inconsistency-tolerant semantics for general
DLs recently proposed in [4], calldAR semanticand ICAR semanticsfor which
reasoning has been studied in the context of the Description Logics DLthéte fam-
ily. The notion of ABox repair in thdA R semantics is very simple: the ABox repair of
a DL ontology is the intersection of all the maximal subsets of the ABox that are con-
sistent with the TBox. The notion of ABox repair in tH€'A R semantics is a variant
of the JAR semantics that is based on a notion of “equivalence under consistency” of
ABoxes inconsistent with respect to a given TBox. In [4] it was proved that computing
the ABox repair of aDL-Lite4 ontology is tractable both unddd R semantics and
ICAR semantics.

We argue that the results of [4] are very important from the practical viewpoint,
for the following reasons: (i) they provide (to the best of our knowledge) the first
formally grounded notion of ABox cleaning. In other wordg,R and ICAR are the
first inconsistency-tolerant semantics that allow for expressing ABox repairs in terms
of a single ABox; (ii) they identify (to the best of our knowledge) the first tractable
inconsistency-tolerant semantics in DLs. This paper starts from the above results, and
tries to provide an experimental validation that ABox cleaning based on the above se-
mantics is actually feasible. More precisely, we provide the following contributions:

(1) We present effective technigues for ABox cleanindDib-Lite4 under /AR and
ICAR semantics. To this aim, we present the Quonto ABox CleaQeA(C), which
implements, within the Quonto systénmechniques for the computation of the ABox
repair of aDL-Litey knowledge base under the above semanf@sAC constitutes

(to the best of our knowledge) the first implementation of a tractable ABox cleaning
algorithm for DL ontologies. Moreover, since Quonto delegates the management of
the ABox to a relational database system (DBMS), all modifications of the ABox are
delegated to the DBMS through SQL queries and updates. This potentially allows for
handling and cleaning very large ABoxes.

(2) We report on the experimental analysis that we are actually conducting@sikg.

Ouir first results are allowing us to understand the actual impact, w.r.t. the efficiency of
ABox cleaning, of the different aspects involved in the computation of the ABox repair,
and the limits and possibilities of the approach implemente@uAC.

The paper that is closer to our work is [3], which also presents a technique for ABox
cleaning in DL ontologies. However, there are two main differences with our approach:
(i) [3] considers the very expressive IHZ N, in which all the semantics considered
by our approach are intractable ([6]); (ii) the two approaches are based on different se-
mantics: in particular, the ABox cleaning algorithm of [3] computes a consistent subset
of the ABox which in general is uncomparable with the ABox repair defined by the
IAR semantics (and thBC'A R semantics).

The rest of the paper is organized as follows. In Section 2, we give some prelimi-
naries, and in particular we introduEd.-Lite, and the definition of thdA R and the
ICAR semantics. In Section 3, we present detailed algorithms for ABox cleaning in
DL-Lite4. In Section 4 we present tliguAC system and report on the experiments we
are currently conducting wituAcC. Finally, in Section 5 we conclude the paper.

2 Preliminaries

2.1 The DLDL-Lite o

In this paper we consider DL ontologies (knowledge bases) specified.ibite 4, a
member of theDL-Lite family of tractable Description Logics [2, 1], which is at the
basis of OWL 2 QL, one of the profile of OWL 2, the official knowledge base speci-
fication language of the World-Wide-Web Consortium (W3Bl.-Lite 4 distinguishes
concepts fronvalue-domainswhich denote sets of (data) values, and roles faim
tributes which denote binary relations between objects and values. Concepts, roles,
attributes, and value-domains in this DL are formed according to the following syntax:

B—A|3Q|8U) E— pU)

C—>B‘ﬁB F—)TD|T1| |Tn
Q—>P‘P_ V—>U|ﬁU
R—Q | -Q

In such rulesA, P, andU respectively denote an atomic concept (i.e., a concept name),
an atomic role (i.e., a role name), and an attribute namedenotes the inverse of an
atomic role, wherea®3 and) are called basic concept and basic role, respectively.

! http:/iww.dis.uniroma.it/"quonto

Furthermore(U) denotes thelomainof U, i.e., the set of objects thaf relates to
values;p(U) denotes theangeof U, i.e., the set of values thaf relates to objects;
T p is the universal value-domaifty, . . . , T, aren pairwise disjoint unbounded value-
domains.

A DL-Lite4 knowledge base (KB) is a pait = (7, .A), where7 is the TBox and
A the ABox. The TBox7 is a finite set of assertions of the form

BCC QCR ECF UcCv (funct Q) (funct U)

From left to right, the first four assertions respectively denote inclusions between con-
cepts, roles, value-domains, and attributes. In turn, the last two assertions denote func-
tionality on roles and on attributes. In fact,lin_-Lite, TBoxes we further impose that
roles and attributes occurring in functionality assertions cannot be specialized (i.e., they
cannot occur in the right-hand side of inclusions). Betand B, be basic concepts, and
let @, and@- be basic roles. We cafiositive inclusions (Plsassertions of the form
By € B», and of the formQ); C @2, whereas we calhegative inclusions (NIs3sser-
tions of the formB; C =By and@; C —Q>.

A DL-Lite4 ABox A is a finite set of membership assertions (ABox assertions) of
the formsA(a), P(a,b), andU (a,v), whereA, P, andU are as above; andb belong
to I'p, the subset of » containing object constants, andbelongs tal'y,, the subset of
I'c containing value constants, whelEp, Iy } is a partition ofl .

The semantics of BL-Lite, knowledge base is given in terms of first-order logic
(FOL) interpretations in the usual way. An interpretatibsatisfying a knowledge base
K a called amodelfor K. In the followingMod((7, A)) will indicate the set of models
of the KB K = (7, .A). A knowledge baséC is satisfiable if it has at least a model,
otherwise it is called unsatisfiable. Given an assertiofwhich is either a TBox or
ABox assertion), we writédC = « if « is satisfied in every model fd€.

Given a TBox7 and an ABoxA’, A’ is called aminimal conflict set fof if the KB
(T, A’ is unsatisfiable and, for every ABo#t” such thatd” c A’, the KB(7, A")
is satisfiable. A minimal conflict set faf is calledunaryif its cardinality (that is, the
number of assertions it contains) is 1 and is caliewary if its cardinality is 2.

2.2 Inconsistency-tolerant semantics for DLs

In this section we recall the inconsistency-tolerant semantics for general DL knowledge
bases defined in [4].We assume that, for a knowledge base= (T, A), T is sat-
isfiable, whereasd may be inconsistent witlT, i.e., the set of models o€ may be
empty.

AR-semanticsThe first notion of repair that we consider, calldd®-repair, is a very
natural one: a repair is a maximal subset of the ABox that is consistent with the TBox.
Thus, anA R-repair is obtained by throwing away fros a minimal set of assertions

to make it consistent wit .

Definition 1. LetK = (7,.A) be a DL KB. AnA R-repairof K is a setA’ of member-
ship assertions such that: @ C A; (i) Mod ((7, A’)) # 0; (iii) there does not exist

2 Due to space limitations, we refer the reader to [4] for introductory examples illustrating these
semantics.

A" such thatd’ ¢ A” C A and Mod(7,.A")) # 0. The set ofd R-repairs for K is
denoted by AR-Réfg). Moreover, we say that a first-order sententces A R-entailed
by C, written K |=ar ¢, if (T, A’) |= ¢ for every A’ € AR-RefK).

CAR-semanticsWe start by formally introducing a notion of “equivalence under con-
sistency” for inconsistent KBs.

Given a KB K, let S denote the signature d€, i.e., the set of concept, role,
and individual names occurring ifi. Given a signature, we denote wittHB(S) the
Herbrand Base oF, i.e. the set of ABox assertions (ground atoms) that can be built
over the signaturé. Then, given a KBC = (7, .A), we define theconsistent logical
consequences df as the setlc(K) = {a | @ € HB(Sk) and there existsl’ C
AsuchthaMod((T, A")) # 0and(7,A’) = «}. Finally, we say that two KBs
(T,A) and (7, A") are consistently equivalent(-equivalent)if clc((7,.A4)) =
cle((T, A")).

We argue that the notion @f-equivalence is very reasonable in settings in which
the ABox (or at least a part of it) has been “closed” (in a complete or partial way) with
respect to the TBox, e.g., when (some or all) the ABox assertions that are entailed by
the ABox and the TBox have been added to the original ABox. This may happen, for
example, when the ABox is obtained by integrating different (and locally consistent)
sources, since some of these sources might have been locally closed with respect to
some TBox axioms: this is very likely, for instance, if a source is an RDF graph with
RDFS predicates, since many RDF systems materialize in the RDF graph the implicit
triples due to the RDFS predicates.

In settings where C-equivalence makes sense, th&€R-semantics is not
suited to handle inconsistency. In fact, we would expect t@Weequivalent
KBs to produce the same logical consequences under inconsistency-
tolerant semantics. Unfortunately, thedR-semantics does not have this
property. A simple example is the following: le? = {student C
young, student C —worker} and let A = {studentmary), worker(mary)},

A’ = {studentmary), worker(mary), young(mary)}. It is immediate to verify
that if ' = (7, A’), thenclc(K) = cle(K’) = A’, thusK andK’ are C-equivalent,
however’ = 4r young(mary) while IC & ar young(mary).

To overcome the above problem, tli¢d R-semantics has been defined in [4],
through a modification of thel R-semantics.

Definition 2. LetK = (T, .A) be a DL KB. ACA R-repairfor K is a setd’ of member-
ship assertions such that’ is an AR-repair of (7, clc(K)). The set ofCAR-repairs
for KC is denoted by CAR-Ré&P, .A). Moreover, we say that a first-order sententes
CAR-entailedby I, written K |=car ¢, if (T, A’) |= ¢ for everyA’ € CAR-Repk).

Going back to the previous example, it is immediate to see that, &inaed X’
areC-equivalent, the set af’A R-repairs (and hence the set@# R-models) oflC and
K’ coincide. As the above example shows, there are sentences entailed by a KB under
CAR-semantics that are not entailed undeR-semantics. Conversely, it is shown in

8 The definition provided here of th€/A R-semantics is a slight simplification of the one ap-
pearing in [4]: this modification, however, does not affect any of the computational results
presented in [4].

[4] that the A R-semantics is a sound approximation of thd R-semantics, i.e., for
every KBK and every FOL senteneg K =4 ¢ impliesK Ecar ¢.

IAR-semantics and ICAR-semanticsWe then recall thd A R-semantics andCAR-
semantics, which are sound approximations of thB-semantics and the”'AR-
semantics, respectively [4].

Definition 3. Let X = (7, A) be a DL KB. Then: (i) ThdAR-repairfor I, denoted
by IAR-RefK) is defined as IAR-R€ft) = () 4/ car-regic) A’ (i) The ICAR-repair
for K, denoted by ICAR-R¢f) is defined as ICAR-R€K) = (1 4 ccar-reprc) A’ (iii)
We say that a first-order sentengds /A R-entailed(respectively/CA R-entailed by
K, and we writeX. =7ar ¢ (respectivelyC =rcar ¢), if (7,I1AR-Repk)) = ¢
(respectively{T,ICAR-RepK)) | ¢).

Example 1.Let us consider the K& = (7, .A) where the TBoxZ is the following:
T={ACC,BCC,3RC B,3R~ C D, AC -B, (funct R)}

and the ABoxA is A = {A(a), B(a),C(a), R(a,b)}. Such a KB is unsatisfiable, due
to the presence of the assertioh@:) andB(a) which violate the disjointness assertion
in 7. The following are the standard AR-repairs.4f

Aar' ={B(a),C(a), R(a,b)}, Aar® = {A(a),C(a)}

Then, we haverlc(4) = {A(a), B(a),C(a), R(a,b), D(a)}. Therefore, the CAR-
repair of A are as follows:

Acar' = {B(a),C(a), R(a,b), D(b)}, Acar® = {A(a),C(a), D(b)}
Consequently, the IAR-repair and ICAR-repair are the following:
Arar = Aar' N Aar® = {C(a)}, Arcar = Acar' N Acar® = {C(a), D(a)}

Example 2.0ne might conjecture that thel R semantics collapses into a simple ABox
cleaning technique which deletes from the ABox all the assertions that participate in
conflicts with the TBox. This is actually not the case, because, as explained in [4], the
IA R-repair actually deletes only the assertions that participat@nimal conflict sets.

Here is an example: given the KB = (7, A) with7 = {A C -3R, RC -R™},

A = {A(a), R(a,a)}, the IAR-repair of C is {A(a)}. That is, the assertior(a)
belongs to thelA R-repair even if it participates in the conflict sfl(a), R(a,a)}
caused by the concept disjointne$sC— —3R: the reason is that such a conflict set is
not minimal because of the unary conflict $&(a, a)} caused by the role disjointness
RLC -R™.

3 Algorithms for ABox cleaning

The technique for computing the ICAR-repair ob&-Lite4 ontology(7, .A) is based
on the idea of deleting fromt all the membership assertions participatingrimimal
conflict sets for7 . As shown in [4], this task is relatively easy (in particular, tractable)

in DL-Lite4 because the following property holds: for ev@l-Lite, TBox 7, all the
minimal conflict sets fof” are either unary conflict sets or binary conflict sets.

This property is actually crucial for tractability of reasoning unéiéfRz and/CAR
semantics. As shown in [6] this property is not shared by other tractable DLE (2,9,
in which the size of minimal conflict sets is not bound by a constant but depends on the
size of the ABox.

We now present detailed algorithms for computing tHe&k-repair and thd CA R-
repair of aDL-Lite4 ontology. These algorithms exploits the techniques presented in
[4], whose aim was only to provide PTIME upper bounds for the problem of computing
such repairs. In particular, the present algorithms specify efficient ways of detecting
minimal conflict sets and computing consistent logical consequences. Instead, the pre-
vious techniques check all unary and binary subsets of the ABox for these purposes.

In the following, we callannotated ABox assertioan expressiorf of the form
(o, v) wherea is an ABox assertion angl is a value in the sefcons ucs bcs}. Fur-
thermore, we calnnotated ABoxa set of annotated ABox assertions. The intuition
behind an annotated ABox asserti¢ris that its annotationy expresses whether the
associated ABox expressiendoes not participate in any minimal conflict seb(9 or
participates in a unary conflict setd9 or to a binary conflict setacs.

The following algorithmQuAC-ICARcomputes the/CA R-repair of aDL-Lites
KB. For ease of exposition, the algorithm does not report details on the treatment of
attributes, which are actually handled in a way analogous to roles.

Algorithm QUuAC-ICARK)
input: DL-Lites KB KL = (7, A), output: ICAR-repair ofC

begin
/I STEP 1: create annotated ABok, ..,
Aann = @:

foreacha € Ado A = Aann U (o, CONY;
/Il STEP 2: detect unary conflict sets.ity,.,
for each concept namel s.t.7 = A C -Ado
for eaCh£ = <A(a), C0n$ S -A(mn do -A(mn = A(m'n - {5} U {<A(a)7 UCS};
for eachrole nameR s.t.7 = R C —-Rdo
for each¢ = (R(a,b),cong € Aann d0 Asnn = Agnn — {€} U {{R(a,b),ucs };
for eachrolenameR st.7 = RC —-R™ or7 3R C —-3R™ do
foreach¢ = (R(a,a),cong € Aunn d0 Aunn = Aann — {€} U {(R(a,a),ucs};
/l STEP 3: compute consistent logical consequencek.in,
for eachinclusionA C B with A, B atomic concepts such th@t = A C B do
for each (A(a),) € Aaunn such thaty # ucsdo Aunn = Aann U {(B(a),cons };
for eachinclusion3R C A with A atomic concept such th&t = 3R C A do
for each (R(a,b),~) € Aann such thaty # ucsdo Aunn = Aann U {(A(a),cons};
for eachinclusiondR~ C A with A atomic concept such thdt =3R~™ C A do
for each (R(a,b),) € Aanyn andy #£ ucsdo Aanyn = Aann U {{A(b),cons};
for eachinclusionR C S with R, .S atomic roles such thaf = R C S do
for each (R(a,b),v) € Aansn andy # ucsdo Aann = Aann U {{S(a,b),cons };
for eachinclusionR™ C S with R, S atomic roles such tha = R~ C S do
for each (R(b, a),~) € Aann andy # ucsdo Aunn = Aann U {{S(a,b),cons };
/| STEP 4: detect binary conflict sets.i.»,
for eachdisjointnessA C —B with A, B atomic concepts
suchthal’ = AC —-Bdo
for eachpairé; = (A(a),11), &2 = (B(a),y2) € Abnn

such thaty;, v2 # ucsdo
Aunn = Aunn — {€1,&2} U {{A(a), bes, (B(a), beg };
for each disjointnessA C —3R with A atomic concept
such thatl = A C -3R do
for eachpairé; = (A(a), 1), & = (R(a,b),v2) € Al
such thaty;, v2 # ucsdo
Asnn = Aann — {617 62} U {<A(a‘)7 bCS, <R(CL, b)7 bC$};
for each disjointnessA C —-3R~ with A atomic concept
such thatl = A C -3R do
for eachpairéy = (A(a), 1), &2 = (R(b, a),72) € At
such thaty, v2 # ucsdo
Aann = Aann — {€1, €2} U{(A(a), bcy, (R(b, a),bcg };
for eachdisjointnessk C —.S with R, S atomic roles
such thatl’ = R C —~S do
for eachpairé; = (R(a,b),1),& = (S(a,b),y2) € Abnn
such thaty;, v2 # ucsdo
Aa"" = Aa"” - {fla '52} U {(R(av b)7 bCQ’ <S(a7 b)? bC$};
for eachdisjointnessk C -5~ with R, .S atomic roles
such thatl =R LC —-S~ do
for eachpairé; = (R(a,b),m1),& = (S(b,a),v2) € Abnn
such thaty;, v2 # ucs
do Aann = Aann — {&1,&2} U {(R(a,b),bcs, (S(b,a),bc };
for each functionality assertiotifunct R) € 7 with R atomic roledo
for eachpairé; = (R(a,b),71), & = (R(a,¢),v2) € A
such thab # ¢ and~1,v2 # ucsdo
Aann = Aann — {517 62} U {(R(av b)7 bCS}, <R(av C)7 bC‘5>}?
for each functionality assertiorifunct R~) € 7 with R atomic roledo
for eachpairér = (R(b,a),1),&2 = (R(c,a),v2) € Abnn
such thab # ¢ and~1,v2 # ucsdo
Aann = Aann — {&1, &2} U{(R(b, a),bcy, (R(c,a), bcg };
[/l STEP 5: extract the ICAR repair froM .,
A =0
for each (o, cong € Agnn do A" = A" U{a};
return A’
end

The algorithmQuAC-ICARconsists of five steps which can be informally described
as follows.

step 1 copy ofA into an annotated ABoAM ,,,,. In this step, the value of the annotation
is initialized toconsfor all ABox assertions.

step 2 detection of the unary conflict sets i,,.,. For every assertion of the form
¢ = (o, cong, such thaf{ o} is a unary conflict set fof’, Aunn = Aann — {£} U
{{a,ucs}, i.e., the annotation relative @ is changed taics Unary conflict sets
are actually detected through TBox reasoning, by looking at empty concepts and
rolesin7, as well as asymmetric roles, i.e., roles disjoint with their inverse.

step 3 computation of the consistent logical consequences), . Here, the task is to
compute all ABox assertions that are entailed/btogether with anyZ -consistent
subset ofA. In DL-Lite4, this actually corresponds to computing the ABox asser-
tions that are entailed ¥ together with the ABox obtained from by deleting all

unary conflict sets fof . Hence, what the algorithms does is computing the ABox
assertions that are logical consequenc& a&nd of the assertions of,,,, which
have not been annotated as unary conflict sets in the previous step.

step 4 detection of the binary conflict sets #,,,,,. For every pair of assertions of the
form&; = (a1, 71), & = (aq,¥2) such thaty; # ucsand~y, # ucsand{«, 5} is a
binary conflict set fof7, Aun, = Aann — {£1,&2} U {{a, bcy, (3,bcs }, i.e., the
annotation relative tax and 3 is changed tdocs As in the case of unary conflict
sets, to find binary conflict sets the algorithm looks for disjoint concepts and roles
in 7, as well as functional roles.

step 5 extraction of the ICAR-repair fromd ,...,. The ICA R-repair can be now simply
extracted from the annotated ABoX,,..,, by eliminating both unary conflict sets
and binary conflict sets. Therefore, for every assertion of the farntons in
Aann, « is copied into the (non-annotated) ABoX which is finally returned by
the algorithm.

The algorithmQuAC-IARis very similar toQUAC-ICAR the only difference is that
it does not execute step 3, i.e., computation of consistent logical consequences. Cor-
rectness of the above algorithms can be proved starting from the results in [4].

Theorem 1. Let £ be a DL-Litey KB and let A’ be the ABox returned by
QUAC-ICARK). Then, A" = ICAR-RepK). Moreover, letA” be the ABox returned
by QUAC-IARK). Then 4" = IAR-Repgk).

4 Implementation and experiments

We have implemented the above algorith@sAC-ICARand QUAC-IARwithin the
Quonto system, in a module call€@UAC (the Quonto ABox Cleaner). Essentially,
QUAC is a Java implementation of the above algorithms where operations on the in-
volved ABoxes are delegated to a relational database system (DBMS). In fact, in the
Quonto architecture, the management of the ABox is delegated to a DBMS: therefore,
all the operations on ABox assertions of the algorithms for computing repairs are exe-
cuted inQUAC by the DBMS used by Quonto, through appropriate SQL scripts.

We are currently experimentinQuAC in order to answer several open questions,
among which:

— the computational cost of the various steps of the algoritQuAC-IAR and
QUAC-ICAR

— the scalability of such algorithms;

— measuring the difference in terms of computational costs of Alfé semantics and
the ICAR semantics;

— the impact of the “degree of inconsistency” of the ABox on the computational cost
of the algorithms.

The tables reported in Figure 1 and Figure 2 present some of the experimental results
that we have obtained so far. The TBox used in the experiments has 30 concept names,
20 role names, 10 attribute names, and about 200 TBox assertions. The various ABoxes
used have been automatically generated.

The first table presents the experimental results for a version of Quonto that uses a
main memory database (H2) to handle the ABox, while the second table presents the
same results when Quonto uses a standard (disk-resident) database (PostgreSQL). The
results have been conducted on a Pentium i7 (2.67 GHz) CPU with 6GB RAM under
Windows 7 (64 bit) operating system. We have also executed the same tests using the
MySQL DBMS, with results analogous to those obtained with PostgreSQL.

In the tables, the first column reports the number of assertions in the ABox, while
the second column reports the percentage of ABox assertions that participate in minimal
conflict sets for the considered TBox. Moreover:

— A; denotes the time to create the annotated ABoX;

— AIAE denotes the time to detect unary and binary conflict sets;

— AIAE denotes the time to extract tiid R-repair from the annotated ABox;

— AICAE denotes the time to detect unary conflict sets, compute consistent logical
consequences and detect binary conflict sets;
— ALCAR denotes the time to extract tA€'A R- repair from the annotated ABoX;
A“‘R is the total time to compute thiel R-repair, i.e.,A; + AIAR AIAR,
— AICAR s the total time to compute thi&'A R-repair, i.e. A, + A’CAR + A’CAR

— all times are expressed in milliseconds.

ABoOX sizg% incons|| A; | A" | A7 A Ay Aj A
1,000 1% ||188 296 | 109 | 593 | 749 | 250 | 1,187
1,000 5% (|188 358 | 78 | 624 | 749 | 250 | 1,187
1,000 10% ||188 296 | 94 | 578 | 749 | 266 | 1,203

3,000 1% ||359 670 | 251 (1,280 1,997| 266 | 2,622
3,000 5% ||359 795 | 234 1,388 1,997| 251 | 2,607
3,000 10% (|359 717 | 126 (1,202 1,997 | 282 | 2,638

10,000 1% ||515 874 | 141 (1,530 3,495| 1,424 5,434
10,000 5% ||515 781 | 171 |1,467 3,495| 1,376| 5,386
10,000 10% ||515 982 | 172 (1,669 3,495| 1,156| 5,166
30,000 1% ||8123,075 422 (4,309 22,635 3,559|27,006
30,000 5% ||812 3,355 418 |4,58522,635 2,498 25,945
30,000 10% ||8123,417| 344 |4,57322,635 2,748|26,195

Fig. 1. Results for main memory database (H2)

The above experimental results show that:

(i) with both the main memory DB and the disk-resident DB, the computation of the
TAR-repair (A’4% column) seems really scalable, while the computation of the
ICAR-repair suffers from the additional step of computing logical consequences,
which is computationally very expensive: its cost actually dominates the cost of all
the other steps;

(ii) the percentage of inconsistency, i.e., the fraction of ABox assertions that participate
in minimal conflict sets, does not have a significant impact on the execution time of
both algorithms;

[ABox sizd% incons]| A, [ALT AP AR] AR ALCAR] AT |
1,000 1% 718 | 516 | 5,117|6,351| 1,358 | 6,314 7,672
1,000 5% 718 | 515 |5,258|6,491| 1,358 | 6,070| 7,428
1,000 10% 718 | 531 |4,680|5,929| 1,358 | 5,929 7,287

3,000 1% 1,840| 688 | 5,444|7,972| 4,011 | 8,747| 12,758
3,000 5% 1,840| 750 | 5,366| 7,956 4,011 | 7,317| 11,328
3,000 10% || 1,840| 797 | 5,304| 7,941| 4,011 | 8,284 | 12,295
10,000 1% 5,850(1,17110,23517,256 16,990(19,115 36,105
10,000 5% 5,850(1,49910,29717,646 16,990(19,424 36,414
10,000 10% || 5,850(1,561] 9,923(17,334 16,990(17,926 34,916
30,000 1% ||16,2553,82320,70240,780134,28665,959200,245
30,000 5% ||16,2554,79020,99942,044134,28661,170195,456
30,000 10% ||16,2555,53920,28142,075134,28663,736198,027

Fig. 2. Results for PostgreSQL

(iii) using the main memory DB, most of the computation time for feR-repair is
devoted to the detection of minimal conflict sets (42 %); conversely, using the
disk-resident DB, a very large percentage of the execution time (always more than
80%) is devoted to the generation of the annotated ABox and to the extraction of
the IA R-repair. This is of course due to the fact that such steps require to create
and write a large number of records on the disk. On the other hand, RAM size is
a bottleneck for the main memory DB (we were not able to process ABoxes with

100,000 assertions).

5 Ongoing and future work

As above observed, most of the execution time of the algor@uAC-1ARusing a disk-
resident DB is due to the creation of the annotated ABox (step 1) and to the creation
of the IA R-repair (step 5). Thus, avoiding these steps would dramatically improve the
efficiency of this algorithm.

To this aim, we observe that both the above steps could be completely skipped if the
database schema used for representing the ABox would present an additional attribute
for storing annotations in every relation (the usual DB representation of an ABox uses a
unary relation for every concept and a binary relation for every role). This corresponds
to the idea of directly using an annotated ABox instead of a standard ABox in the
system. In this case, the computation of fieR-repair could only consist of the steps
2, 3 and 4 of the algorith@uAC-IAR However, the choice of using an annotated ABox
instead of an ABox affects query answering, since the queries evaluated on an annotated
ABox should be able to filter out the assertions whose annotation is eqe@hso

We are currently experimenting whether this choice is actually feasible. Below we
present a table showing the evaluation time of four queries of increasing complexity
on the ABoxes considered in the previous section (in particular, the ABoxes with 5%
inconsistent assertions). We show the cost of both evaluating the query dd fhe
repair (represented as a standard ABox) and directly on the annotated ABox (with the
further selection condition on the annotations).

query ans. oh query ans. on|differencddifference
ABox size query| 1A R-repair |annotated ABok (msec) (%)
(nsec) (nsec)
1,000 ql 123,577 105,868 -17 -17%
1,000 q2 216,740 226,750 10 4%
1,000 | g3 [1,179,561 295,275 -884 -299%
1,000 | g4 421,161 600,174 179 30%
3,000 | ql 138,591 229,060 90 39%
3,000 q2 210,581 355,716 145 41%
3,000 q3 | 1,348,179 490,842 -857 -175%
3,000 4 507,396 653,685 146 22%
10,000 | gl 164,384 339,932 175 52%
10,000 | g2 267,172 499,696 232 47%
10,000 | g3 | 1,347,024 592,475 -754 -127%
10,000 | g4 491,612 664,465 172 26%
30,000 | gl 199,417 724,521 525 2%
30,000 | g2 398,448 905,074 506 56%
30,000 | g3 | 1,519,493 944,726 -574 -61%
30,000 | g4 485,067 1,096,021 610 56%

These first experimental results show that, in Quonto, evaluating queries on the
annotated ABox often seems computationally not much harder (and sometimes even
easier) than evaluating them on the standard ABox. Therefore, a more detailed experi-
mental analysis is needed in order to understand the conditions under which it could be
convenient to only work with an annotated representation of the ABox.

Finally, it would be very interesting to compare the performancoAC with
a query rewriting approach. Indeed, techniques for the perfect rewriting of unions of
conjunctive queries ovedL-Lite, KBs under both/AR and ICAR semantics have
been recently defined [5]. Such techniques are able to reduce query answering over a
KB K = (7,.A) to answering a FOL query over the ABok. So, the ABox is not
repaired at all by this approach: rather, the ABox repair is virtually considered during
guery answering through a suitable reformulation of the query. We plan to implement
such query rewriting techniques, with the aim of comparing such an approach with the
approach ofQuAC.

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. Olhite family and
relations.J. of Artificial Intelligence Resear¢l36:1-69, 2009.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: Thie-Lite family. J. of Automated
Reasoning39(3):385—-429, 2007.

3. J. Dolby, J. Fan, A. Fokoue, A. Kalyanpur, A. Kershenbaum, L. Ma, J. W. Murdock, K. Srini-
vas, and C. A. Welty. Scalable cleanup of information extraction data using ontologies. In
ISWC/ASW(Cpages 100-113, 2007.

4. D.Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant seman-
tics for description logics. IfProc. of RR 20102010.

5. D.Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Query rewriting for inconsistent
DL-Lite ontologies. InProc. of RR 20112011. To appear.

6. R. Rosati. On the complexity of dealing with inconsistency in description logic ontologies. In
Proc. of IJCAI 20112011. To appear.

7. Z.Wang, K. Wang, and R. W. Topor. A new approach to knowledge base revidiirlisite.

In Proc. of AAAI 2010AAAI Press, 2010.

